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Real Quantum Computers

In an ideal (= isolated) 
world, quantum computers 
run beautifully

In real life, they are subject to noise

• Quantum Error Correction, but even more qubits are needed

• NISQ (Noise Intermediate-Scale Quantum) devices 



Study the noise
A proper theoretical modelling of the effect of the 
environment on a quantum systems allows to:

• Have a physical understanding of the sources of 
noise

• Suggest strategies to mitigate errors

Georgopoulos, K., Emary, C., & Zuliani, P. (2021). Modeling and simulating the noisy behavior of near-term quantum computers. Physical Review A, 104(6), 062432.
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Resch, S., & Karpuzcu, U. R. (2021). Benchmarking quantum computers and the impact of quantum noise. ACM Computing Surveys (CSUR), 54(7), 1-35.

• Perform accurate simulations to predict how the performances scale with the number 
of qubits/gates. 



Standard noise model
Theory of open quantum systems

Issues to deal with:

• More complicated dynamics; how to model the environment efficiently

• With the density matrix, the problem scales quadratically with the size of the 
problem.
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How to describe noises

• Gates and noise are formally decoupled (a sort of Trotterizzation), because time 
scales are small (IBM: gate time ∼ 10-8 s, decoherence times ∼ 10-4 s)

• Noises (like gates) formally act instantly: Lindblad → Kraus
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• Use the quantum-jump-like approach to replace the density matrix with 
(stochastic) state vector → stochastic dynamics

= noise gate



Noisy Gates

• Noises are embedded in the gate → more realistic picture

• State vector (stochastic) description 

Our approach: provide a more accurate description of the noisy behaviour of a 
quantum computer



From Lindblad to stochastic differential 
equations (SDE)  

Stochastic evolution for the state vector (stochastic unravelling)
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where | i denotes the initial state. This generates an
ensemble of quantum trajectories which

one simulates this noisy circuit sampling di↵erent re-
alizations of the stochastic processes, hence getting as
output a di↵erent (non normalized) state vector | ki =��� t(⇠

(1)

k , ..., ⇠
(Ng)

k )
E
each time, where k 2 {1, ..., Nsamples}

labels the sample; finally, one takes the average over all
the samples, estimating

⇢f =
1

Nsamples

NsamplesX

k=1

| ki h k| , (5)

which converges to the correct solution ⇢t.

III. REVIEW OF THE NOISE MODEL

The noises declared to be more relevant to IBM’s su-
perconducting devices have already been characterized
in literature, so in this section we start by simply pre-
senting them; afterwards, we match them together in or-
der to build the model of noise we will work on. Apart
from state preparation and measurement (SPAM) errors,
which happen at the very beginning or end, during the
execution of an algorithm we take in account two kinds of
noises, namely, depolarization and relaxations. The first,
which can be ascribed to device’s imperfections, tends to
bring the state towards the totally mixed one, 1/

p
N ; in

the case of a single qubit, this can be modeled by the
following Lindblad term,
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The second group of errors is due to the interaction of
the physical qubits with the surrounding environment;
in particular, due the thermalization towards an equi-
librium with the environment, energy exchanges are al-
lowed. In the scenario of interest, this provokes a driving
of the qubit towards the ground state |0i, which is also
known as relaxation (or amplitude damping). Such a
damping is characterized by a relaxation time T1, which
identifies the scales at which the state decays towards
|0i; this e↵ect already provokes an attenuation of the
o↵-diagonal elements of the density matrix in terms of
dephasing, which (if only amplitude damping is act-
ing) has a characteristic time 2T1. However, at the
same time also a contribution of pure dephasing must
be taken in account, resulting in an e↵ective dephasing
rate 1/T2 � 1/2T1. When also T1 � T2 holds (and this is
the case of interest to us), the combined action of these
two e↵ects can be described by the following Lindblad
term,
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where we use the convention �± = (X±iY)/2 and P(1) =
|1i h1| is the projector onto |1i; the coe�cients are related

to the characteristic times as �1 = T�1

1
and �z = (2T1 �

T2)/4T1T2. Matching together these two groups of errors,
one gets a term D(⇢) = Dd(⇢) + DR(⇢), which can be
diagonalized in the canonical Lindblad form by standard
procedures; one finally obtains the Lindblad term
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with the non normalized jump operators
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here, we set �1 = 2�d, �2 = 2�d + �1, �3 = �d + �z
and � = �1 + �2 + �3, which will be convenient to us.
For IBM’s superconducting devices, the typical order of
magnitude of the decoherence times is ��1

d , T1,2 ⇠ 10�4s,
so that in our case �k ⇠ 104Hz. By contrast, the typical
order of magnitude of the time it takes for a gate to
be executed is tg ⇠ 10�8s, which is small compared to
T1,2; in particular, one has ✏ =

p
�tg ⌧ 1. This can

be better exploited by writing the evolution with an a-
dimensional time schedule s = t/tg 2 [0, 1], which leads
to the Lindblad equation
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therein, Hs is an Hamiltonian adequately defined in the
schedule s and the noisy term is the one defined in (8).

