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01.3 - Classical Representability Diagram
4

arise naturally:

log(x1 + x2) = log(exp(o1) + exp(o2))

= o1 + log (1 + exp(o2 � o1))

= o1 + softplus(o2 � o1).

For log-space summation of n inputs, we can decompose
it as a binary tree, which gives the log(m) correction
to the depth of the network. With both log-space NN
analogs in place, a non-negative AC can be exactly re-
produce with same asymptotic time complexity.

For the second step, we reduce the general complex
case to the non-negative case. A real number x 2 R
can be represented with a redundant representation of
two non-negative numbers x+, x� � 0 by x = x+ � x�.
Addition and multiplication can be applied directly on
this representation:

x+ y = (x+ + y+)� (x� + y�)

x · y = (x+ · y+ + x� · y�)� (x� · y+ + x+ · y�)

Thus, a real AC can be expressed as the di↵erence of
two non-negative AC, and a complex AC by represent-
ing the real and imaginary parts in this fashion. Fi-
nally, to compute the logarithm of this redundant com-
plex representation, i.e., the log-magnitude and phase,
we employ various univariate approximation schemes.
Since these two operations are smooth and used only at
the end of the network, it results in the additive term
c(✏,m,Wmax, fmin), which is merely logarithmic in the
number of edges of the AC, and double logarithmic with
respect to the magnitudes of the weights and the WF
amplitudes. Due to these weak dependencies of the tar-
get AC, it allows for an approximation with a practically
arbitrary precision.

The immediate implication of Theorem 1 is that NQS
can simulate TNS at least as e�ciently as their TN rep-
resentation, as given by the following corollary:

Corollary 1 For any tensor network quantum state with
a contraction scheme of run-time k, and at most b bits
of precision in computations and parameters, there ex-
ists a neural network that approximate it with a max-
imal error of ✏ and of run-time (number of edges)

O
⇣
k + ln2

�
kb
✏

�
+ ln

�
1
✏

�q
1
✏

⌘
.

For the specific case of MPS, corollary 1 translates to the
following

Corollary 2 For any MPS over N sites, each of local
dimension d, with bond dimension �, and fixed b bits of
precision, there exists a neural network of depth l con-
sisting of m edges that approximates its contraction al-
gorithm up to ✏, where l and m depend on the chosen
contraction scheme:

1. For the sequential scheme, l = Õ
⇣
N +

p
1/✏

⌘
and

m = Õ
⇣
Nd�2 +

p
1/✏

⌘
.

Quantum  
States

Neural

MPS

PEPS*

Gapped 
 1D

Quantum States

FIG. 3. Expressive power of classically-tractable variational
quantum states. Di↵erent classes of quantum states describ-
ing a qudit system with N degrees of freedom and comprising
poly(N) variational parameters are compared. Matrix Prod-
uct States (MPS) can e�ciently represent gapped ground-
states of one-dimensional systems. PEPS* denotes here Pro-
jected Entangled Pair States of bond dimension � that are
exactly or approximately contracted in poly(N,�) time on a
classical computer. Neural Quantum States (NQS) comprise
all polynomially tractable tensor networks, thus include MPS,
and PEPS⇤, while also representing additional states with
volume law entanglement that are not e�ciently described by
planar tensor networks such as MPS and PEPS.

2. For the parallel scheme, Õ(lnN +
p

1/✏) and

m = Õ
⇣
N(d+ �)�2 +

p
1/✏

⌘
.

where Õ denotes big-O while ignoring logarithmic factors.

In turn, this result also allows to use previously estab-
lished rigorous results on MPS to directly quantify the
expressive power of NQS on special classes of quantum
systems. For example, Hastings famously established an
area-law entanglement for the gapped ground state of
one-dimensional systems [39] that directly translates into
an e�cient approximability by MPS [39–42]. Our result
in 2, in connection with the bound established in [39]
implies the following

Corollary 3 Consider a 1D Hamiltonian H defined
on N qudits of finite local dimension d, and with
a non-vanishing spectral gap �. The ground state
of a H can be written as a deep neural network
of depth l = O(lnN +

p
1/✏) and number of edges

m = O (poly(N, 1/✏)).

