





# Development of detectors for ultra-low energy neutrinos



Gianluca Cavoto - Sapienza Univ Roma and INFN Roma
On behalf of the Ptolemy Collaboration
QT4HEP conference - CERN 1 Nov 2022







## Outline

- ▶ The neutrino cosmological background (CvB)
- The Ptolemy project
  - A novel type of electro-magnetic filter
  - Advanced detection concepts
     (nano-fabricated transition edge sensors, very low power radio-frequency detection)
  - A Tritium target based on carbon nanostructure
    - Beta decays and quantum uncertainty
- Use of (carbon) nanostructure as targets for particle physics







### The cosmological neutrino background

- Messengers from 1s after the Big Bang
- ▶ Cold Matter (T ~ 1.9K)
- About 100/cm³ here and now
- Faint kinetic energy (< eV)</li>



# The Ptolemy project

M.G. Betti et al JCAP07 (2019) 047



An R&D project to demonstrate the detection concept







# Relic neutrino sky map





Multi-messenger astrophysics with the cosmic neutrino background, C.G. Tully and G. Zhang JCAP06(2021) 053







# The target, atomic tritium <sup>3</sup>H

Cocco, Mangano & Messina, J Phys Conf Ser 110, 082014 (2008).

Weinberg,. Phys Rev 128, 1457-1473 (1962).

#### **Neutrino capture on Tritium**





- < 50 meV (beta) electron kinetic energy resolution</p>
- ▶ Need 100g <sup>3</sup>H for few CnB events/y
- ▶ But ³H beta decay rate is ~0.2 THz/mg







# The Ptolemy concept

- Precisely defined (ppm) voltage difference: beta electron slowed down - and removed - to decimate the flux.
- ▶ Measure a ~1-10 eV electron with 10-2 10-3 resolution









# The Ptolemy ingredients

Tritium on graphene: atomic <sup>3</sup>H stored on a thin electrode

- ▶ Fast ~30 GHz radiation detection as *trigger* 
  - cyclotron radiation emission (similar to Project-8)
- Novel electromagnetic filter

M.G.Betti et al,

<u>Progress in Particle and Nuclear Physics,</u>
106, (2019) 120-131

 Cryogenic micro-calorimeter based Transition Edge Sensors (TES) technology







### Motion in non-uniform E and B

#### Transverse (to the B field lines) velocity (Guiding Center System)

$$\boldsymbol{V}_D = \boldsymbol{V}_{\perp} = \left(q\boldsymbol{E} + \boldsymbol{F} - \mu \nabla B - m \frac{d\boldsymbol{V}}{dt}\right) \times \frac{\boldsymbol{B}}{qB^2}$$

Figure courtesy A.P.Colijn











### MAC-E filter, collimating the electrons

#### **MAC-E filter**

Magnetic Adiabatic Invariance

 $\mu = \frac{p_{\perp}^2}{qB} = \text{constant}$ 

 $p_{\perp} \rightarrow p_{\parallel}$  Collimation:  $-\nabla B \mid B$ 

Filter (E - Field)

Reflect for E<E<sub>filter</sub>

Pass for E>E<sub>filter</sub>





#### **KATRIN**

~1200m<sup>3</sup>

 $m_v < 0.8 \text{ eV/c}^2 (90\% \text{ CL})$ https://arxiv.org/abs/2105.08533

→ 0.2 eV/c<sup>2</sup> Sensitivity Goal (~1 eV energy resolution)









### A transverse filter









# Transport simulation



- Feasibility proved with simulation
- Need a real test







### The demonstrator

A. Apponi et al 2022 JINST 17 P05021



Being built, assembled and operated at INFN LNGS







### The source and the end of the filter

- Goal of the < 50 meV energy resolution:</p>
  - Preparare the initial state on
    - A well defined spatial position (electrode)
    - Deal with intrinsic quantum spread of localisation of atomic <sup>3</sup>H (Heisenberg limit)
      - Interplay with condensed matter physics
  - Detect the electrons after the end of the filter
    - Kinetic energy much reduced to 10-100 eV
    - Deal with absorption of very slow electron in materials
      - Superconduting sensors, surface physics