IV. GENERAL DERIVATION OF NOISY GATES

In order to derive a general expression for the noisy
gate, let us consider the situation in which the computer
executes a certain gate Ug on a set of n qubits. This is
done by driving the system with an Hamiltonian Hs for
s 2 [0, 1], which will induce some unitary evolution Us,
defined by i~dUs/ds = HsUs, and such that Us=1 = Ug.
However, if noises and imperfections are taken in account,
this coherent evolution is substituted by a non coherent
one, which under the assumptions of Markovianity is de-
scribed by a master equation of the Lindblad form,
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ds

= � i

~
⇥
Hs, ⇢s

⇤
+D(n)

✏2 (⇢s), (11)

with the non coherent term acting as

D(n)
✏2 (⇢) = ✏2

N2�1X

k=1


Lk⇢L

†
k � 1

2

�
L†
kLk, ⇢

 �
, (12)

i.e., some generalization (yet to be specified) of (10) to
the n�qubit case; throughout the whole paper, we will
denote by n the number of qubits and by N = 2n the
dimension of the associated Hilbert space. We remember
here that in our case the coe�cient ✏ is small, ✏⌧ 1. In
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Noise



Noisy gate

The dynamics is linear, therefore it can be represented as a gate (noisy gate)

Due to the noises ξ, the gate is not unitary and norm preserving. But at the 
statistical level the trace is preserved, and one recovers the standard (Lindblad) 
behaviour. 
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with the non coherent term acting as
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i.e., some generalization (yet to be specified) of (5) to
the N�qubit case; we remember here that in our case
the coe�cient ✏ is small, ✏ ⌧ 1. In order to get the
solution to this equation in a form which is useful to
us, we perform a linear stochastic unraveling; then, the
solution will be given in the form of an ensemble average
on quantum trajectories,

⇢s = E
h
| s(⇠)i h s(⇠)|

i
, (8)

where the state vector | s(⇠)i is the solution, at time s,
of the Ito equation
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here, dWk,s are ”di↵erentials” of Wiener processes, i.e.
stochastic infinitesimal increments such that E

⇥
dWk,s

⇤
=

0 and E
⇥
dWk,sdWk0,s0

⇤
= �k,k0�(s � s0)ds; the ⇠ label

in Eq. (8) indicates that the solution depends on some
random variables, which in turn depend on the single
realization of the Wiener processes. Such an equation,
being linear, will allow us to deduce a noisy gate N̄(⇠)
such that | s=1i = N̄(⇠) | 0i; however, the Ito equation
is not norm preserving in general, so that N̄(⇠) will not be
unitary: the preservation of the trace is ensured only at
the level of Eq. (8), after the averages over the Wiener
processes are carried out. In general, Eq. (9) is not
solvable in a closed form; in Appendix A we show how
an approximate solution to order O(✏2) can be derived,
which leaves us with a noisy gate of the form N̄(⇠) =
Uge⇤e⌅̄(⇠), where we defined
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⇤
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the equations above, Lk,s := U†
sLkUs are the jump op-

erators in the interaction picture. Interestingly, we will
see that in the cases of interest to us the term (10) can
always be exponentiated, so that we will always be able
to directly calculate e⇤. Now, one can immediately see
that E

⇥
C(⇠)

⇤
= 0; hence, in the final average (8) this

term does not give any contribution to order ✏2. We can
therefore simply drop it from the expression for the noisy

gate, and finally use the noisy gate, equivalent to N̄(⇠),
defined as
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0
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This last term is the only stochastic one which enters the
noisy gate, and involves many random variables ⇠ arising
due to the presence of the stochastic processes dWk,s.
These random variables may be defined in several ways,
and the best choice depends on the particular cases; here
we just show the main idea, which however leads to an
over estimation of the actual number of random variables
we expect to be needed for practical purposes. Let us call
Lkij,s = L+

kij,s + iL�
kij,s the entries of the matrix form of

the jump operator Lk,s, divided in real and imaginary
part; then, each entry of the stochastic matrix is of the
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These real random variables, being Ito integrals of de-
terministic functions, are all normally distributed with
zero mean, E
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hence, one has at most (N2� 1)3 random variables, each
being correlated with at most other N2(N2 � 2) ones.
However, we immediately point out that one shall not
expect nor the number of random variables, nor the num-
ber of correlations between them to really grow this way
in practice. This is mainly due to the fact that real quan-
tum computers usually perform single and two qubit na-
tive gates, and single qubit noises are dominating. In
the following sections, as we go through the straightfor-
ward deduction of the native set of noisy gates for IBM’s
computers, we shall make this claim more clear.