While the connection we have established is strictly in-
clusive, we show that the inverse does not hold, i.e., that
there exists NQS that cannot be e�ciently reproduced
by widely adopted classes of variational TNS:

Corollary 4 There exist quantum states that can be rep-
resented by neural networks with parameters and runtime
polynomial in the number of sites, that MPS, MERA, and
PEPS tensor networks cannot represent e�ciently unless
they use exponential number of parameters.
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01.5 - Strong methodological interplay
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02.1 - Natural Gradient Descent

Credit:  PennyLane dev 

<latexit sha1_base64="uWhKfqhVz/vpy1J/JAB6SQZFdOY="></latexit>

argmin✓2Rd


h✓ � ✓(n),rL(✓(n))i+ 1

2⌘
||✓ � ✓(n)||2g(✓(n))

�

<latexit sha1_base64="zHU/U0mJlLA/fEeEM+4VaDw00q0="></latexit>

✓(n+1) = ✓(n) � ⌘g�1(✓(n))rL(✓(n))

Sandro Sorella

Physical Review Letters 80, 4558 


(1998)



CERN Nov 2 2022 10

Measure of closeness (fidelity)

Induced metric tensorInduced metric tensor

02.2 - Quantum Natural Gradient Stokes, Izaac, Killoran, and Carleo

Quantum 4,  269 (2020)

Credit:  Julien Gaçon (EPFL/IBM)
A.k.a. Quantum Fisher 
Information Matrix
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Computing the Full Quantum 
Geometric Tensor Requires 
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algorithm should scale at most 

linearly with the number of 
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02.3 - But: the Cost of Quantum Natural Gradient

ESTIMATING THE GRADIENT AND HIGHER-ORDER … PHYSICAL REVIEW A 103, 012405 (2021)

a similar formula for the Hessian,

g j1, j2 (θ) =
[

f
(
θ + s1e j1 + s2e j2

)
− f

(
θ − s1e j1 + s2e j2

)

− f
(
θ + s1e j1 − s2e j2

)
+ f

(
θ − s1e j1 − s2e j2

)]

× [4 sin(s1) sin(s2)]−1, (10)

which, for s1 = s2 = s, simplifies to

g j1, j2 (θ) =
[

f
(
θ + s

(
e j1 + e j2

))
− f

(
θ + s

(
− e j1 + e j2

))

− f
(
θ + s

(
e j1 − e j2

))
+ f

(
θ − s

(
e j1 + e j2

))]

× [2 sin(s)]−2. (11)

Also in this case, for s → 0, we get the standard central-
difference formula for the Hessian. For s = π/2, we get an
analytic parameter-shift rule which is similar to the gradient
formula used in Refs. [10–13], but extended to the Hessian.
A formula equivalent to Eq. (11) for the particular case s =
π/2 was recently used in Refs. [17,27]. Particular attention
should be paid to the diagonal of the Hessian since for each
element two shifts are applied to the same parameter θ j . In this
case, two alternative choices for the value of s which appears
in Eq. (11) are particularly relevant. For the choice s = π/2
we get

g j, j (θ) = [ f (θ + πe j ) − f (θ)]/2, (12)

where we used that f (θ + πe j ) = f (θ − πe j ). Instead, for
s = π/4, we obtain

g j, j (θ) = [ f (θ + e jπ/2) − 2 f (θ) + f (θ − e jπ/2)]/2. (13)

Each of the two preceding formulas has alternative advan-
tages. The advantage of Eq. (12) is that it involves only two
expectation values and so it is more direct with respect to
Eq. (13), which is instead a linear combination of three terms.
On the other hand, the parameter shifts involved in Eq. (13)
are only ±π/2. This implies that all the elements of the full
Hessian matrix can be evaluated using only the same type of
±π/2 shifts and this fact could be an experimentally relevant
simplification. Moreover, in the typical scenario in which one
has already evaluated the gradient using the m pairs of shifts
f (θ ± π/2e j ), Eq. (13) allows us to evaluate the diagonal of
the Hessian with the extra cost of just a single expectation
value, i.e., f (θ). In Sec. V we show how this fact can be
conveniently exploited to replace the vanilla gradient descent
optimizer with a diagonal approximation of the Newton opti-
mizer, with negligible computational overhead.

