

An LHC application of Quantum Machine Learning and INFN summary

DAVIDE ZULIANI UNIVERSITY AND INFN OF PADOVA

Università degli Studi di Padova

NOVEMBER 2, 2022

Table of contents

• Application of QML at LHC

- Physics case: b-jet charge identification at LHCb
- Algorithm description and results
- Future studies and ideas
- Overview of INFN activities

Table of contents

• Application of QML at LHC

- Physics case: b-jet charge identification at LHCb
- Algorithm description and results
- Future studies and ideas
- Overview of INFN activities

b-jet charge identification at LHCb

- LHC physics program heavily relies on **jets physics**
- Better jets reconstruction & identification performance → better results, but **very challenging**!
- Example: $b\bar{b}$ asymmetry at LHCb
 - **Tension from LEP** measurements makes it interesting to study *bb* charge asymmetry at LHC
 - **Statistical uncertainty** is directly related to the identification algorithm performance
 - Finer binning for $m_{h\bar{h}}$ around Z pole
 - Measure contribution from higher orders

INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES FOR HIGH-ENERGY PHYSICS

b-jet charge identification at LHCb

• How can we identify jet charge?

DAVIDE ZULIANI

JHEP 08 (2022) 014 Phys. Rev. Lett. 113 (2014) 08

b-jet charge identification at LHCb

• How can we identify jet charge?

DAVIDE ZULIANI

JHEP 08 (2022) 014 Phys. Rev. Lett. 113 (2014) 08

Exclusive approach

• Use a **specific physics process** to infer the quark flavour

• So far used at LHCb \rightarrow "muon tagging"

• A muon coming from the semi-leptonic decay of a b quark $(\mathscr{B} = 10\%)$ is used to tag the jet and discriminate between b and b-jets

b-jet charge identification at LHCb

• How can we identify jet charge?

DAVIDE ZULIANI

JHEP 08 (2022) 014 Phys. Rev. Lett. 113 (2014) 08

Inclusive approach

• It uses all the information coming from the jet substructure

- e.g. get the kinematic properties of all the particles inside the jet
- Given the amount of information, Machine Learning tools are well suited!

Exclusive approach

- Use a **specific physics process** to infer the quark flavour
- So far used at LHCb \rightarrow "muon tagging"
- A muon coming from the semi-leptonic decay of a b quark $(\mathscr{B} = 10\%)$ is used to tag the jet and discriminate between b and *b*-jets

b-jet charge identification at LHCb

DAVIDE ZULIANI

• Sample of bb di-jets events have been simulated with the official LHCb simulation framework **THEY RESEMBLE DATA!**

• Run 2 condition ($\sqrt{s} = 13 \text{ TeV}$)

~700.000 jets, divided into training, testing and evaluation

b-jet charge identification at LHCb

Image taken from https://lhcb.github.io/starterkit-lessons/first-analysis-steps/dataflow.html

DAVIDE ZULIANI

• Sample of *bb* di-jets events have been simulated with the

n 2 condition (
$$\sqrt{s} = 13 \text{ TeV}$$
)

b-jet charge identification at LHCb

- Sample of *bb* di-jets events have been simulated with the official LHCb simulation framework **THEY RESEMBLE DATA!**
- Run 2 condition ($\sqrt{s} = 13$ TeV)
- ~700.000 jets, divided into training, testing and evaluation
- For each jet, 5 types of particles are considered:

DAVIDE ZULIANI

muon electron pion kaon proton

b-jet charge identification at LHCb

DAVIDE ZULIANI

- Sample of bb di-jets events have been simulated with the official LHCb simulation framework **THEY RESEMBLE DATA!**
- Run 2 condition ($\sqrt{s} = 13$ TeV)
- ~700.000 jets, divided into training, testing and evaluation
- For each jet, 5 types of particles are considered:

muon electron pion kaon proton

• And for each type of particle, three features are considered: \bullet Transverse momentum relative to jet axis $p_{\mathrm{T}}^{\mathrm{rel}}$ • Distance relative to jet axis ΔR in the (η, ϕ) plane • Charge of the particle q