IV. SINGLE QUBIT NOISY GATES

IBM’s superconducting devices act on single qubits
with unitaries of the form U(✓,�) = e�i✓Rxy(�)/2, where
we set Rxy(�) = cos(�)X + sin(�)Y; such evolutions are
achieved by driving the system with an Hamiltonian

H(✓,�) =
✓~
2
Rxy(�) (16)
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we just show the main idea, which however leads to an
over estimation of the actual number of random variables
we expect to be needed for practical purposes. Let us call
Lkij,s = L+

kij,s + iL�
kij,s the entries of the matrix form of

the jump operator Lk,s, divided in real and imaginary
part; then, each entry of the stochastic matrix is of the

form ⌅ij(⇠) = i✏
PN2�1

k=1

⇥
⇠+kij + i⇠�kij

⇤
, where we defined

the random variables

⇠+kij =
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+

kij,s, ⇠�kij =
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�
kij,s. (19)

These real random variables, being Itô integrals of de-
terministic functions, are all normally distributed with
zero mean, E

⇥
⇠±kij

⇤
= 0, and variances E[(⇠±kij)

2] =
R
1

0
ds[L±

kij ]
2. Moreover, one can easily check that they

are correlated the one with another as

E
⇥
⇠±kij⇠

±
k0i0j0

⇤
= �k,k0

Z
1

0

dsL±
kij,sL

±
ki0j0,s; (20)

hence, one has at most 2N2(N2 � 1) random variables,
each being correlated with at most other 2N2 � 1 ones.
However, we immediately point out that one shall not ex-
pect nor the number of random variables, nor the number
of correlations between them to really grow this way in
practice. This is mainly due to the fact that real quan-
tum computers usually perform single and two qubit na-
tive gates, and single qubit noises are dominating. In
the following sections, as we go through the straightfor-
ward deduction of the native set of noisy gates for IBM’s
computers, we shall make this claim more clear.

V. SINGLE QUBIT NOISY GATES

IBM’s superconducting devices act on single qubits
with unitaries of the form U(✓,�) = e�i✓Rxy(�)/2, where
we set Rxy(�) = cos(�)X + sin(�)Y; such evolutions are
achieved by driving the system with an Hamiltonian

H(✓,�) =
✓~
2
Rxy(�) (21)

for a duration s 2 [0, 1]. Rotations around the z�axis are
implemented as virtual gates, in the sense that they are
propagated through all the others until the final measure-
ment, where they do not a↵ect the outcome [REF]. Notice
that in general the Hamiltonian is controlled by time-
dependent pulses, so that in the previous equation one
shall consider ✓ ! !s, and set

R
1

0
ds!s = ✓; in this paper,

we choose to work with constant pulses for simplicity, the
generalization to general functions being straightforward.
Here, we aim at finding the noisy gate N(✓,�|⇠) which
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= noiseless gate

3

order to get the solution to this equation in a form which
is useful to us, we perform a linear stochastic unraveling;
then, the solution will be given in the form of an ensemble
average on quantum trajectories,

⇢s = E
h
| s(⇠)i h s(⇠)|

i
, (13)

where the state vector | s(⇠)i is the solution, at time s,
of the Itô equation
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here, dWk,s are di↵erentials of Wiener processes, i.e.
stochastic infinitesimal increments such that E
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dWk,s

⇤
=

0 and E
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= �k,k0�(s� s0)ds; the ⇠ label in

Eq. (13) indicates that the solution depends on some
random variables, which in turn depend on the single
realization of the Wiener processes. Such an equation,
being linear, will allow us to deduce a noisy gate N̄(⇠)
such that | s=1(⇠)i = N̄(⇠) | 0i; however, the Itô equa-
tion is not norm preserving in general, so that N̄(⇠) will
not be unitary: the preservation of the trace is ensured
only at the level of Eq. (13), after the averages over
the Wiener processes are carried out. In general, Eq.
(14) is not solvable in a closed form; in Appendix A we
show how an approximate solution to order O(✏2) can be
derived, which leaves us with a noisy gate of the form
N̄(⇠) = Uge⇤e⌅̄(⇠), where we defined
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= 0; hence, in the final

average (13) this term does not give any contribution to
order ✏2. We can therefore simply drop it from the ex-
pression for the noisy gate, and finally use the noisy gate,
equivalent to N̄(⇠), defined as

