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Application of QML at LHC

b-jet charge identification at LHCb

e LHC physics program heavily relies on jets physics

 Better jets reconstruction & identification performance
— better results, but very challenging!

« Example: bb asymmetry at LHCb

Phys. Rev. Lett. 113 (2014) 08

JHEP 2019, 166 (2019)

- . o3 ISR IR AL UL T -
e Tension from LEP measurements makes it S E ot FeBTV Now om
. . 7 < E LHCDb kinematic cuts " E
interesting to study bb charge asymmetry at LHC -
= = o . . 35— H _E
 Statistical uncertainty is directly related to the B H :
identification algorithm performance N E
- inning f 47 ool AC — N(Ay > 0) = N(Ay <0) sE . e — :
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. . . ' — vl = [ve| O0.5F ms 5 ' 5 =
e Measure contribution from higher orders with &y = 1, [ = 1551 | S | ; i

50 100 150 200 250 300

m, - [GeV]

DAVIDE ZULIANI AN LHC APPLICATION OF QUANTUM MACHINE LEARNING AND INFN SUMMARY 3


https://link.springer.com/article/10.1007/JHEP03(2019)166
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.082003

INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES FOR HIGH-ENERGY PHYSICS

JHEP 08 (2022) 014

Application of QML at LHC e o HER 02 2022 0

b-jet charge identification at LHCb

« How can we identify jet charge?
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b-jet charge identification at LHCb

« How can we identify jet charge?

Exclusive approach

e Use a specific physics process to infer the quark flavour
e So far used at LHCb — "muon tagging”

e A muon coming from the semi-leptonic decay of a b quark
(% = 10 %) is used to tag the jet and discriminate between b
and b-jets
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b-jet charge identification at LHCb

* How can we identify jet charge?
Inclusive approach

e It uses all the information coming from the jet substructure

e £.g. get the kinematic properties of all the particles inside the jet

e Given the amount of information, Machine Learning tools are
well suited!

Exclusive approach

e Use a specific physics process to infer the quark flavour
e So far used at LHCb — "muon tagging”

e A muon coming from the semi-leptonic decay of a b quark
“ (% =10 %)is used to tag the jet and discriminate between b
and b-jets
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Application of QML at LHC

b-jet charge identification at LHCb

JHEP 08 (2022) 014

e Sample of bb di-jets events have been simulated with the
official LHCb simulation framework

THEY RESEMBLE DATA!
N e Run 2 condition (\/E = 13 TeV)

e ~/00.000 jets, divided into training, testing and evaluation

DAVIDE ZULIANI AN LHC APPLICATION OF QUANTUM MACHINE LEARNING AND INFN SUMMARY 5


https://link.springer.com/article/10.1007/JHEP08(2022)014

INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES FOR HIGH-ENERGY PHYSICS

Application of QML at LHC

b-jet charge identification at LHCb

JHEP 08 (2022) 014

e Sample of bb di-jets events have been simulated with the
official LHCb simulation framework

N e Run 2 condition (/s = 13 TeV)

THEY RESEMBLE DATA!

e ~/00.000 jets, divided into training, testing and evaluation

Trigger Reconstruction Stripping
> _ > - >
Moore : Brunel DaVinci
4 B
I 'Re reconstruction 3 “x"'l‘!‘estripping
° ° ° e o o o " ““'.“ ' v
Particle simulation Dlgltlsatlon Storage Storage Storage
>
Gauss Boole
Generation Decay Propagation . .
Pythia/POWHEG/... EvtGen Geant4 AnalySIS Ntupl‘e maklng
<
ROOT/Numpy/... DaVinci

Image taken from https://lhcb.github.io/starterkit-lessons/first-analysis-steps/dataflow.html
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Application of QML at LHC

b-jet charge identification at LHCb

JHEP 08 (2022) 014

e Sample of bb di-jets events have been simulated with the
official LHCb simulation framework

e Run 2 condition (/s = 13 TeV)

THEY RESEMBLE DATA!

e ~/00.000 jets, divided into training, testing and evaluation
e For each jet, b types of particles are considered:

muon electron pion kaon proton
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Application of QML at LHC

b-jet charge identification at LHCb

JHEP 08 (2022) 014

AR e Sample of bb di-jets events have been simulated with the
official LHCb simulation framework

e Run 2 condition (/s = 13 TeV)

THEY RESEMBLE DATA!