C. Fubini-Study metric tensor

A second-order tensor which plays an important role in
quantum information theory is the Fubini-Study metric tensor
which for a pure variational state |ψ (θ)〉 can be expressed as

Fj1, j2 (θ) = −1
2

∂2

∂θ j1∂θ j2
|〈ψ (θ′)|ψ (θ)〉|2

∣∣∣∣
θ ′=θ

(14)

and corresponds to the real part of the quantum geometric ten-
sor (see, e.g., Appendix A1 of [28] for a detailed derivation).
For pure states and up to constant factors, Eq. (14) can also
be associated with other tensors such as the quantum Fisher
information matrix or the Bures metric tensor [15]. Since in

this work we only deal with pure states, we often refer to
Eq. (14) simply as the metric tensor.

Different from the Hessian, the metric tensor is not linked
to a particular observable M but is instead a geometric prop-
erty of a variational quantum state, which in our setting is
simply |ψ (θ)〉 = U (θ)|0〉. This tensor plays a crucial role in
the implementation of the quantum natural gradient optimizer
[28] and in the variational quantum simulation of imaginary-
time evolution [29].

Now we can make a useful observation: the metric tensor
in Eq. (14) can actually be seen (up to a constant factor) as the
Hessian of the expectation value f (θ) defined in Eq. (1), for
the particular observable M(θ′) = U (θ′)|0〉〈0|U (θ′). There-
fore, all the previous theoretical machinery that we have
derived for the Hessian applies also to the metric tensor and
we get the corresponding parameter-shift rule which is simply
the same as Eq. (11), where each expectation value is

f (θ) = |〈ψ (θ′)|ψ (θ)〉|2. (15)

The quantity |〈ψ (θ′)|ψ (θ)〉|2 is the survival probability of
the state |0〉 after the application of the circuit U (θ′)U (θ). This
probability can be easily estimated with near-term quantum
computers either with a SWAP test or more simply as the
probability of obtaining the 00 . . . 0 bit string after measuring
the state U (θ′)U (θ)|0〉 in the computational basis.

Substituting Eq. (15) into Eq. (11) and setting s = π/2 and
θ ′ = θ , we get the explicit parameter-shift rule for the metric
tensor:

Fj1, j2 (θ) = − 1
8

[∣∣〈ψ (θ)|ψ
(
θ +

(
e j1 + e j2

)
π/2

)〉∣∣2

−
∣∣〈ψ (θ)|ψ

(
θ +

(
e j1 − e j2

)
π/2

)〉∣∣2

−
∣∣〈ψ (θ)|ψ

(
θ +

(
− e j1 + e j2

)
π/2

)〉∣∣2

+
∣∣〈ψ (θ)|ψ

(
θ −

(
e j1 + e j2

)
π/2

)〉∣∣2]
. (16)

As we discussed for the Hessian, also in this case the formula
for the diagonal elements can be simplified in two alternative
ways. The first formula, corresponding to Eq. (12), is

Fj, j (θ) = 1
4 [1 − |〈ψ (θ)|ψ (θ + πe j )〉|2]. (17)

The second equivalent formula, corresponding to Eq. (13), is

Fj, j (θ) = 1
2 [1 − |〈ψ (θ)|ψ (θ + e jπ/2)〉|2], (18)

where we used that |〈ψ (θ)|ψ (θ + e jπ/2)〉|2 = |〈ψ (θ)|ψ (θ −
e jπ/2)〉|2. We also comment that an efficient method for eval-
uating diagonal blocks of the metric tensor was proposed in
[28]. Moreover, an experimentally feasible methodology for
measuring the metric tensor was proposed in [13].