Ng(⇠) = Uge
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practice. This is mainly due to the fact that real quan-
tum computers usually perform single and two qubit na-
tive gates, and single qubit noises are dominating. In
the following sections, as we go through the straightfor-
ward deduction of the native set of noisy gates for IBM’s
computers, we shall make this claim more clear.
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implemented as virtual gates, in the sense that they are
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such that | s=1(⇠)i = N̄(⇠) | 0i; however, the Itô equa-
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This last term is the only stochastic one which enters the
noisy gate, and involves many random variables ⇠ arising
due to the presence of the stochastic processes dWk,s.
These random variables may be defined in several ways,
and the best choice depends on the particular cases; here
we just show the main idea, which however leads to an
over estimation of the actual number of random variables
we expect to be needed for practical purposes. Let us call
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terministic functions, are all normally distributed with
zero mean, E

⇥
⇠±kij

⇤
= 0, and variances E[(⇠±kij)

2] =
R
1

0
ds[L±

kij ]
2. Moreover, one can easily check that they

are correlated the one with another as

E
⇥
⇠±kij⇠

±
k0i0j0

⇤
= �k,k0

Z
1

0

dsL±
kij,sL

±
ki0j0,s; (20)
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tum computers usually perform single and two qubit na-
tive gates, and single qubit noises are dominating. In
the following sections, as we go through the straightfor-
ward deduction of the native set of noisy gates for IBM’s
computers, we shall make this claim more clear.

V. SINGLE QUBIT NOISY GATES

IBM’s superconducting devices act on single qubits
with unitaries of the form U(✓,�) = e�i✓Rxy(�)/2, where
we set Rxy(�) = cos(�)X + sin(�)Y; such evolutions are
achieved by driving the system with an Hamiltonian

H(✓,�) =
✓~
2
Rxy(�) (21)

for a duration s 2 [0, 1]. Rotations around the z�axis are
implemented as virtual gates, in the sense that they are
propagated through all the others until the final measure-
ment, where they do not a↵ect the outcome [REF]. Notice
that in general the Hamiltonian is controlled by time-
dependent pulses, so that in the previous equation one
shall consider ✓ ! !s, and set
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Eq. (13) indicates that the solution depends on some
random variables, which in turn depend on the single
realization of the Wiener processes. Such an equation,
being linear, will allow us to deduce a noisy gate N̄(⇠)
such that | s=1(⇠)i = N̄(⇠) | 0i; however, the Itô equa-
tion is not norm preserving in general, so that N̄(⇠) will
not be unitary: the preservation of the trace is ensured
only at the level of Eq. (13), after the averages over
the Wiener processes are carried out. In general, Eq.
(14) is not solvable in a closed form; in Appendix A we
show how an approximate solution to order O(✏2) can be
derived, which leaves us with a noisy gate of the form
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average (13) this term does not give any contribution to
order ✏2. We can therefore simply drop it from the ex-
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equivalent to N̄(⇠), defined as
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This last term is the only stochastic one which enters the
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due to the presence of the stochastic processes dWk,s.
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hence, one has at most 2N2(N2 � 1) random variables,
each being correlated with at most other 2N2 � 1 ones.
However, we immediately point out that one shall not ex-
pect nor the number of random variables, nor the number
of correlations between them to really grow this way in
practice. This is mainly due to the fact that real quan-
tum computers usually perform single and two qubit na-
tive gates, and single qubit noises are dominating. In
the following sections, as we go through the straightfor-
ward deduction of the native set of noisy gates for IBM’s
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pect nor the number of random variables, nor the number
of correlations between them to really grow this way in
practice. This is mainly due to the fact that real quan-
tum computers usually perform single and two qubit na-
tive gates, and single qubit noises are dominating. In
the following sections, as we go through the straightfor-
ward deduction of the native set of noisy gates for IBM’s
computers, we shall make this claim more clear.

