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Outlook: A future (?) Swiss quantum
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Quantum networks

Trusted-node quantum networks Repeater-based quantum networks

- Already implemented (China) and under - Not yet ready, but rapid progress (e.g. QIA)
development (Euro QCI) - For QKD with end-to-end quantum security,

- Allows QKD within restricted security blind and networked quantum computing as
paradigm well as distributed quantum sensing

INFRASTRUCTURE
FOR THE EU

32 nodes
over 2000
kilometers




Quantum repeater - how to mitigate loss

Goal: Overcome the exponential scaling of photon transmission over a

long (lossy) quantum channel Exponential scaling

[ o

Note: multiplexing does not lead to better scaling
Solution Same scaling
1) Break long link into shorter elementary links. . o
[ o
[ [e]
2) Distribute heralded and long-lived entanglement across . °

each elementary link.

3) Multiplex distribution (any degree of freedom) to make it ° oo X S|
efficient. ° o0 X °
. . [ o @ N L
4) Mode mapping based on feed-forward info allows ° o0 o0 °
@ L N L N L

connecting “good” links using Bell-state measurements.

Better scaling
[ No need for photons to travel in one go over the entire link. ]

N Sinclair, WT et al., Phys. Rev. Lett. 113, 053603 (2014)



Quantum repeater components

One of the simplest repeater designs requires o oo oo °
1) Sources of entangled photons (or single photons) : :: :: :
2) Quantum memory for light : :[: :]: :
3) Bell-state measurement
4) Compatible components

- incl. with telecom fibers

- and satellite links

e = ik




Rare-earth-ion-doped crystals
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Saglamyurek, WT et al., Nature 469, 512-515 (2011).

Saglamyurek, WT et al., Nature Phot. 9, 83

(2015).

G.H. Dieke, Spectra and Energy Levels of Rare Earth lons in Crystals, Wiley Interscience, New York,



Rare-earth

o - 1) Transitions in the visible and near infrared
CryStals‘ a brlef -> quantum communication
introduction 2) T, o ~ 100 MHz - 500 GHz

-> broadband quantum memory
3) Excited states with very long lifetimes (ms)

4) At T<2K: T, Pt~ 50 Hz- 100 kHz->T,=4 ms
-> high-capacity & long-lived quantum memory

5) At T< 2 K: ground states with long T, (d) and T, (h)
-> long-lived quantum memory and qubits

Simplified level structure . . . . . .
of Tm3-doped crystals 6) Electric dipole-dipole interaction between close ions

-> quantum computing

[ Promising for optical quantum memory and QIP. But not for sources. ]

Frequency

defects and strain
-> inhomogeneous broadening




Creating single
photons (1)

- Photons will be emitted into
random directions

- Thelong optical lifetimes in rare-
earth ions make observing single
photons difficult




Creating single
photons (2)

Nano (photonic crystal) cavities
allow increasing the emission rate
(Purcell effect)

This allows creating single photon
sources and optical readout of spin
qubits.

Yo Vacuum emission rate # for atom in max

/ field region
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v
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Thompson, 2018



Single-photon sources using
REIs - fabrication cycle

"""1--1\ i and after transfer on Er:LiNbO,,
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Er:LiNbO,

Optical characterization in air,

at T=293K and T=4K
Spectra and quality factor

g Inspection:
§§ Optical microscope & SEM
: Under-cutting:
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Design

A “bus” waveguide (with Bragg reflector): couples to 2
nanobeam cavities

Based on S.M. Meenehan et al. Phys. Rev. A 90, 011803(R) (2014)



Single-photon sources using
REIs - fabrication cycle

"""1--1\ i and after transfer on Er:LiNbO,,
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Er:LiNbO,

Optical characterization in air,

at T=293K and T=4K
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Purcell-enhanced emission (ongoing)

- Sicavity on 0.005% Er:LiNbO,
- Observation of isolated photoluminescence lines. Individual ions?
- 60-fold reduction of decay constant from 2 ms
- T, lifetimes of around 1 psec and radiatively limited emission
(T,=T,/2) seem possible
->single- (and entangled-) photon sources, QI processing nodes
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How to store photonic
quantum statesin a
multiplexed manner?
Use large ensembles of
atoms

[4) = 1|y)

Rare-earth crystals

Laser-cooled atoms



1)
2)
3)
4)
5)
6)
7)
8)

Quantum memory requirements

Large storage efficiency o .o oo
Sufficient storage time : .. ..

Fidelity ->1 : :[: :]:
Feed-forward mode mapping

High multiplexing capacity / \
Wavelength of operation

Bandwidth per qubit -— - =\
Integrability [ ‘ﬁ'QM‘r :@: -._le_r»' }

Necessary criterion for QM: storage efficiency better than using a fiber creating same delay




The atomic frequency comb (AFC) protocol in

rare-earth crystals

» Rare-earth crystals and atomic frequency combs (AFC)
- 2-level AFC protocol with fixed storage time:
Veomb =1/Veomb

I hom

-

§ S - Feed-forward mode-mapping possible using
g 0 P > g externa_l devices _ _
8 o> s> S - Well suited for multiplexing
frequency frequency A - Efficiency limited by T,°Pt
2 input
2 control pulses output _ _
= - Extension to spin-wave storage allows
a A > // v A memory-internal read-out on demand
< >< >< > time - Storage time (efficiency) then limited to spin
/A —T 7 7, i - i
1 0 s 0 level broadening (<- refocusing pulses)
Rl - e-ZaL Rz =1
a
E - Impedance-matched cavities allow high-
- efficiency storage despite small optical
B depth alL
Eoul < L > e

M.Afzelius et al. Phys. Rev. A 79, 052329 (2009); N Sinclair, WT et al., PRL113, 053603 (2014); M. Afzelius and C. Simon, PRA 82, 022301 (2010).
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EIT-based storage: best efficiency, but

longer storage required
Heralded entanglement between two rare-

earth crystals demonstrated in 2021 e e e

fiber-based repeaters physical qubit transport
satellite-based repeaters
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Outlook:
Towards an
Integrated
platform

» Create single (and entangled)
photons based on Purcell-enhanced
emission from individual rare-earth
lons

» Create compatible quantum
memories based on large
ensembles of rare-earth ions

* Exploit maturity of Si and SiN
photonics to create integrated
devices
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A Swiss QCI?

Quantum
To be led by UniGe (if funded) Communication
To explore and test Time & Frequency
- QKD/Quantum Cryptography Dissemination
- Quantum repeater technology BN satlite
- Distributed Sensing & Telescope
Metrology

Lausanne
Geneva
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