D. Arbitrary-order derivatives

The same iterative approach can be used to evaluate deriva-
tives of arbitrary order. In this case, for simplicity, we set
s = π/2 and we introduce the multiparameter shift vectors

k± j1,± j2,...,± jd = π

2

(
± e j1 ± e j2 ± · · · ± e jd

)
, (19)

where j1, j2, . . . , jd are the same d indices which appear
also in the derivative tensor defined in Eq. (2). These vectors

012405-3
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accessing the QFI in every iteration and any algorithm
with this reliance can be significantly sped up with our
approach.

A. Quantum Natural Gradient

Assume a parameterized model p✓ : Rd ! H, mapping
d parameters to a Hilbert space H, and a loss function
f : H ! R, such that the loss for parameters ✓ 2 Rd

is given as f(p✓). Now, the goal is to find the optimal
parameters that minimize the loss, given a starting point
✓(0) 2 Rd.

Vanilla gradient descent chooses the update step pro-
portional to the gradient rf(p✓) at the current parame-
ter values. A rescaling of all parameters by a fixed factor
is, therefore, directly reflected in the magnitude of the
gradient descent step. If the learning rate is not properly
adjusted, multiplying the parameters by a large constant
leads to overshooting the desired values, while multiply-
ing by a small constant can strongly slow down the speed
of convergence.

An elegant solution to this rescaling problem is to
choose the update step such that the change in the model
p✓ instead of the parameters ✓ remains small. To illus-
trate the di↵erence to vanilla gradient descent, it helps
to rewrite the update rule from Eq. (1) as

✓(k+1) = argmin
✓2Rd

h✓�✓(k),rf(✓(k))i+ 1

2⌘
||✓�✓(k)||22. (8)

In this representation, we clearly see that vanilla gradi-
ent descent chooses the parameter update aligned with
the direction of the gradient and determines the size of
the update step by limiting the change compared to the
previous parameters values, ✓(k).

We now replace the Euclidean norm || · ||2 by || · ||g(✓) =
h·, g(✓)·i where g(✓) 2 Rd⇥d denotes the metric tensor
induced by the model p✓ [24, 28]. In doing so, instead of
specifying the limit in the update step by using changes
in the parameter space, we now consider changes in the
model space. The update rule changes to

✓(k+1) = argmin
✓2Rd

h✓�✓(k),rf(✓(k))i+ 1

2⌘
||✓�✓(k)||2

g(✓(k)),

(9)
which can be solved exactly by

✓(k+1) = ✓(k) � ⌘g�1(✓(k))rf(✓(k)). (10)

This is known as Natural Gradient Descent [28].
We now consider the case where p✓ is given by a pa-

rameterized quantum circuit. Let | ✓i describe a pa-
rameterized pure quantum state on n qubits for classical
parameters ✓ 2 Rd. Then, the metric tensor g(✓) 2 Rd⇥d

is given by the QFI with elements [24]

gij(✓) = Re

⇢⌧
@ ✓

@✓i

����
@ ✓

@✓j

�
�
⌧
@ ✓

@✓i

���� ✓

�⌧
 ✓

����
@ ✓

@✓j

��
.

(11)

The required expectation values can be computed by us-
ing a linear combination of unitaries or by parameter shift
techniques [29].
Computing g in general requires evaluating O(d2) ex-

pectation values. By using the 2-SPSA algorithm, we
can replace g(✓(k)) by a stochastic approximation ḡ(k),
requiring only the evaluation of four expectation values,
i.e., constant and independent of d.
To exploit 2-SPSA, we use a di↵erent representation

of the QFI than in Eq. (11), namely, the Hessian of the
Fubini-Study metric [24, 30]

gij(✓) = �1

2

@

@✓i

@

@✓j
|h ✓0 | ✓i|2

����
✓0=✓

, (12)

see Appendix B for more details. We generalize 2-SPSA
for the Hessian of a metric instead of a function by ap-
plying perturbations only to the second argument of the
metric and keeping the first argument fixed. Concretely,
Eqs. (4) and (5) change to