V. SINGLE QUBIT NOISY GATES

IBM’s superconducting devices act on single qubits
with unitaries of the form U(✓,�) = e�i✓Rxy(�)/2, where
we set Rxy(�) = cos(�)X + sin(�)Y; such evolutions are
achieved by driving the system with an Hamiltonian

H(✓,�) =
✓~
2
Rxy(�) (21)

for a duration s 2 [0, 1]. Rotations around the z�axis are
implemented as virtual gates, in the sense that they are
propagated through all the others until the final measure-
ment, where they do not a↵ect the outcome [REF]. Notice
that in general the Hamiltonian is controlled by time-
dependent pulses, so that in the previous equation one
shall consider ✓ ! !s, and set

R
1

0
ds!s = ✓; in this paper,

we choose to work with constant pulses for simplicity, the
generalization to general functions being straightforward.
Here, we aim at finding the noisy gate N(✓,�|⇠) which

Operators in the interaction picture

s 2 [0, 1]
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where | i denotes the initial state. This generates an
ensemble of quantum trajectories which

one simulates this noisy circuit sampling di↵erent re-
alizations of the stochastic processes, hence getting as
output a di↵erent (non normalized) state vector | ki =��� t(⇠

(1)

k , ..., ⇠
(Ng)

k )
E
each time, where k 2 {1, ..., Nsamples}

labels the sample; finally, one takes the average over all
the samples, estimating

⇢f =
1

Nsamples

NsamplesX

k=1

| ki h k| , (5)

which converges to the correct solution ⇢t.

III. REVIEW OF THE NOISE MODEL

The noises declared to be more relevant to IBM’s su-
perconducting devices have already been characterized
in literature, so in this section we start by simply pre-
senting them; afterwards, we match them together in or-
der to build the model of noise we will work on. Apart
from state preparation and measurement (SPAM) errors,
which happen at the very beginning or end, during the
execution of an algorithm we take in account two kinds of
noises, namely, depolarization and relaxations. The first,
which can be ascribed to device’s imperfections, tends to
bring the state towards the totally mixed one, 1/

p
N ; in

the case of a single qubit, this can be modeled by the
following Lindblad term,

Dd(⇢) = �d

3X

k=1

⇥
�k⇢�k � ⇢

⇤
. (6)

The second group of errors is due to the interaction of
the physical qubits with the surrounding environment;
in particular, due the thermalization towards an equi-
librium with the environment, energy exchanges are al-
lowed. In the scenario of interest, this provokes a driving
of the qubit towards the ground state |0i, which is also
known as relaxation (or amplitude damping). Such a
damping is characterized by a relaxation time T1, which
identifies the scales at which the state decays towards
|0i; this e↵ect already provokes an attenuation of the
o↵-diagonal elements of the density matrix in terms of
dephasing, which (if only amplitude damping is act-
ing) has a characteristic time 2T1. However, at the
same time also a contribution of pure dephasing must
be taken in account, resulting in an e↵ective dephasing
rate 1/T2 � 1/2T1. When also T1 � T2 holds (and this is
the case of interest to us), the combined action of these
two e↵ects can be described by the following Lindblad
term,

DR(⇢) = �1
⇥
�+⇢�� � 1

2

�
P(1), ⇢

 ⇤
+ �z

⇥
Z⇢Z� ⇢

⇤
, (7)

where we use the convention �± = (X±iY)/2 and P(1) =
|1i h1| is the projector onto |1i; the coe�cients are related

to the characteristic times as �1 = T�1

1
and �z = (2T1 �

T2)/4T1T2. Matching together these two groups of errors,
one gets a term D(⇢) = Dd(⇢) + DR(⇢), which can be
diagonalized in the canonical Lindblad form by standard
procedures; one finally obtains the Lindblad term

D(1)

� (⇢) = �
3X

k=1

⇥
Lk⇢L

†
k � 1

2

�
L†
kLk, ⇢

 ⇤
, (8)

with the non normalized jump operators

L1 =

r
�1
�
��, L2 =

r
�2
�
�+, L3 =

r
�3
�
Z; (9)

here, we set �1 = 2�d, �2 = 2�d + �1, �3 = �d + �z
and � = �1 + �2 + �3, which will be convenient to us.
For IBM’s superconducting devices, the typical order of
magnitude of the decoherence times is ��1

d , T1,2 ⇠ 10�4s,
so that in our case �k ⇠ 104Hz. By contrast, the typical
order of magnitude of the time it takes for a gate to
be executed is tg ⇠ 10�8s, which is small compared to
T1,2; in particular, one has ✏ =

p
�tg ⌧ 1. This can

be better exploited by writing the evolution with an a-
dimensional time schedule s = t/tg 2 [0, 1], which leads
to the Lindblad equation

d⇢s
ds

= � i

~
⇥
Hs, ⇢s

⇤
+D(1)

✏2 (⇢s); (10)

therein, Hs is an Hamiltonian adequately defined in the
schedule s and the noisy term is the one defined in (8).