# The target for neutrinos, source of electrons









# Flat graphene <sup>3</sup>H storage

3H atom chemically bound to a
 C atom on a flat graphene

- Solid substrate
  - "Solid" tritium source, easily manageable
  - Well defined potential
  - Prevent molecule formation



- Can store (up to) 0.5 mg/cm<sup>2</sup>
  - ▶ One ³H each C

Mahmoud Mohamed Saad Abdelnabi et al 2021 Nanotechnology 32 035707

Mahmoud Mohamed Saad Abdelnabi et al Nanomaterials 2021, 11(1), 130







# Hydrogen on graphene

Nano Lett. 2022, 22, 7, 2971-2977

Successfully tested various techniques to "implant" hydrogen (deuterium) to Nano-Porous Graphene



Hydrogen chemi-sorbed on NPG (single or double layers continuous graphene surface)









- Larger than 90%hydrogen coverage
  - In situ H thermal cracking
  - H atoms diffuse in UHV to NPG
  - X-ray photoelectron spectroscopy on C 1s: amount of sp<sup>3</sup> coordinated H
- Band-gap observed: seminconductor.









# 🖫 Quantum spread

▶ Localization of <sup>3</sup>H implies uncertainty on <sup>3</sup>H momentum: effect on the electron kinetic energy spread

$$^{3}\text{H} \rightarrow ^{3}\text{He}^{+} + e^{-} + \bar{\nu}_{e}$$

$$\nu_{e} + ^{3}\text{H} \rightarrow ^{3}\text{He}^{+} + e^{-}$$

#### Fluctuating momenta

$$\mathbf{p}_{T} = \Delta \mathbf{p}_{T}$$

$$\mathbf{p}_{He} = \bar{\mathbf{p}}_{He} + \Delta \mathbf{p}_{He}$$

$$\mathbf{p}_{e} = \bar{\mathbf{p}}_{e} + \Delta \mathbf{p}_{e}$$

#### 4-mom. conservation

$$\Delta E_e \simeq \left| \frac{\mathbf{p}_e \cdot \Delta \mathbf{p}_T}{E_{He}} \right| \sim \frac{p_e}{m_{He}} \frac{1}{\Delta x_T}$$
 spread of initial tritium wave function  $(\Delta x_T \sim 0.1 \, \text{Å})$ 

#### Can be as large as 500 meV







# Inside the quantum spread

- Beta decays is very fast, no change in the Hamiltonian
- ► Two <u>extreme</u> cases for the fate of the <sup>3</sup>He (at the beta spectrum endpoint)



Amplitude process calculation predict momentum spread for the first and exponential suppression for the second







## Rate at the endpoint

A.Apponi et al, Phys Rev D 106 (2022) 5,5

▶ <sup>3</sup>H decay in vacuum compared to the **two** extreme cases (starting with <sup>3</sup>H bound to graphene)

Shift and distortion of the spectrum close to the endpoint



Call for an optimised substrate for tritium







# Look at the binding potential

#### **Tritium - graphene potential**



 Shallower potential if the binding site is concave

Substrate with large concavity: a nanotube!









# C nanotube for tritium storage

▶ Hydrogenate CNT to store <sup>3</sup>H within the tube



Role of external B field to prevent dimerisation















## Detection with cryo-micro-calorimeters

- Transition Edge Sensors (TES) technology
  - Developed for photon sensing
  - Increase in temperature measures deposited energy



C: thermal capacitance

G: thermal conductance



$$\Delta E \approx (k_B T^2 C B)^{\frac{1}{2}}$$

**Energy resolution: better at low T and small C** 







## Superconductors detectors





- Operate a superconductive metallic nano-film close to the phase-transition temperature
  - Small increase of the temperature, drop the bias large current, very steep response
  - SQUID current readout
  - Various applications: X-ray, telecom, astrophysics, QT, ...