ĝ(k) = �1

2

�F

2✏2
�(k)

1 �(k)T
2 +�(k)

2 �(k)T
1

2
, (13)

where

�F = F (✓(k), ✓(k) + ✏�(k)
1 + ✏�(k)

2 )

� F (✓(k), ✓(k) + ✏�(k)
1 )

� F (✓(k), ✓(k) � ✏�(k)
1 + ✏�(k)

2 )

+ F (✓(k), ✓(k) � ✏�(k)
1 ),

(14)

and F ( ,�) = |h |�i|2. The smoothing of the point-
estimates ĝ(k) into ḡ(k) and the technique to ensure the
estimate is positive semi-definite remains the same as in
the previous section.
Evaluating the Fubini-Study metric requires calcula-

tion of the absolute value of the overlap of | ✓i with pa-
rameter values ✓ and slightly shifted parameters ✓ + ✏�.
The overlap of two quantum states can be estimated us-
ing the swap test [31], where both states are prepared
in separate qubit registers. If the states are given by
| ✓i = U(✓) |0i for a parameterized unitary U , and we
only need the absolute value of the overlap, we can pre-
pare U†(✓ + ✏�)U(✓) |0i and estimate the probability of
measuring |0i, which is equal to |h ✓| ✓+✏�i|2. If our
state has n qubits and the circuit corresponding to U
has depth m, the swap test requires a circuit width of
2n, but only leads to a depth of m + O(1) [32]. In con-
trast, the compute-uncompute method [13] uses circuits
of width n, but instead needs twice the depth, 2m. De-
pending on the unitary and the structure of the available
hardware, either method can be advantageous.

B. Quantum Boltzmann Machines

QBMs are energy-based machine learning models that
encode information in the parameters ! of a parame-
terized n-qubit Hamiltonian Ô! [23]. This Hamiltonian
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04.1 - Goal: use half of the qubits
4
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FIG. 3. 1D transverse field Ising (TFIM) Hamiltonian with 8 qubits
and periodic boundaries.

of the periodic boundary conditions. The variational energy
of the system is given by

E(✓,!) = 2 hHAi + 2 hZ1
A

⌦ ZN

B
i , (13)

which is to be minimized via gradient descent. Note that
hZ1

A
⌦ ZN

B
i = hZN

A
⌦ Z1

B
i because of the translation invari-

ance. Hence, the factor 2. The Hamiltonians HA and HB act
only on one of the subsystems and, therefore, one can evaluate
the energy directly via

hHAi =
X

�⇠�2
�

h�|U†HAU |�i . (14)

One can sample � from the classical distribution �2
� and cal-

culate the mean of the expectation values h�|U†HAU |�i.
Analogously, one can evaluate the first term of equation 5

for operators that act on both systems, e.g. hOA ⌦ OBi sim-
ply by replacing h�|U†HAU |�i with h�|U†OAOBU |�i. To
be even more specific let’s assume we evaluate the expectation
value hZN

A
⌦ Z1

B
i. In this case the first term of equation 5 re-

duces to evaluating the expectation value h�|U†Z1ZNU |�i.
For the second term of equation 5, µ↵,� has to be calcu-
lated. To do so we first sample � ⇠ �2

� , prepare the cir-
cuit U†C↵,�U |�i and measure each qubit in the Z basis
to obtain samples of �0. Then we evaluate R(�,�0) and
take the average over several samples of �0 to approximateP

�0 R(�,�0)p(�0
|�). We repeat this procedure for many

samples � ⇠ �2
� and take the average. The coefficients are

a0 = a0,0 = a1,1 = 1 and a0,1 = a1,0 = �1 for the operators
Zi

A
⌦ Zj

B
.

In Figure 4 we show the gradient descent progress of the
energy optimization of a one dimensional TFIM Hamiltonian
at the critical point with 8 spins. We find the ground state
energy with high accuracy and we can reproduce the spin-spin
correlators hZiZji of the ground state shown in figure 5.