IV. GENERAL DERIVATION OF NOISY GATES

In order to derive a general expression for the noisy
gate, let us consider the situation in which the computer
executes a certain gate Ug on a set of n qubits. This is
done by driving the system with an Hamiltonian Hs for
s 2 [0, 1], which will induce some unitary evolution Us,
defined by i~dUs/ds = HsUs, and such that Us=1 = Ug.
However, if noises and imperfections are taken in account,
this coherent evolution is substituted by a non coherent
one, which under the assumptions of Markovianity is de-
scribed by a master equation of the Lindblad form,

d⇢s
ds

= � i

~
⇥
Hs, ⇢s

⇤
+D(n)

✏2 (⇢s), (11)

with the non coherent term acting as

D(n)
✏2 (⇢) = ✏2

N2�1X

k=1


Lk⇢L

†
k � 1

2

�
L†
kLk, ⇢

 �
, (12)

i.e., some generalization (yet to be specified) of (10) to
the n�qubit case; throughout the whole paper, we will
denote by n the number of qubits and by N = 2n the
dimension of the associated Hilbert space. We remember
here that in our case the coe�cient ✏ is small, ✏⌧ 1. In

Relaxation: amplitude damping (initial state → ground state) + 
phase damping
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where | i denotes the initial state. This generates an
ensemble of quantum trajectories which

one simulates this noisy circuit sampling di↵erent re-
alizations of the stochastic processes, hence getting as
output a di↵erent (non normalized) state vector | ki =��� t(⇠

(1)

k , ..., ⇠
(Ng)

k )
E
each time, where k 2 {1, ..., Nsamples}

labels the sample; finally, one takes the average over all
the samples, estimating

⇢f =
1

Nsamples

NsamplesX

k=1

| ki h k| , (5)

which converges to the correct solution ⇢t.

III. REVIEW OF THE NOISE MODEL

The noises declared to be more relevant to IBM’s su-
perconducting devices have already been characterized
in literature, so in this section we start by simply pre-
senting them; afterwards, we match them together in or-
der to build the model of noise we will work on. Apart
from state preparation and measurement (SPAM) errors,
which happen at the very beginning or end, during the
execution of an algorithm we take in account two kinds of
noises, namely, depolarization and relaxations. The first,
which can be ascribed to device’s imperfections, tends to
bring the state towards the totally mixed one, 1/

p
N ; in

the case of a single qubit, this can be modeled by the
following Lindblad term,

Dd(⇢) = �d

3X

k=1

⇥
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⇤
. (6)

The second group of errors is due to the interaction of
the physical qubits with the surrounding environment;
in particular, due the thermalization towards an equi-
librium with the environment, energy exchanges are al-
lowed. In the scenario of interest, this provokes a driving
of the qubit towards the ground state |0i, which is also
known as relaxation (or amplitude damping). Such a
damping is characterized by a relaxation time T1, which
identifies the scales at which the state decays towards
|0i; this e↵ect already provokes an attenuation of the
o↵-diagonal elements of the density matrix in terms of
dephasing, which (if only amplitude damping is act-
ing) has a characteristic time 2T1. However, at the
same time also a contribution of pure dephasing must
be taken in account, resulting in an e↵ective dephasing
rate 1/T2 � 1/2T1. When also T1 � T2 holds (and this is
the case of interest to us), the combined action of these
two e↵ects can be described by the following Lindblad
term,

DR(⇢) = �1
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P(1), ⇢
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where we use the convention �± = (X±iY)/2 and P(1) =
|1i h1| is the projector onto |1i; the coe�cients are related

to the characteristic times as �1 = T�1

1
and �z = (2T1 �

T2)/4T1T2. Matching together these two groups of errors,
one gets a term D(⇢) = Dd(⇢) + DR(⇢), which can be
diagonalized in the canonical Lindblad form by standard
procedures; one finally obtains the Lindblad term
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with the non normalized jump operators
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and � = �1 + �2 + �3, which will be convenient to us.
For IBM’s superconducting devices, the typical order of
magnitude of the decoherence times is ��1

d , T1,2 ⇠ 10�4s,
so that in our case �k ⇠ 104Hz. By contrast, the typical
order of magnitude of the time it takes for a gate to
be executed is tg ⇠ 10�8s, which is small compared to
T1,2; in particular, one has ✏ =

p
�tg ⌧ 1. This can

be better exploited by writing the evolution with an a-
dimensional time schedule s = t/tg 2 [0, 1], which leads
to the Lindblad equation
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Hs, ⇢s

⇤
+D(1)

✏2 (⇢s); (10)

therein, Hs is an Hamiltonian adequately defined in the
schedule s and the noisy term is the one defined in (8).