e ~/00.000 jets, divided into training, testing and evaluation
e For each jet, b types of particles are considered:

muon electron pion kaon proton

e And for each type of particle, three features are considered:

e Transverse momentum relative to jet axis p{?l

total of e Distance relative to jet axis AR in the (17, ¢) plane
16 features e Charge of the particle g
3 rel
o + a global variable, the total jet charge O = 1 )q
2(pih)
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Application of QML at LHC

Algorithm description, Variational Quantum Classifier (VQC)

NATURE 567, 209-212 (2019)

Feed the data into a

n quantum state

(“data embedding”)

Quantum Classical
e S e el |
| Output :

— A | f(x;6) |

State I l :

. l

prEParatlon |:L'> o U(:L’; 9) /74 : Cost |

x > |x) " Elv-fmolt

U(x; 91) | l l

¢ - A :

PENNYLANE o . Update |

9 Quantum circuit : 6;_1 — 0, |

| | - Eo
o/

L v
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Application of QML at LHC

Algorithm description, Variational Quantum Classifier (VQC)

NATURE 567, 209-212 (2019)

Feed the data into a Create a

n quantum state n quantum circuit

(“data embedding”) (“variational part”)

Quantum Classical
| OEEEEEEEEEEER. !
| Output :
- /74 : f(x;0) I
State I l :

. |

prEParatlon |:L'> o U(:L’; 9) /74 : COSt |
x > |x) " Elv-fmolt
U(x; 91) | l l
|
f — /74 : Undat |
PENNYLANE o , pdatc |
9 Quantum circuit : 6;_1 — 6; |
| |

¢

s

o
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Application of QML at LHC

Algorithm description, Variational Quantum Classifier (VQC)

NATURE 567, 209-212 (2019)

Feed the output of the

n quantum state n quantum circuit optimisation algorithm
(“data embedding”) Quantum (“variational part”) Placsload
gy |
| Output |
— A | f(x;6)
State I l :
: |
prEParatlon |'ij'> o U(:L‘; 9) /74 : Cost |
x > |x) " Elv-fmelt
U(x; 91) | l l
¢ - A |
PENNYLANE - : Update .
9 Quantum circuit \ i1 — 0 |
“ L o e s o r_ — e =
Vo Y,

o

DAVIDE ZULIANI AN LHC APPLICATION OF QUANTUM MACHINE LEARNING AND INFN SUMMARY 6


https://www.nature.com/articles/s41586-019-0980-2#citeas

INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES FOR HIGH-ENERGY PHYSICS

Application of QML at LHC

Algorithm description, Variational Quantum Classifier (VQC)

NATURE 567, 209-212 (2019)

Feed the output of the

n quantum state n quantum circuit optimisation algorithm
(“data embedding”) Quantum (“variational part”) Placsload
\  GEEEEEEEEEER | |
| Output |
— A ! f(x;6)
State l l :
- I
prEParatlon ‘:I/'> o U(a’;; 9) /74 : Cost :
x = |x) : Ely - rG;01¢ |
U(x; 91) | l l
¢ — A '
| I
PENNYLANE o . BUPdit‘; .
9 ‘ Quantum circuit | i—1 i :

A

A"

0‘0‘
Perform a training on a sample of
data by optimising circuit parameters
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NATURE 567, 209-212 (2019)

Application of QML at LHC

Algorithm description, Variational Quantum Classifier (VQC)
Feed the output of the

Feed the data into a Create a u circuit to a classical
n quantum sta.te n guantum circuit optimisation algorithm
(“data embedding”) Quantum (“variational part”) Claccioni
i L L ST A S L 2500 -
| I LHCb simulation et
| Output | :
] /74 | f(x; 9) 2000 -
I
State | l : _ 1500-
i | z
preparation ‘$> B U(ZL’, 9) /74 | Cost l» S
2 - |%) " Elv-felt 100
? B I I 500 A
PENNY LANE = : Update :
9 ‘ Quantum circuit | Oi-1 6 | %00 0.2 0.4 0.6 0.8 1.0
L l P,

¢
%
&

g%

AO

Perform a training on a sample of B Get output distribution

data by optimising circuit parameters

“‘
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Application of QML at LHC

Algorithm description

JHEP 08 (2022) 014

e To perform acomplete study of this algorithm and its application, we have considered several aspects

Different sets of features

“complete” set of features “muon” set of features
16 variables 1 + O =4 variables
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Application of QML at LHC