IV. SPINS IN TWO DIMENSIONS

For the 2 dimensional case, we study the TFIM Hmail-
tonian as shown in Figure 6. Compared to the one dimen-
sional case we add two more terms that couple the subsystems.
Therefore, the energy is

E(✓,!) = 2 hHAi + 2 hZ1
A

⌦ Z2
B

i + 2 hZ3
A

⌦ Z4
B

i , (15)

with HA = HB =
P

hi,ji ZiZj +
P

i
Xi. Again, we used the

fact that for our ansatz where the unitary U! for both subsys-
tems is equal if follows that hZi

A
⌦ Zj

B
i = hZj

A
⌦ Zi

B
i. The
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FIG. 4. 1D TFIM: Convergence of the energy 8 qubit forged state
in 1D. The first 100 epochs we only optimize the parameters of the
quantum circuit ! until convergence and then we start optimizing as
well the parameters of the neural network ✓.
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FIG. 5. Correlators 1D: hZiZji expectation values of the 8 qubit
forged state in 1D. The forged correlators are in blue, the correlators
of the exact calulcation of the full system are in green.

optimization of the energy is equivalent to the 1D case and the
convergence of the energy is shown in Figure 7. The energy
converges to the value calculated by exact diagonalization and
the qubit-qubit correlators, shown in figure 8, coincide highly
with the exact values.

V. LATTICE FERMIONS

As long as the qubit Hamiltonian has permutational sym-
metry along the partition of the system, our forging proce-
dure can also be applied to fermionic systems. With the help
of the Jordan-Wigner transformation we can map the t-V-
Hamiltonian

H = �t
X

hi,ji

(a†
i
aj + a†

j
ai) + V

X

hi,ji

a†
i
aia

†
j
aj (16)

to a qubit Hamiltonian. For example, for a 2 ⇥ 2 system of
spinless fermions with periodic boundaries and t = V = 1
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The optimal use of quantum and classical computational techniques together is important to address problems
that cannot be easily solved by quantum computations alone. This is the case of the ground state problem for
quantum many-body systems. We show here that probabilistic generative models can work in conjunction with
quantum algorithms to design hybrid quantum-classical variational ansätze that forge entanglement to lower
quantum resource overhead. The variational ansätze comprise parametrized quantum circuits on two separate
quantum registers, and a classical generative neural network that can entangle them by learning a Schmidt
decomposition of the whole system. The method presented is efficient in terms of the number of measurements
required to achieve fixed precision on expected values of observables. To demonstrate its effectiveness, we
perform numerical experiments on the transverse field Ising model in one and two dimensions, and fermionic
systems such as the t-V Hamiltonian of spinless fermions on a lattice.

I. INTRODUCTION

In recent years quantum computing processors have been
steadily improved and some small-scale simulations of quan-
tum chemistry [1–4] and many-body [5, 6] simulations have
been successfully executed on quantum processors. It is be-
lieved that for ground state problems quantum computers have
an advantage over their classical counterpart, however no
quantum algorithm that can solve it exactly in the most general
setting exists [7], especially when taking into account finite
quantum resources. At the same time, machine learning (ML)
algorithms and especially generative neural networks (NNs)
have shown to be efficient tools to find ground state energies
of many-body systems in the form of neural network quantum
states [8]. There are several different proposals to classically
correlate observables from non-interacting systems [9–23] all
with the purpose of reducing the amount of quantum resources
to be used by a quantum processor.

