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Outline

• Quantum Generative Models : An 

Overview

• Applications in data analysis in HEP

• Characterizing quantum generative 

models through model capacity and 

trainability.
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•Quantum Generative Models are a powerful tool in
QML to reproduce the statistics of a target distribution
or quantum state ensemble, that can accordingly be
used to generate new samples.

What?

Quantum Generative Modeling

Classical Data

Quantum Data

DATA SOURCE DATA LOAD MODEL

Probability 
distribution

Quantum 
Circuit

Quantum 
State

Lloyd, Seth, and Christian Weedbrook. “Quantum Generative Adversarial Learning.” Physical Review 
Letters 121, no. 4 (July 26, 2018): 040502. https://doi.org/10.1103/PhysRevLett.121.040502.

https://doi.org/10.1103/PhysRevLett.121.040502


44 Quantum Generative Models in HEP – Andrea Delgado – QT4HEP22

•Quantum Generative Models are a powerful tool in QML to reproduce
the statistics of a target distribution or quantum state ensemble, that can
accordingly be used to generate new samples.

What?

• Motivated by the capacity of quantum processors to learn, represent,
and sample from high-dimensional probability distributions.

• Relatively simple quantum systems can generate data whose statistics
cannot be generated efficiently by any classical system.

Why?

Quantum Generative Modeling

Lloyd, Seth, and Christian Weedbrook. “Quantum Generative Adversarial Learning.” Physical Review 
Letters 121, no. 4 (July 26, 2018): 040502. https://doi.org/10.1103/PhysRevLett.121.040502.

Represent vectors in N-dimensional 
spaces using log(N) qubits

Perform manipulations of sparse and low-rank 
matrices in time O(poly(log(N)))

QUANTUM 
PROCESSOR

https://doi.org/10.1103/PhysRevLett.121.040502
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• Quantum Generative Models are a powerful tool in QML to reproduce the statistics
of a target distribution or quantum state ensemble, that can accordingly be used
to generate new samples.

What?

• Motivated by the capacity of quantum processors to learn, represent, and sample
from high-dimensional probability distributions.

• Relatively simple quantum systems can generate data whose statistics cannot be
generated efficiently by any classical system.

Why?

• Several architectures explored, algorithms developed for quantum annealers, discrete and
continuous variable.

• These models are inspired by classical neural network models and have been translated
either as a standalone VQC or as a component in a hybrid network.

Many quantum computing libraries have been developed that leverage existing classical ML libraries
– TensorFlow Quantum, TorchQuantum, PennyLane.

How?

Quantum Generative Modeling
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Quantum Generative Models in HEP
• Inspired by applications in data augmentation, simulation, data

compression tasks.

• HEP datasets provide a natural alternative to synthetic datasets

to explore entanglement, expressiveness and scalability in QML

models.

• If proven to be scalable can demonstrate to have an

advantage in generating high-dimensional correlated

events.

• Also, can potentially have applications in large-scale quantum

sensor networks, anomaly detection in quantum-enhanced

probes for BSM physics, data embedding.

• Trained by minimizing the energy of a model (q-RBMs), the error

when sampling from a target posterior (QCMBs), or through

adversarial methods (q-GANs).
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Quantum Generative Models in HEP
• (Restricted) Boltzmann machines are physically

motivated NNs capable of generating new samples

similar to the training data.

• Weights and biases are optimized by finding the ground

state of a system’s Hamiltonian – thus, are perfectly suited

for quantum annealers.

Schenk, Michael, Elías F. Combarro, Michele Grossi, et al 
“Hybrid Actor-Critic Algorithm for Quantum Reinforcement 
Learning at CERN Beam Lines.” arXiv, September 22, 2022. 
https://doi.org/10.48550/arXiv.2209.11044.

Use free energy of QBM as an estimate
of the Q-function in the training a
reinforcement learning model to
optimize a beam in a linear accelerator

QRBM for galaxy morphology
classification with a quantum annealing

Caldeira, João, Joshua Job, et al. “Restricted 
Boltzmann Machines for Galaxy Morphology 
Classification with a Quantum Annealer.” arXiv, 
February 13, 2020. http://arxiv.org/abs/1911.06259.

https://doi.org/10.48550/arXiv.2209.11044
http://arxiv.org/abs/1911.06259
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Quantum Generative Models in HEP
An autoencoder is a based on a two-component network:

• A network maps an input vector x to a compressed “latent

space”.

• A second network maps back the latent vector into feature

space.

• Network is trained to minimize the error of the reconstructed

input state or vector.

Ngairangbam, V. S., et al,  “Anomaly Detection in High-Energy 
Physics Using a Quantum Autoencoder.” Accessed October 31, 
2022. https://arxiv.org/abs/2112.04958.

QAEs for identifying
resonant Higgs events
over a QCD background

In the quantum setting, q-AEs

can be used for generative

modeling, data compression

and anomaly detection.

https://arxiv.org/abs/2112.04958
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Quantum Generative Models in HEP

• Adversarial training with quantum generator and classical or

quantum discriminator.

• Applications:
• Monte Carlo event generation: Carlos Bravo-Prieto, et al. Style-based quantum generative

adversarial networks for monte carlo events. arXiv:2110.06933, 2021.

• Detector simulation: Su Yeon Chang, et al. Dual- parameterized quantum circuit gan model

in high energy physics. EPJ Web of Conferences, 251:03050, 2021.