 $\Sigma(p_{\rm T}^{\rm rel})q$ \bullet + a global variable, the total jet charge Q = $\Sigma(p_{\rm T}^{\rm rel})$

Algorithm description, Variational Quantum Classifier (VQC)

DAVIDE ZULIANI

NATURE 567, 209-212 (2019)

Algorithm description, Variational Quantum Classifier (VQC)

DAVIDE ZULIANI

NATURE 567, 209-212 (2019)

Algorithm description, Variational Quantum Classifier (VQC)

DAVIDE ZULIANI

Algorithm description, Variational Quantum Classifier (VQC)

DAVIDE ZULIANI

Algorithm description, Variational Quantum Classifier (VQC)

DAVIDE ZULIANI

AN LHC APPLICATION OF QUANTUM MACHINE LEARNING AND INFN SUMMARY

NATURE 567, 209-212 (2019) **JHEP 08 (2022) 014**

Different sets of features

"complete" set of features **16 variables**

"muon" set of features $\mu + Q = 4$ variables

JHEP 08 (2022) 014

To perform a complete study of this algorithm and its application, we have considered several aspects

Different sets of features

"complete" set of features **16 variables**

"muon" set of features $\mu + Q = 4$ variables

To perform a complete study of this algorithm and its application, we have considered several aspects

Different sets of features

"complete" set of features **16 variables**

"muon" set of features $\mu + Q = 4$ variables

Results are compared with a standard **Deep Neural Network** (DNN) using same input variables

DAVIDE ZULIANI

AN LHC APPLICATION OF QUANTUM MACHINE LEARNING AND INFN SUMMARY

To perform a complete study of this algorithm and its application, we have considered several aspects

A typical figure of merit for this kind of problems is the **tagging power**

 $\epsilon_{\rm tag}$

JHEP 08 (2022) 014 Phys. Rev. Lett. 113 (2014) 08

$$= \epsilon_{\text{eff}} (1 - 2\omega)^2 \qquad \qquad \epsilon_{\text{eff}} = \text{efficiency} = \frac{\# \text{ tagged jets}}{\# \text{ jets}} \\ \omega = \text{mistag} = \frac{\# \text{ wrongly tagged jets}}{\# \text{ tagged jets}}$$

• It can be interpreted as the **effective fraction of correctly** identified jets, important for asymmetry measurements:

$$\sigma \propto \frac{1}{1 - 2\omega}$$

where $\sigma =$ statistical uncertainty

A typical figure of merit for this kind of problems is the **tagging power**

JHEP 08 (2022) 014 Phys. Rev. Lett. 113 (2014) 08

$$= \epsilon_{\text{eff}} (1 - 2\omega)^2 \qquad \qquad \epsilon_{\text{eff}} = \text{efficiency} = \frac{\# \text{ tagged jets}}{\# \text{ jets}} \\ \omega = \text{mistag} = \frac{\# \text{ wrongly tagged jets}}{\# \text{ tagged jets}}$$

It can be interpreted as the **effective fraction of correctly** identified jets, important for asymmetry measurements:

$$\sigma \propto \frac{1}{1 - 2\omega}$$

where $\sigma =$ statistical uncertainty

Optimised cut Δ_{cut} over output distribution: reduce efficiency but also reduce mistag, therefore increasing tagging power

		Classifier			
Dataset	DNN	Angle Embedding	Amplitude Embedding		
Muon	0.30	0.25	0.16		
Complete	0.21	0.19	0.12		

Results for tagging power

- Embedding not performing as good
- For complete dataset (up to 16 qubits), **QML performs slightly worse than DNN**

DAVIDE ZULIANI

AN LHC APPLICATION OF QUANTUM MACHINE LEARNING AND INFN SUMMARY

INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES FOR HIGH-ENERGY PHYSICS

JHEP 08 (2022) 014

For muon dataset (up to 4 qubits), Angle Embedding circuit is **comparable to DNN**, Amplitude

Other results for 4 qubits circuit (muon set of features)

number of variational layers

- Accuracy saturates after 5/6 variational layers
- A **trade-off** between performance and complexity