Classically forged entanglement as introduced in [14] refers
to the emulation of properties of a 2N -qubit state via the em-
bedding of two N -qubit subsystems in a classical computa-
tion. To better understand how this classical computation can
be achieved one can start from the Schmidt decomposition of
a state

| i = UA ⌦ VB

X

�

�� |�i
A

|�i
B
, (1)

where � = (�1, . . . ,�N ) 2 {0, 1}N denotes a N -bit string,
UA and VB are unitaries acting on the subsystems A and B
and �� are the Schmidt coefficients which are non-negative.
The Schmidt decomposition is the most general form a two-
partite pure state can be written in. If one manages to
determine both the Schmidt coefficients �� , and the uni-
taries UA,VB exactly, one can theoretically forge any pure
state. Inspired by the Schmidt decomposition we introduce

⇤ patrick.huembeli �menten.ai

a quantum-classical hybrid ansatz. We show that with the
use of a generative NN model it is possible to approximate
the Schmidt coefficients and, together with trainable circuit
unitaries UA, one can approximate the ground state of many-
body states with high accuracy. More concretely, we find the
ground states of the transverse field Ising model (TFIM) with
periodic boundary conditions in 1 and 2 dimensions at its crit-
ical point with a classically forged state. We show that the
ground state energy is reached with high accuracy and that the
hZiZji correlators of the exact diagonalization can be repro-
duced. Furthermore, we show that our approach can also be
applied to fermionic system such as the t-V model of spinless
fermions and forge the required entanglement.

II. HEISENBERG FORGING

We start by summarizing the entanglement forging frame-
work introduced in [14], specializing it to states where we set
UA = VB . We can then drop the subscript for the unitary
operator U , and obtain the state

| i = U ⌦ U
X

�

�� |�i
A

|�i
B
. (2)

By parametrizing U and �� we create an ansatz that is re-
stricted to systems which are symmetric under the permu-
tation of systems A and B, such as translational invariant
systems. We are interested to estimate observables such as
for example Hamiltonians of the form H =

P
i
hi with

hi 2 {I,X, Y, Z}
⌦N , where I,X, Y, Z are the Pauli matri-

ces. We denote a general Pauli observable OA ⌦ OB via two
operators that act on each subsystem respectively and the goal
is to estimate the expectation value

µ = h |OA ⌦ OB | i . (3)

The expectation value for an observable defined only on
one subsystem (e.g. OB = I) simplifies to µ =P

� �
2
� h�|U†OAU |�i, which can be estimated via sam-

pling � ⇠ �2� , preparing the circuit U |�i and measuring
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04.2 - Application: ground-state of 2D Transverse-Field Ising Model
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FIG. 6. 2D transverse field Ising (TFIM) Hamiltonian with 2 ⇥ 4
qubits with peridoic boundaries in the horizontal direction.
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FIG. 7. 2D TFIM: Convergence of the energy of a 8 qubit forged
state in 2D. The first 100 epochs we only optimize the parameters of
the quantum circuit ! until convergence and then we start optimizing
as well the parameters of the neural network, ✓.

the qubit Hamiltonian reads

Hqb =
1

2

⇥
X1X2 +X1Z2X3 + Y1Y2 + Y1Z2Y3 (17)

+X2Z3X4 + Y2Z3Y4 +X3X4 + Y3Y4

⇤

+
1

4

⇥
Z1Z2 + Z1Z3 + Z2Z4 + Z3Z4

⇤
.

This Hamiltonian can be split into two partitions HA and HB

and an interacting term HI such that Hqb = HA +HB +HI

and HA = HB . Therefore the mirror symmetry of the sys-
tem is fullfilled and our ansatz can capture the groundstate
of this system. We split the 4-qubit system into two subsys-
tems, where qubit 1 and 2 build subsystem A and qubit 3 and
4 build subsystem B. As for the previous examples, the ob-
servables that act only on one subsystem are evaluated with
µ =

P
� �2

� h�|U†OAU |�i. For the observables that act
on both subsystems we obtain the expectation value through
equation 5. The unitary C↵,� for general observables OA and
OB is given by C↵,� = 1

2 (I + (�1)↵OA + (�1)�OB �

(�1)↵+�OAOB). More details and how to decompose them
into standard qubit gates are described in [14]. In figure 9 we
show the energy throughout the training for spinless fermions.
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FIG. 8. Correlators 2D: hZiZji expectation values of the 8 qubit
forged state on a 2D 2x4 grid. The forged correlators are in blue, the
correlators of the exact calulcation of the full system are in green.
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FIG. 9. Fermionic system: Convergence of the energy of a 2x2
spinless fermions forged state. The first 100 epochs we only optimize
the parameters of the quantum circuit ! until convergence and then
we start optimizing as well the parameters of the neural network, ✓.

