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Outline

e Quantum Generative Models : An

Overview

o Applications in data analysis in HEP

« Characterizing quantum generative
models through model capacity and

trainabillity.
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Quantum Generative Modeling

e Quantum Generative Models are a powerful tool in
QML to reproduce the statistics of a target distribution
or quantum state ensemble, that can accordingly be
used to generate new samples.
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Quantum Generative Modeling

-

e Quantum Generative Models are a powerful tool in QML to reproduce
the statistics of a target distribution or quantum state ensemble, that can
accordingly be used tfo generate new samples.

-

« Motivated by the capacity of quantum processors to learn, represent,
and sample from high-dimensional probability distributions.

« Relatively simple quantum systems can generate data whose statfistics
cannot be generated efficiently by any classical system.
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Represent vectors in N-dimensional

QUANTUM spaces using log(N) qubits
PROCESSOR

Perform manipulations of sparse and low-rank
matrices in time O(poly(log(N)))
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Quantum Generative Modeling
mams What?

 Quantum Generative Models are a powerful tool in QML to reproduce the statistics
of a target distribution or quantum state ensemble, that can accordingly be used
to generate new samples.

mmmmn Why?

* Moftivated by the capacity of guantum processors to learn, represent, and sample
from high-dimensional probability distributions.

» Relafively simple quantum systems can generate data whose statistics cannot be
generated efficiently by any classical system.

How?

e Several architectures explored, algorithms developed for quantum annealers, discrete and
continuous variable.

 These models are inspired by classical neural network models and have been tfranslated
either as a standalone VQC or as a component in a hybrid network.

Many quantum computing libraries have been developed that leverage existing classical ML libraries
— TensorFlow Quantum, TorchQuantum, PennyLane.
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Quantum Generative Models in HEP
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Inspired by applications in data augmentation, simulation, data
compression tasks.

HEP datasets provide a natural alternative to synthetic datasets
to explore entanglement, expressiveness and scalability in QML
models.

« If proven to be scalable can demonstrate fo have an
advantage in generating high-dimensional correlated
events.

Also, can potentially have applications in large-scale quantum
sensor networks, anomaly detection in quantum-enhanced
probes for BSM physics, data embedding.

Trained by minimizing the energy of a model (g-RBMs), the error
when sampling from a target posterior (QCMBs), or through

adversarial methods (g-GANs).



Quantum Generative Models in HEP

* (Restricted) Bolizmann machines are physically

moftivated NNs capable of generating new samples

similar fo the fraining data.

« Weights and biases are optimized by finding the ground
state of a system’s Hamiltonian — thus, are perfectly suited

for quantum annealers.

Use free energy of QBM as an estimate QRBM ~ for  galaxy morphollc)gy
of the Q-function in the training a classification with a quantum annealing

reinforcement learning model to
optimize a beam in a linear accelerator

action a

Schenk, Michael, Elias F. Combarro, Michele Grossi, et all Caldeira, Jodo, Joshua Job, et al. “Restricted
“"Hybrid Actor-Critic Algorithm for Quantum Reinforcement  Boltzmann Machines for Galaxy Morphology
Learning at CERN Beam Lines.” arXiv, September 22, 2022.  Classification with a Quantum Annealer.” arXiv,
hitps://doi.org/10.48550/arXiv.2209.11044. February 13, 2020. hitp://arxiv.org/abs/1911.06259.
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Quantum Generative Models in HEP

An autoencoder is a based on a two-component network:

« A network maps an input vector x to a compressed “latent

space”.
« A second network maps back the latent vector into feature
space.
 Network is frained to minimize the error of the reconstructed
input state or vector.
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Ngairangbam, V. S., et al, “Anomaly Detection in High-Energy
Physics Using a Quantum Autoencoder.” Accessed October 31,
2022. https://arxiv.org/abs/2112.04958.
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G transforms samples from

Quantum Generative Models in HEP G fransforms somples o
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distribution

Generator

(G)

Training  corresponds
to a minmax two
player game

D takes generator  BBNeassled it £6(0Pa), max Lo(dg, ¢a).
and “real” (D)
samples and tries

to distinguish
between them.

* Adversarial training with quantum generator and classical or
quantum discriminator.

« Applications:
Monte Carlo event generation: Carlos Bravo-Prieto, et al. Style-based quantum generative
adversarial networks for monte carlo events. arXiv:2110.06933, 2021.
Detector simulation: Su Yeon Chang, et al. Dual- parameterized quantum circuit gan model
in high energy physics. EPJ Web of Conferences, 251:03050, 2021.
Data loading for cross section integration: Gabriele Agliardi, et al,. “Quantum integration
of elementary particle processes”. arXiv preprint arXiv:2201.01547, 1 2022



Quantum Generative Models in HEP

o

QCBMs are parameterized
quantum circuits used with the
objective of preparing a target
distribution with high-fidelity.

A QCBM rotates a fixed inifial
state tfo a final state, then
samples from that final state.
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+ A commonly used ansafz for || 19— LDy [UT“(B‘%)“ =
QCBMs is the “hardware || 0—(Z=}o
efficient ansatz”: constructed \------------- - -

I by alternating layers of rotation

gates with layers of two-qubit
entangling operation:s.

 The design space for QCBM models is large - there are
many choices for initial state, ansatz, and measurement
setting.