# TES for Ptolemy





- Aim at large (~1 cm²) sensors, array of TES sensors (with multiplexed readout)
- Port TES to detect very low energy <u>electrons</u>











# TES tested with photons



- Counting of infra-red photons (0.8 eV) very successful
- Scaling to a smaller area 15x15 μm² (i.e. smaller capacitance) predicts 50 meV FWHM energy resolution

Next challenge: demonstrate electrons can be absorbed and detected







#### Nanostructure for other messengers from the sky: Light dark matter (directional) direct searches



G.Cavoto, et al., EPJC 76 (2016) 349

L.M. Capparelli, et al., Phys. Dark Universe, 9-10 (2015) 24







# Vertically aligned CNT

G.D'Acunto et al, Carbon 139, 2018, 768-775

- Forests of CNT can be easily grown aligned
- They are naturally anisotropic
- DM can interact with electron
  - Kinematics favours
    M<sub>DM</sub> << GeV</p>
- Electron can be expelled by the forest if DM aligned with the tubes
- Directionality









# The Andromeda project







Build a prototype of a hybrid "dark-PMT" to detect electrons from CNT





- Even 1g target mass competitive
- Background rejection with directionality

G. Cavoto, et al., PLB 776 (2018) 338







# Some thoughts on new detectors

- Exchange between particle physics and condensed matter physics is a great opportunity in the realm of **new sensors** development.
- Especially true in the range of "low energy" particle physics
- Details of physics at atomicsubatomic scale necessary to understand a particle detector



Interaction with theorists is of paramount importance
Sometime you get difficult to implement) ideas

But out of 10 (?) crazy ideas you get a **bright bold one** 







### Outlook

- Cosmic neutrino background detection requires bold new ideas
  - Ptolemy aims at demonstrating a concept of a compact e.m. filter with atomic tritium on a solid substrate and cryogenic calorimetry to reach a 50 meV energy resolution. Cyclotron radiation detection used as trigger
  - Engineering of the initial quantum state can be a way to store atomic tritium, carbon nanostructure seems promising
  - Advancing in nano-film fabrication and surface characterisation necessary for electron detection with TES
- Scaling of the detector concept to large masses still a challenge.
  - Superconducting magnets likely to be necessary







### Additional slides







# Growing vertically aligned CNT



- Carbon nanotubes synthesized through Chemical Vapor Deposition (CVD)
  - Internal diameter ~5 nm, length up to 300 µm
  - Single- or multi-wall depending on growth technique
- Result: vertically-aligned nanotube 'forests' (VA-CNT)
  - 'Hollow' in the direction of the tubes
  - Electrons can **escape** if **parallel** to tubes
  - Makes it an ideal light-DM target









# Silicon detectors for keV electrons

APDs and SDDs 'born' as photon detectors

Benchmark: Avalanche Photo-Diodes



- Simple, costeffective
- Hamamatsu windowless APD



Challenge: detect keV electrons (with high efficiency)

- Possible upgrade: Silicon

  Drift Detectors
  - Ultimate resolution
  - FBK (SDD) + PoliMi (electronics)







DFH (mm)



### APD and 900 eV electrons

\_\_\_\_\_\_

#### A. Apponi et al 2020 JINST 15 P11015





- Reading APD bias current when shooting gun on it
  - V<sub>apd</sub> = 0: electronic 'image' of APD
  - V<sub>apd</sub> = 350 V: I<sub>apd</sub> proportional to I<sub>gun</sub>







### Alternative to silicon: Multi-channel plates



- Established detector for low-energy electrons
  - But bad energy resolution
- Extensive MCP characterization @ LASEC
  - $30 < E_e < 900 \text{ eV}$
  - Very mild energy dependance
  - Single-e<sup>-</sup> absolute efficiency ~ 49%

A. Apponi et al, Meas. Sci. Technol. **33** (2022) 025102