Algorithm description

JHEP 08 (2022) 014

e To perform acomplete study of this algorithm and its application, we have considered several aspects

Different sets of features Different embedding circuits
] X L repetitions
Amplitude
Embedding 0) — o ) P A {02)
0) — Amplitude Rlow o)D) °
2™ .
0) — Embedding R(as, By, o) ——D)
|£B> — Z Ly |n2> ()> S Rl B, ) -
1=1
X L. repetitions
O>— R.(61) R(ai, B1,71) () /74 <O-Z>
O>— R (62) R(az, B2,72) () . Angle
“complete” set of features “muon” set of features 0)— =@ e, by 1) ——D) Embedding
- — R.(04 R(oy, Ba,va AR
16 variables u + O =4 variables 0) i e N%
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Application of QML at LHC

Algorithm description

JHEP 08 (2022) 014

e To perform acomplete study of this algorithm and its application, we have considered several aspects

Different sets of features

Different embedding circuits

X L repetitions

Amplitude
Embedding 0) — R(as, B, 1) & A {o,)
O> — Amplitude Ros, o 12)—ED) .
- 0) — Embedding s —D
) = Z Zi |m;) 0) — o fan
Gy, 4,74) \/
1=1
X L. repetitions
O>— R.(01) R(aq, B1,7m) () <O-Z>
0)— r@ R(as. B2 72) (1) Angle
“complete” set of features “muon” set of features 0)— =@ R(as, s, 25)——P) Embedding
16 variables 0)— o Rlos, b1, D

1 + O =4 variables

e Results are compared with a standard Deep Neural Network (DNN) using same input variables
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JHEP 08 (2022) 014

Application of QML at LHC g I Z0Z0 01

Algorithm description

e Atypical figure of merit for this kind of problems is the tagging power

# tagged jets

€. = efficiency = o
jets

_ 2
€tag T Geff (1 o 20)) # wrongly tagged jets

@ = mistag =
. # tagged jets

e It can be interpreted as the effective fraction of correctly
identified jets, mportant for asymmetry measurements:

1

O X where o = statistical uncertainty

Il —2w
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Application of QML at LHC

Algorithm description

e Atypical figure of merit for this kind of problems is the tagging power

2500 1

2000 1

1500 +

Events

1000 +

500 1

LHCDb simulation

Bl ) jet
b jet

O X

€ag = Eef (1 — 2w)*

€. = efficiency =

@ = mistag =

JHEP 08 (2022) 014
Phys. Rewv. Lett. 113 (2014) 08

# tagged jets

# jets
# wrongly tagged jets

# tagged jets

e |t can be interpreted as the effective fraction of correctly
identified jets, mportant for asymmetry measurements:

where ¢ = statistical uncertainty

A 1 — 2w
u u n ] ] n
! e Optimised cut A_  over output distribution: reduce efficiency but
| also reduce mistag, therefore increasing tagging power
|
I .
0.0 0.2 0.4 0.6 0.8 1.0 Classifier
P, Dataset | DNN Angle Embedding Amplitude Embedding
Muon 0.30 0.25 0.16
Complete | 0.21 0.19 0.12
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Application of QML at LHC

Results for tagging power

4.5 14-
_ : . + Muon Tag. 3 ;
LHCDb simulation + DNN N _:
_ ¢+ Angle Emb.
3.5 - ; Amplitude Emb. 11
—— 10 1
o ' - : = 81
= s e ol N
“muon” set of o] 28 4 L 7
o ¢ : S 61
features - *:#: } 5
5] v _+_ | { 4
| T+
| +—¢—1 2
' e 1

o5+ 000

20 40 60 80 100
pr (GeV/c)

e For muon dataset (up to 4 qubits), Angle Embedding circuit is comparable to DNN, Amplitude

Embedding not performing as good

LHCb simulation

aole ol 5

Muon Tag.
DNN
Angle Emb.

Amplitude Emb.