VI. METHODS

The numerical simulations of the quantum circuits have
been done in pennylane [28] with the JAX [29] backend.
The optimization of the classical part has been performed in
Netket[30]. All the code is accessible on Github [31].

VII. DISCUSSION AND CONCLUSION

Through the combination of classical probabilistic mod-
els and quantum circuits we have demonstrated expressive
variational quantum-classical ansätze with an overall reduced
amount of computational resources. We have proposed and
numerically tested a quantum-classical entanglement forging
approach with an overall polynomial cost in the estimation of
observables. An auto-regressive neural networks was used to
learn the Schmidt decomposition of a target state to approxi-
mate it. We have shown through proof-of-principle numerics
that the method works on 1D and 2D transverse field Ising
model, finding ground states energies and two-point corre-
lation functions with high accuracy. Furthermore, we have
shown that our method can also be applied to fermionic sys-
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Through the combination of classical probabilistic mod-
els and quantum circuits we have demonstrated expressive
variational quantum-classical ansätze with an overall reduced
amount of computational resources. We have proposed and
numerically tested a quantum-classical entanglement forging
approach with an overall polynomial cost in the estimation of
observables. An auto-regressive neural networks was used to
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mate it. We have shown through proof-of-principle numerics
that the method works on 1D and 2D transverse field Ising
model, finding ground states energies and two-point corre-
lation functions with high accuracy. Furthermore, we have
shown that our method can also be applied to fermionic sys-

5HA HB

Oi
A � Oi

B
Oj

A � Oj
B

HA HB

Oi
A � Oi

B Oj
A � Oj

B

Ol
A � Ol

BOk
A � Ok

B

1 2

43

1 2

43

FIG. 6. 2D transverse field Ising (TFIM) Hamiltonian with 2 ⇥ 4
qubits with peridoic boundaries in the horizontal direction.

0 100 200 300 400 500
Epochs

�10

�5

0

E
ne

rg
y

Variational Energy

Exact GS

FIG. 7. 2D TFIM: Convergence of the energy of a 8 qubit forged
state in 2D. The first 100 epochs we only optimize the parameters of
the quantum circuit ! until convergence and then we start optimizing
as well the parameters of the neural network, ✓.

the qubit Hamiltonian reads

Hqb =
1

2

⇥
X1X2 +X1Z2X3 + Y1Y2 + Y1Z2Y3 (17)

+X2Z3X4 + Y2Z3Y4 +X3X4 + Y3Y4

⇤

+
1

4

⇥
Z1Z2 + Z1Z3 + Z2Z4 + Z3Z4

⇤
.

This Hamiltonian can be split into two partitions HA and HB

and an interacting term HI such that Hqb = HA +HB +HI

and HA = HB . Therefore the mirror symmetry of the sys-
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The numerical simulations of the quantum circuits have
been done in pennylane [28] with the JAX [29] backend.
The optimization of the classical part has been performed in
Netket[30]. All the code is accessible on Github [31].

VII. DISCUSSION AND CONCLUSION

Through the combination of classical probabilistic mod-
els and quantum circuits we have demonstrated expressive
variational quantum-classical ansätze with an overall reduced
amount of computational resources. We have proposed and
numerically tested a quantum-classical entanglement forging
approach with an overall polynomial cost in the estimation of
observables. An auto-regressive neural networks was used to
learn the Schmidt decomposition of a target state to approxi-
mate it. We have shown through proof-of-principle numerics
that the method works on 1D and 2D transverse field Ising
model, finding ground states energies and two-point corre-
lation functions with high accuracy. Furthermore, we have
shown that our method can also be applied to fermionic sys-
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05.2 - Can we combine optimally classical and quantum representations?
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