IV. GENERAL DERIVATION OF NOISY GATES

In order to derive a general expression for the noisy
gate, let us consider the situation in which the computer
executes a certain gate Ug on a set of n qubits. This is
done by driving the system with an Hamiltonian Hs for
s 2 [0, 1], which will induce some unitary evolution Us,
defined by i~dUs/ds = HsUs, and such that Us=1 = Ug.
However, if noises and imperfections are taken in account,
this coherent evolution is substituted by a non coherent
one, which under the assumptions of Markovianity is de-
scribed by a master equation of the Lindblad form,
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with the non coherent term acting as
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the n�qubit case; throughout the whole paper, we will
denote by n the number of qubits and by N = 2n the
dimension of the associated Hilbert space. We remember
here that in our case the coe�cient ✏ is small, ✏⌧ 1. In
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where | i denotes the initial state. This generates an
ensemble of quantum trajectories which

one simulates this noisy circuit sampling di↵erent re-
alizations of the stochastic processes, hence getting as
output a di↵erent (non normalized) state vector | ki =��� t(⇠
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k , ..., ⇠
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each time, where k 2 {1, ..., Nsamples}

labels the sample; finally, one takes the average over all
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⇢f =
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| ki h k| , (5)

which converges to the correct solution ⇢t.
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The noises declared to be more relevant to IBM’s su-
perconducting devices have already been characterized
in literature, so in this section we start by simply pre-
senting them; afterwards, we match them together in or-
der to build the model of noise we will work on. Apart
from state preparation and measurement (SPAM) errors,
which happen at the very beginning or end, during the
execution of an algorithm we take in account two kinds of
noises, namely, depolarization and relaxations. The first,
which can be ascribed to device’s imperfections, tends to
bring the state towards the totally mixed one, 1/
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the case of a single qubit, this can be modeled by the
following Lindblad term,
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The second group of errors is due to the interaction of
the physical qubits with the surrounding environment;
in particular, due the thermalization towards an equi-
librium with the environment, energy exchanges are al-
lowed. In the scenario of interest, this provokes a driving
of the qubit towards the ground state |0i, which is also
known as relaxation (or amplitude damping). Such a
damping is characterized by a relaxation time T1, which
identifies the scales at which the state decays towards
|0i; this e↵ect already provokes an attenuation of the
o↵-diagonal elements of the density matrix in terms of
dephasing, which (if only amplitude damping is act-
ing) has a characteristic time 2T1. However, at the
same time also a contribution of pure dephasing must
be taken in account, resulting in an e↵ective dephasing
rate 1/T2 � 1/2T1. When also T1 � T2 holds (and this is
the case of interest to us), the combined action of these
two e↵ects can be described by the following Lindblad
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DR(⇢) = �1
⇥
�+⇢�� � 1

2

�
P(1), ⇢

 ⇤
+ �z

⇥
Z⇢Z� ⇢

⇤
, (7)

where we use the convention �± = (X±iY)/2 and P(1) =
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Combining the noises and diagonalizing in the canonical form:
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where | i denotes the initial state. This generates an
ensemble of quantum trajectories which

one simulates this noisy circuit sampling di↵erent re-
alizations of the stochastic processes, hence getting as
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ing) has a characteristic time 2T1. However, at the
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IV. GENERAL DERIVATION OF NOISY GATES

In order to derive a general expression for the noisy
gate, let us consider the situation in which the computer
executes a certain gate Ug on a set of n qubits. This is
done by driving the system with an Hamiltonian Hs for
s 2 [0, 1], which will induce some unitary evolution Us,
defined by i~dUs/ds = HsUs, and such that Us=1 = Ug.
However, if noises and imperfections are taken in account,
this coherent evolution is substituted by a non coherent
one, which under the assumptions of Markovianity is de-
scribed by a master equation of the Lindblad form,
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i.e., some generalization (yet to be specified) of (10) to
the n�qubit case; throughout the whole paper, we will
denote by n the number of qubits and by N = 2n the
dimension of the associated Hilbert space. We remember
here that in our case the coe�cient ✏ is small, ✏⌧ 1. In
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which converges to the correct solution ⇢t.

III. REVIEW OF THE NOISE MODEL

The noises declared to be more relevant to IBM’s su-
perconducting devices have already been characterized
in literature, so in this section we start by simply pre-
senting them; afterwards, we match them together in or-
der to build the model of noise we will work on. Apart
from state preparation and measurement (SPAM) errors,
which happen at the very beginning or end, during the
execution of an algorithm we take in account two kinds of
noises, namely, depolarization and relaxations. The first,
which can be ascribed to device’s imperfections, tends to
bring the state towards the totally mixed one, 1/

p
N ; in

the case of a single qubit, this can be modeled by the
following Lindblad term,

Dd(⇢) = �d

3X

k=1

⇥
�k⇢�k � ⇢

⇤
. (6)
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corresponds to such unitaries when depolarization and
relaxations are taken in account during the evolution;
hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
ing the deterministic, non unitary term ⇤(✓,�). Since in
the interaction picture the evolution is unitary, one sees
that the term corresponding to k = 3 is always vanish-
ing, and one has ⇤(✓,�) = � 1