-

pr (GeV/c)

e For complete dataset (up to 16 qubits), QML performs slightly worse than DNN
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Application of QML at LHC

Other results for 4 qubits circuit (muon set of features)
number of variational layers

JHEP 08 (2022) 014

0.685

LHCDb simulation

0.680 ,/’+
/
/
/
’
P //
Q ’
S ’
= 0.675 ’
3! 4
ot /
< /
/
/
/
/
/
/
0.670 /)
/
/
/
/
/
+I
0.665 -@® - Angle Emb.
1 2 3 4 5 6 7

Number of layers

e Accuracy saturates after 5/6
variational layers

o A trade-off between
performance and complexity
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Application of QML at LHC

Other results for 4 qubits circuit (muon set of features)

number of variational layers

0.685

0.680 -

Accuracy
O
(@)}
~
N

0.670 -

0.665 A

LHCDb simulation

+I
-@® - Angle Emb.

e Accuracy saturates after 5/6

1 2 3 4 5 6 7
Number of layers

variational layers

e A trade-off between

performance and complexity

DAVIDE ZULIANI

0.68

0.64 -

Accuracy

0.56 -

0.52 1

<

N

-
1

number of training events

0.48 +——

______ o-—-®-----0
_@-==mIIl @ e ——0--——
=
—”— /
- /
II
II LHCDb simulation
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
¢
-@® - Angle Emb.
-®- DNN
2 3 4 5
10 10 10

Number of training events

For alow number of training

events, the Angle Embedding
performs better than the DNN
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Application of QML at LHC

Other results for 4 qubits circuit (muon set of features)

JHEP 08 (2022) 014

PENNY LANE @ E Qiskit

number of variational layers

0.685

number of training events

noise contribution

______ o---¢-——®-----0 0.675 -
LHCb simulation 0.68 1 e & -——0-——0—-———--9
————— »
; _+. ————— + """ + +’ / 0.650 -
R -t / LHCDb simulation
06807 7 0.64 /
. i 0.625 -
// II
4 / 0.600
/ . i
2 / 2" 0.60 - / >
s / S / S
> O 675 4 = 1/ %5
S ! S / S 0.575
< ! < ] <
/ 1 / LHCDb simulation
/ 056 / 0.550 -
II /
0.670 - ! ¢ .
/ 0.525 A Noise model accuracy .
/ 0.52 1 no noise | 0.640 & 0.017 no noise
,I ibmg-belem | 0.629 £ 0.047 ?bmq—bele.m
/ 6~ Angle Emb 0.500 - ibmq-santiago | 0.633+0.038 |~ ibmq-santiago
_®- Angle Emb —¢- nere =mb. ibmg-jakarta | 0.637 £0.042 | — ibmg-toronto
0.665 - ngle bmo. 0.45 - DRN ibmg-toronto | 0.631 +0.044 | —— ibmg-jakarta
T T T T T T T . T T — T T T T — T T T T ™ O475_I : : : : :
1 2 3 4 5 6 7 10° 10° 10" ’ 10 20 30 40 50
Number of layers Number of training events Epochs
e Accuracy saturates after 5/6 e For alow number of trainin - - T
Y 5 e Simulate noise contribution

events, the Angle Embedding
performs better than the DNN

variational layers from several IBM backends

e A trade-off between

| e Simpler structures are
performance and complexity

robust to noise
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Future studies and ideas

What to expect in the next months
tests on hardware

MODELA4f 3Layers Accurac  AUC Secs. x jet
y ROC
Simulator 0.78 0.82 0.01
Manila Opt 2 Shots 1024 0.74 0.79 0.12 MANILA

5 Qubits 32 QV 2.8K

Manila Opt 2 Shots 10240 0.75 0.80 0.97 CLOPS Processor
type: Falcon r5.11L

Oslo Opt 2 Shots 1024 0.69 0.74 0.12 OSLO

Oslo Opt 2 Shots 10240 0.69 0.74 0.96 7 Qubits 32 QV 2.6K
CLOPS Processor

Oslo Opt 2 Shots 1024 Mitigated 0.72 0.74 0.12 type: Falcon r5.11H

Oslo Opt 3 Shots 1024 0.65 0.69 0.12

Nairobi Opt 2 Shots 1024 0.57 0.59 0.13 NAIROBI

7 Qubits 32 QV 2.6K

Nairobi Opt 3 Shots 1024 0.72 0.77 0.12 CLOPS Processor
type: Falcon r5.11H

e Several tests on different IBM
machines

e Transpiling and error mitigation
studies

e Preliminary performance similar
to simulations

MORE IN THE FUTURE..