• Data loading for cross section integration: Gabriele Agliardi, et al,. “Quantum integration

of elementary particle processes”. arXiv preprint arXiv:2201.01547, 1 2022

Generator 
(G)

Discriminator 
(D)

G transforms samples from
a prior to a target
distribution

D takes generator
and “real”
samples and tries
to distinguish
between them.

Training corresponds
to a minmax two
player game
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Quantum Generative Models in HEP
• QCBMs are parameterized

quantum circuits used with the
objective of preparing a target
distribution with high-fidelity.

• A QCBM rotates a fixed initial
state to a final state, then
samples from that final state.

• A commonly used ansatz for
QCBMs is the “hardware
efficient ansatz”: constructed
by alternating layers of rotation
gates with layers of two-qubit
entangling operations.

• The design space for QCBM models is large – there are
many choices for initial state, ansatz, and measurement
setting.

• Building scalable QCBM models for HEP must balance
reproducing a target distribution with high fidelity with
trainability and noise robustness.

Delgado, Andrea, and Kathleen E. Hamilton. “Unsupervised Quantum Circuit Learning in High 
Energy Physics.” arXiv, March 7, 2022. https://doi.org/10.48550/arXiv.2203.03578.

Kiss, Oriel, Michele Grossi, Enrique Kajomovitz, and Sofia Vallecorsa. “Conditional Born Machine for 
Monte Carlo Event Generation.” Physical Review A 106, no. 2 (August 22, 2022): 022612. 
https://doi.org/10.1103/PhysRevA.106.022612.

https://doi.org/10.48550/arXiv.2203.03578
https://doi.org/10.1103/PhysRevA.106.022612
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Unsupervised Quantum Circuit Learning

QCBM training is a hybrid quantum-
classical workflow
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An Example: QCBMs for fitting 2 
and 3-dimensional joint distributions

Ansatz 1

Ansatz 2

• Can we fit the marginal distributions?

• Are the correlations also preserved on the

generated distribution?

• Ansatz choice: Trial and error
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Hyperparameter Tuning Ansatz 1

Ansatz 2

QCBM training simulated 
on CPU
• Using PennyLane

library and Qulacs
• Adam optimizer

Higher shot sizes 
improves performance

Larger circuits lead to 
faster convergence
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Marginal Fitting: 2D Joint Distributions (8 qubits)
Ansatz 1

Ansatz 2
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Marginal Fitting: 3D Joint Distributions (12 qubits)
Ansatz 1

Ansatz 2
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Correlation Fitting
Ansatz 1

Ansatz 2

With d=1 layer all n-
qubits can be entangled 

together

With d=1 layer n-qubits 
are prepared as 
separated sub-systems of 
m-qubits

MC (Truth)

Ansatz 1

Ansatz 2
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The road to quantum advantage…

Train circuits that are harder to simulate in classical devices (classically
intractable regime of QML)? 

Can we do better than trial and error when selecting an Ansatz? 
Produce a systematic method to characterize PQCs in GM?

Can we train circuits faster? By optimizing circuit design 
and reduce the number of executions on hardware.

Develop stronger, scalable error mitigation/correction 
techniques.
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The road to quantum advantage…

Train circuits that are harder to simulate in classical devices (classically 
intractable regime of QML)? 

Can we do better than trial and error when selecting an Ansatz? 
Produce a systematic method to characterize PQCs in GM?

Can we train circuits faster? By optimizing circuit design 
and reduce the number of executions on hardware.

Develop stronger, scalable error mitigation/correction 
techniques.

Actively working on it… 
trained QCBMs up to 15 qubits

Preliminary results on some 
ideas to tackle these
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Building Symmetries into Quantum Circuit Learning

• How can we reduce the 
number of parameters in 
our circuit?

• Is there any symmetry we 
can exploit for QML 
applications?

• Inspired by ORB-type 
circuits.
– Parameters are grouped 

into “orbits” with shared 
parameters.

Sauvage, Frederic, Martin Larocca, Patrick J. Coles, and M. Cerezo. “Building Spatial 
Symmetries into Parameterized Quantum Circuits for Faster Training.” arXiv, July 28, 
2022. https://doi.org/10.48550/arXiv.2207.14413.

(1) Take SU(2) 
Ansatz

(2) Group rotational gates 
on qubits that can be 
swapped without affecting 
symmetry

(3) Operations on the same orbit 
share parameters, reducing the 
number of trainable parameters

https://doi.org/10.48550/arXiv.2207.14413
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Building Symmetries into Quantum Circuit Learning

More layers needed in Orb-type circuits
to achieve similar performance than
fully-parameterized circuits.

But effective number of trainable
parameters is reduced.
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Capacity and Trainability of Quantum Generative Models

As we add more layers, 
we get to lower JS values

Performance also related 
to initial parameters
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Capacity and Trainability of Quantum Generative Models
But… there is a limit to the model
capacity

… after a critical number of layers, 
performance can’t get any better

Coinciding with the saturation in the QFI matrix rank! But how does it relate to the circuit 
entangling structure?
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Summary
• Quantum generative models are currently a 

promising candidate for quantum advantage in 
QML, with current performance comparable to 
classical methods. Still a lot of open questions:
– Scalability?
– Model capacity and how it is affected by entanglement in

circuit.
– Transitions in trainability.
– Scalable error correction.

• Promising applications in HEP.
– Finding complex correlations in data.
– As a data augmentation tool.
– As input models for other quantum algorithms.
– To complement quantum-enhanced searches for BSM 

physics – i.e. quantum sensor networks.

colliding 
proton

colliding 
proton

calorimeter 
energy 

depositions

particle 
tracks
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