DAVIDE ZULIANI

JHEP 08 (2022) 014

• A **trade-off** between performance and complexity

DAVIDE ZULIANI

A **trade-off** between performance and complexity

DAVIDE ZULIANI

JHEP 08 (2022) 014

- performs better than the DNN
- Simulate noise contribution from several IBM backends
- **Simpler structures are** robust to noise

Future studies and ideas

What to expect in the next months

	_			
MODEL4f 3Layers	Accurac y	AUC ROC	Secs. x jet	
Simulator	0.78	0.82	0.01	
Manila Opt 2 Shots 1024	0.74	0.79	0.12	MANILA
				5 Qubits 32 QV 2.8K
Manila Opt 2 Shots 10240	0.75	0.80	0.97	CLOPS Processor type: Falcon r5.11L
Oslo Opt 2 Shots 1024	0.69	0.74	0.12	OSLO
Oslo Opt 2 Shots 10240	0.69	0.74	0.96	7 Qubits 32 QV 2.6K CLOPS Processor type: Falcon r5.11H
Oslo Opt 2 Shots 1024 Mitigated	0.72	0.74	0.12	
Oslo Opt 3 Shots 1024	0.65	0.69	0.12	
Nairobi Opt 2 Shots 1024	0.57	0.59	0.13	NAIROBI 7 Qubits 32 QV 2 6K
Nairobi Opt 3 Shots 1024	0.72	0.77	0.12	CLOPS Processor type: Falcon r5.11H

tests on hardware preliminary

- Several tests on different IBM machines
- Transpiling and error mitigation studies
- Preliminary performance similar to simulations

MORE IN THE FUTURE...

DAVIDE ZULIANI

AN LHC APPLICATION OF QUANTUM MACHINE LEARNING AND INFN SUMMARY

INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES FOR HIGH-ENERGY PHYSICS

Future studies and ideas

What to expect in the next months

tests	onh	hard	ware	preliminary
MODEL4f 3Layers	Accurac y	AUC ROC	Secs. x jet	
Simulator	0.78	0.82	0.01	
Manila Opt 2 Shots 1024	0.74	0.79	0.12	MANILA 5 Qubits 32 QV 2.8K
Manila Opt 2 <mark>Shots 10240</mark>	0.75	0.80	0.97	CLOPS Processor type: Falcon r5.11L
Oslo Opt 2 Shots 1024	0.69	0.74	0.12	OSLO
Oslo Opt 2 Shots 10240	0.69	0.74	0.96	7 Qubits 32 QV 2.6K CLOPS Processor type: Falcon r5.11H
Oslo Opt 2 Shots 1024 Mitigated	0.72	0.74	0.12	
Oslo Opt 3 Shots 1024	0.65	0.69	0.12	
Nairobi Opt 2 Shots 1024	0.57	0.59	0.13	NAIROBI 7 Qubits 32 QV 2.6K
Nairobi Opt 3 Shots 1024	0.72	0.77	0.12	CLOPS Processor type: Falcon r5.11H

- Several tests on different IBM machines
- Transpiling and error mitigation studies
- **Preliminary performance similar** to simulations

- Can't scale up to many layers
- Is there a clever way to build our circuit?
- features in this sense

MORE IN THE FUTURE...

DAVIDE ZULIANI

AN LHC APPLICATION OF QUANTUM MACHINE LEARNING AND INFN SUMMARY

intelligent circuit design

Quantum TTN show interesting

Future studies and ideas

What to expect in the next months

tests	onh	hard	ware	preliminary
MODEL4f 3Layers	Accurac y	AUC ROC	Secs. x jet	
Simulator	0.78	0.82	0.01	
Manila Opt 2 Shots 1024	0.74	0.79	0.12	MANILA 5 Qubits 32 QV 2.8K
Manila Opt 2 <mark>Shots 10240</mark>	0.75	0.80	0.97	CLOPS Processor type: Falcon r5.11L
Oslo Opt 2 Shots 1024	0.69	0.74	0.12	OSLO
Oslo Opt 2 Shots 10240	0.69	0.74	0.96	7 Qubits 32 QV 2.6K CLOPS Processor type: Falcon r5.11H
Oslo Opt 2 Shots 1024 Mitigated	0.72	0.74	0.12	
Oslo Opt 3 Shots 1024	0.65	0.69	0.12	
Nairobi Opt 2 Shots 1024	0.57	0.59	0.13	NAIROBI 7 Qubits 32 QV 2.6K
Nairobi Opt 3 Shots 1024	0.72	0.77	0.12	CLOPS Processor type: Falcon r5.11H