DAVIDE ZULIANI AN LHC APPLICATION OF QUANTUM MACHINE LEARNING AND INFN SUMMARY
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Future studies and ideas

What to expect in the next months
tests on hardware

Intelligent circuit design

MODELA4f 3Layers Accurac  AUC Secs. x jet
y ROC

Simulator 0.78 0.82 0.01 —R(1, B1,m) C)
Manila Opt 2 Shots 1024 0.74 0.79 0.12 MANILA R(as, Ba,72) < )

5 Qubits 32 QV 2.8K A
Manila Opt 2 Shots 10240 0.75 0.80 0.97  CLOPS Processor — s, B3, 73) N

type: Falcon r5.11L

) @9 —0—0—0@

Oslo Opt 2 Shots 1024 0.69 0.74 0.12 OSLO
Oslo Opt 2 Shots 10240 0.69 0.74 0.96 7 Qubits 32 QV 2.6K ‘ ‘

CLOPS Processor ‘ ‘
Oslo Opt 2 Shots 1024 Mitigated 0.72 0.74 0.12 type: Falcon r5.11H
Oslo Opt 3 Shots 1024 0.65 0.69 0.12 & ‘ ‘ ’
Nairobi Opt 2 Shots 1024 0.57 0.59 0.13 NAIROBI

7 Qubits 32 QV 2.6K O O O O *
Nairobi Opt 3 Shots 1024 0.72 0.77 0.12 CLOPS Processor

type: Falcon r5.11H

- y

e Severaltests on different IBM o (Can't scale up to many layers

machines

e Transpiling and error mitigation

studies

e Preliminary performance similar

to simulations

DAVIDE ZULIANI

e |sthere aclever way to build our
circuit?

e Quantum TTN show interesting
features in this sense

MORE IN THE FUTURE..
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Future studies and ideas

What to expect in the next months

MODELA4f 3Layers

Simulator

Manila Opt 2 Shots 1024
Manila Opt 2 Shots 10240

Oslo Opt 2 Shots 1024

Oslo Opt 2 Shots 10240

Oslo Opt 2 Shots 1024 Mitigated
Oslo Opt 3 Shots 1024

Nairobi Opt 2 Shots 1024

Nairobi Opt 3 Shots 1024

e Several tests on different IBM o
machines

e Transpiling and error mitigation
studies

e Preliminary performance similar

Accurac
y

0.78

0.74

0.75

0.69

0.69

0.72

0.65

0.57

0.72

to simulations

DAVIDE ZULIANI

AUC
ROC

0.82

0.79
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Intelligent circuit design
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Can’t scale up to many layers o

e |sthere aclever way to build our
circuit? o

e Quantum TTN show interesting
features in this sense °

correlations between qubits

AN
3V

-] R(ala 51771)

—R(@Q,ﬁzﬁil 46
—— R(as, B3,73) — 469—‘

— (a4, B, 74)

W

D
U

What (and where) is the
quantum advantage?

Can we measure correlations
between qubits?

How to use this information?

MORE IN THE FUTURE..
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INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES FOR HIGH-ENERGY PHYSICS

Overview of INFN activities

e INFN is deeply involved in many QC activities for HEP

CERN welcomes INFN and IIT as new
members of its IBM Quantum
Network hub

15JULy,2022 ° RATHER NEW!

e Ongoing projects in different areas of interest and expertise SEE TALK BY
C. BRAGGIO

QUANTUM SENSING AND

QUANTUM COMPUTING

SIMULATION AND THEORY

ALGORITHMS

COMMUNICATION

SEE TALK BY
A. ROGGERO
o Earlyinvolvement already in 2018 (QT @ INFN) .t

Y 4 @ 2 ** QUANTERA
e INFNisalso part of the QuantERA programme "+
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https://agenda.infn.it/event/21070/
https://quantera.eu/
https://home.cern/news/news/computing/cern-welcomes-infn-and-iit-new-members-its-ibm-quantum-network-hub
https://sqms.fnal.gov/
https://indico.cern.ch/event/1190278/contributions/5091044/attachments/2539071/4370580/QT_HEP.pdf
https://indico.cern.ch/event/1190278/contributions/5002908/attachments/2538780/4369933/slides_CERN_roggero.pdf

INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES FOR HIGH-ENERGY PHYSICS

Overview of INFN activities

Simulation and theory

e Describe N interacting neutrinos with Hamiltonian

by means of guantum simulations

+ A Zaf P (1—cos(¢i;)) i - G

2N “—
1<)

e Simulate one- and two-body interactions with
SWAP network
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e Recent progress using trapped ions with all-to-all
connectivity show very low infidelities

by V. Amitrano et al., arXiv:2207.03189 (2022)
DAVIDE ZULIANI

by L. Lumia et al., PRX Quantum 3, 020320 (2022)