« Building scalable QCBM models for HEP must balance
reproducing a target distribution with high fidelity with
trainability and noise robustness.

Delgado, Andrea, and Kathleen E. Hamilton. “Unsupervised Quantum Circuit Learning in High
Energy Physics.” arXiv, March 7, 2022. hitps://doi.org/10.48550/arXiv.2203.03578.

Kiss, Oriel, Michele Grossi, Enrique Kajomovitz, and Sofia Vallecorsa. “Conditional Born Machine for
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Unsupervised Quantum Circuit Learning

Parameterized circuit
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QCBM ftraining is a hybrid quantum-
classical workflow
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An Example: QCBMs for fitting 2 Ansatz 1 v
and 3-dimensional joint distributions

|0>_ Urot(elao) :L
0'007_ o |0)_ Urot(elao) Urot(elal) 1:
§ 0.005 { | | | |O>_ Urot(elao) —I_ Urot(elal)
20.004— . "] IO)— Urot(elao) N7
0.001 0.002 4 "] Ansatz 2
' 300 4(')(J)et N [5(36:v1 600 700 ' 0 50 - malio[GeV] 150 200 ' 2 1 Je(;)n 1 2 I,’ ________ \\\ X d
\
E 10)— Uroc(61") FIQ i
 Can we fit the marginal distributions? 10 —{ Uroe (69) fot
e A '|'h 1 : |0)_ Urot(gla) ® :
re e correlations also preserved on the ! !
_I_ d d _I_ b _I_ o : |0>_ Urot(ela) :
enerated distributions ! I '
g : |0)_ Urot(gla) o :
o o | |
« Ansatz choice: Trial and error 10— Uroe (69 & |
\ 1

————————————————

%OAK RIDGE

National Laboratory




Hyperparameter Tuning Ansatz 1 xd
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Marginal Fitting: 2D Joint Distributions (8 qubits)
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Marginal Fitting: 3D Joint Distributions (12 qubits)
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Correlation Fitting

MC (Truth)
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The road to quantum advantage...

rlareler

Train circuits that are harder to simulate in classical devices (classically
intractable regime of QML) ¢

BEEls

Can we do better than trial and error when selecting an Ansafze
Produce a systematic method fo characterize PQCs in GM¢

FasSter

Can we frain circuits fastere By optimizing circuit design
and reduce the number of executions on hardware.

Stronger

Develop stronger, scalable error mitigation/correction
fechniques.

(1 118
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The road to quantum advantage...

[H:I @W@]@ Bj Actively working on it...

Train circuits that are harder fo simulate in classical devices (classically  +qined QCBM to 15 qubit
intractable regime of QML) ¢ rained Q s Up o 15 qublis

BER ) trotm
SIS ot e meca

Can we do better than trial and error when selecting an Ansatze | '
| A

Produce a systematic method fo characterize PQCs in GM¢

FasSter

Can we frain circuits fastere By optimizing circuit design
and reduce the number of executions on hardware.

Stronger

Develop stronger, scalable error mitigation/correction
fechniques.
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Building Symmetries into Quantum Circuit Learning

e How can we reduce the
number of parameters in
Oour circuite

e |s there any symmetry we
can exploit for QML
applicationse

* Inspired by ORB-type
Circuits.

- Parameters are grouped
into Yorbits” with shared

parameters.

-~

Ansaiz

\_

(1) Take SU(2)

(2) Group rotational ga&
on qubits that can be

swapped without affec

(a) Free symmetry (b) ORB

(3) Operations on the same orbit
share parameters, reducing the
number of frainable parameters

ting

/

Sauvage, Frederic, Martin Larocca, Patrick J. Coles, and M. Cerezo. "Building Spatial
Symmetries info Parameterized Quantum Circuits for Faster Training.” arXiv, July 28,
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Building Symmetries into Quantum Circuit Learning
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But effective number of trainable

performance than

parameters is reduced.
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Capacity and Trainability of Quantum Generative Models

4 layers — G layers 18 layers
—— 5 layers — 17 layers

Performance also related
to initial parameters

\ As we add more layers,

we get to lower JS values

10

10

JS loss

10°

——

0 25 50 75 100 125 150
Optimizer Step
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Capacity and Trainability of Quantum Generative Models

But... there is a limit to the model

capacity
4 layers 6 layers = 18 layers
— 5 layers — 17 layers
10 '
Q -2
3 10 =
w
=
-3
10
S—
0 25 50 75 100 125 150
Optimizer Step

Coinciding with the saturation in the QFI matrix rank!
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JS loss

—

... after a critical number of layers,
performance can’t get any better

— 18 layers —— 20 layers — 21 layers
19 layers

150

0 25 50 75 100 125 150
Optimizer Step

But how does it relate to the circuit
entangling structure?



Summary

 Quantum generative models are currently @
promising candidate for guantum advantage in
QML, with current performance comparable to
classical methods. Still a lot of open questions:

Scalability?

Model capacity and how it is affected by entanglement in
circuit.

Transitions in trainability.
Scalable error correction.

* Promising applications in HEP.

Finding complex correlations in data.
As a data augmentation tool.
As input models for other quantum algorithms.

To complement quantum-enhanced searches for BSM
physics —i.e. guantum sensor networks.

An exciting time to work on QML!
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Thank you!

Collaborators: Dr. Kathleen
Hamilton (ORNL).
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