- Several tests on different IBM machines
- Transpiling and error mitigation studies
- **Preliminary performance similar** to simulations

- Can't scale up to many layers
- Is there a clever way to build our circuit?
- **Quantum TTN** show interesting features in this sense

MORE IN THE FUTURE...

DAVIDE ZULIANI

AN LHC APPLICATION OF QUANTUM MACHINE LEARNING AND INFN SUMMARY

intelligent circuit design

correlations between qubits

- What (and where) is the quantum advantage?
- Can we measure **correlations** between qubits?
- How to use this information?

INFN is deeply involved in many QC activities for HEP

15 JULY, 2022

RATHER NEW!

Ongoing projects in different areas of interest and expertise

- Early involvement already in 2018 (**QT @ INFN**)
- INFN is also part of the **QuantERA programme**

OUANTUM COMPUTING ALGORITHMS

QUANTUM SENSING AND COMMUNICATION

Simulation and theory

Describe N interacting neutrinos with Hamiltonian by means of quantum simulations

$$H = \sum_{i} \frac{\Delta m^2}{4E_i} \vec{B} \cdot \vec{\sigma}_i + \lambda \sum_{i} \sigma_i^z + \frac{\mu}{2N} \sum_{i < j} \left(1 - \cos(\phi_{ij}) \right) \vec{\sigma}_i \cdot \vec{\sigma}_j$$

Simulate one- and two-body interactions with SWAP network

Recent progress using trapped ions with all-to-all connectivity show very low infidelities

by V. Amitrano et al., arXiv:2207.03189 (2022)

DAVIDE ZULIANI

Simulation and theory

- **Entanglement entropy production in QNN**
- QNN characterisation by means of Tensor Networks tools

The most promising regime for quantum advantage is a **trade-off** between high entanglement and expressibility

by M.Ballarin et al., arXiv:2206.02474

DAVIDE ZULIANI

complexity

by L.Banchi et al., PRX Quantum 2.040321 (2021)

Classification in HEP and Gravitational Waves

• Anomaly detection task

• Identification of long-lived particles in ATLAS

• Generative models

• Simulation of particles-matter interaction

by S. Bordoni, D. Stanev, S. Giagu — INFN Roma and University Sapienza

DAVIDE ZULIANI

- GW signals are deeply embedded in **detector noise**
- Matched filtering between data and signal templates
 - Computationally not feasible

$$N_{\rm tot} \approx 5.6\pi \times 10^{-9} K_f K_{\rm sky} \left(\frac{T_{\rm FFT}}{\delta t}\right)^{3+j_{\rm max}} \prod_{j \le j_{\rm max}} \left(\frac{T_{\rm obs}}{\tau_{\rm min}}\right)^j \approx 10^{21}$$

- Several proposals to use quantum algorithms
 - Quantum Hough Transform
 - Polynomial speed-up w.r.t. classical
 - QML
 - Already classical ML seems promising

by C. Palomba, P. Astone, F. Muciaccia — INFN Roma

Conclusions

- An application of QML to a real LHC physics case has been presented
 - While QML doesn't show any advantage, it behaves almost as good as classic ML
 - Nice PoC for future studies and application
 - Possible new ideas on
 - Leveraging **quantum** aspects of QML
 - Applicability to **near-term devices**
- Many INFN activities of QC for HEP in **different areas of interest**
- Significant boost expected from the **national** center for HPC and QC, currently being built

DAVIDE ZULIANI

2023

2024

2025

Quantum Computing @ INFN

14-15 Nov 2022 Bologna Europe/Rome timezone

Centro Nazionale HPC, **Big Data e Quantum Computing**

2026	
aries	
ection	
qubits ical um ation	