The European Physics Journal D 74, 165 (2020)
Nature Communications 12, 3600 (2021)

Quantum simulation of lattice gauge models on a
real guantum computer

Overcome old idea of classical approximation and
numerical methods

Recent results on a near-term quantum simulator

variational parameters 10° 1
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https://arxiv.org/abs/2207.03189
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.3.020320
https://link.springer.com/article/10.1140/epjd/e2020-100571-8
https://www.nature.com/articles/s41467-021-23646-3

INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES FOR HIGH-ENERGY PHYSICS

Overview of INFN activities

Simulation and theory

e Entanglement entropy production in QNN e Study generalisation in QML
o QNN characterisation by means of Tensor o Quantify the generalisation and approximation
Networks tools capability of QML classification problems
| » s’ § e v (a) Quantum state classification
% ’ N I .
2 0F — £ p(zs z) N S
e :: ~ - E p[()z(vs)) pf()(xz) ; p(x1) p(zq) | P(z2) p(z3) 3
% y “.. lﬁ\-—k_ﬁ plzs) p(zs) ... %0
B e ’ NACANST ~ . E
o g (b) Classification of classical data ©
8 o o . SET T Sample ':
N . ~—
g :-~0 . Zz 12 P(c, ) {:1: = % ) c = “cat” } g
g 0s :.. e n= 20 Embcdding\ . -%
‘:' e n= 30 10) - Y ! \C;é g ‘%
: 2 WS LRSI Y N S N Predicted = | achievable %
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 . |Ui(@) || V|| Ua(2) Un(z) || Vi I Clgzslgsfx & \
Normalized number of layers L/n |(’)) _ | | L | < (Generalization error ’
o The mOSt promising regime for quantum Embedding circuit x — p(z) Decision via POVM II,

advantage is a trade-off between high

entanglement and expressibility e Analysis can be applied to models of moderate

complexity
by M.Ballarin et al., arXiv:2206.02474 by L.Banchi et al., PRX Quantum 2.040321 (2021)
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https://arxiv.org/pdf/2206.02474.pdf
https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.2.040321

INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES FOR HIGH-ENERGY PHYSICS

Overview of INFN activities

Classification in HEP and Gravitational Waves

e Anomaly detection task e GW signals are deeply embedded in detector noise

e Identification of long-lived particles in ATLAS e Matched filtering between data and signal templates

. M e Computationally not feasible
Initial
State U(e) _9 TFFT 3 +jmax TObS / 21
Niow % 567 x 10K Koy ( — H o 10
./S./max
e Generative models e Several proposals to use quantum algorithms
e Simulation of particles-matter interaction e Quantum Hough Transform
Probability estimation e Polynomial speed-up w.rt. classical
Complex Simple e QML
distribution P(x U(e Q(z distribution _ o
(dataset) (X) (©) 2) (Gaussian) e Already classical ML seems promising
Generative model
by S. Bordoni, D. Staneyv, S. Giagu — INFN Roma and University Sapienza by C. Palomba, P. Astone, F. Muciaccia — INFN Roma
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Conclusions

« An application of QML to a real LHC physics case has been presented

 While QML doesn’t show any advantage,
It behaves almost as good as classic ML =

Algorithm
eeeeeeeeee

» Nice PoC for future studies and application = o | e R ——

System Falcon (] Hummingbird @ Eagle (v Osprey Condor Flamingo @  Kookaburra
Modularity 27 qubits 65 qubits 127 qubits 433 qubits 1,121 qubits 1,386+ qubits 4,158+ qubits

cccccc
10K-100K qubits
with classical
aaaaaaaaaa
2 communication
0&&%‘

p .
] u S <S888ss
PN SSSSESSSSS.
S S S
® DS ][ <

Crossbill
408 qubits

 Leveraging quantum aspects of QML

« Applicability to near-term devices Quantum Computing @ INFN

e Many INFN activities of QC for HEP o Nov 2022
INn different areas of interest

Europe/Rome timezone

. e - Centro Nazionale HPC,
« Significant boost expected from the national B D4 e Quahfumi Computing

center for HPC and QC, currently being built
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https://agenda.infn.it/event/32856/
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