2

R
1

0
ds[✏2

1
�+

s �
�
s + ✏2

2
��
s �

+

s ],
where we set ✏k ⌘ ✏�k/�; hence, we first calculate
�±
s �

⌥
s = U†

s�
±�⌥Us, and after integration we get

Z
1

0

ds�±
s �

⌥
s =

1

2

h
1 ± sin(✓/2)

✓/2
R(✓, �̄)

i
, (22)

where R(✓,�) = cos(✓/2)Z + sin(✓/2)Rxy(�) and �̄ =
�+ ⇡/2, so that one has

⇤(✓,�) = �✏2
1
+ ✏2

2

4
1 � ✏2

1
� ✏2

2

4

sin(✓/2)

✓/2
R
�
✓, �̄

�
; (23)

such an expression can be exponentiated, leading to

e⇤(✓,�) = e�
✏21+✏22

4


coshF (✓)� R

�
✓, �̄

�
sinhF (✓)

�
, (24)

where we defined F (✓) = ✏21�✏22
4

sin(✓/2)
✓/2 . Secondly, we turn

to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
first calculate the expressions for the jump operators Lk,s

in the interaction picture. For k = 1, 2 one has

�±
s (✓,�) =

e±i�

2

h
Rxy(�)± iR(2s̄✓, �̄)

i
, (25)

and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
venient to define the following real stochastic variables:

⇠k,± =
1

2i(1⌥1)/2

Z
1

0

dWk,s

⇥
eis✓ ± e�is✓

⇤
, (26)

which have variances

E
⇥
⇠2k,±

⇤
=

1

2

⇥
1± sin(2✓)

2✓

⇤
(27)

and correlations

E
⇥
⇠k,+⇠j,�

⇤
=

1� cos(2✓)

4✓
�kj ; (28)

moreover, we define ⇠k,w =
R
1

0
dWk,s, such that

E
⇥
⇠2k,w

⇤
= 1, E

⇥
⇠k,+⇠k,w

⇤
= sin(✓)/✓ and E

⇥
⇠k,�⇠k,w

⇤
=⇥

1 � cos(✓)
⇤
/✓. Then, summing everything and re-

arranging conveniently, we get

⌅(✓,�|⇠) = if0Z + if1Rxy(�) + if2Rxy(�̄), (29)

where we defined the following set of complex stochastic
coe�cients:

f0 =✏3⇠3,+ � i
ei�✏2⇠2,� � e�i�✏1⇠1,�

2
, (30)

f1 =
ei�✏2⇠2,w + e�i�✏1⇠1,w

2
, (31)

f2 =✏3⇠3,� + i
ei�✏2⇠2,+ � e�i�✏1⇠1,+

2
. (32)

Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
~✓
2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads

D(1,2)
✏2 (⇢) = �

X

i2{0,1}

3X

k=1

⇥
L(i)
k ⇢L(i)†

k � 1

2

�
L(i)†
k L(i)

k , ⇢
 ⇤

,

(34)
where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where

⇤i(✓,�) = �
R
1

0
ds[✏2

1
�+(i)
s ��(i)

s + ✏2
2
��(i)
s �+(i)

s ]/2. For
i = 1, one has the simple expression

⇤1(✓,�) = �✏2
1
+ ✏2

2

2
1 � ✏2

1
� ✏2

2

2
Z(1), (35)

while for i = 2 it can be calculated that

⇤2(✓,�) = �✏2
1
+ ✏2

2

4
1 � F (✓)R(1,2)(✓, �̄), (36)

where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)

s = Z(1) and

�±(1)

s = e±is✓R2
xy(�)�±(1); for i = 2, Z(2)

s = R(1,2)(s✓, �̄)
and

�±(2)

s = cos(s✓)�±(2) ± ei�̄ sin(s✓)Z(1)Z(2). (37)
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corresponds to such unitaries when depolarization and
relaxations are taken in account during the evolution;
hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
ing the deterministic, non unitary term ⇤(✓,�). Since in
the interaction picture the evolution is unitary, one sees
that the term corresponding to k = 3 is always vanish-
ing, and one has ⇤(✓,�) = � 1
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where we set ✏k ⌘ ✏�k/�; hence, we first calculate
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where R(✓,�) = cos(✓/2)Z + sin(✓/2)Rxy(�) and �̄ =
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⇤(✓,�) = �✏2
1
+ ✏2

2

4
1 � ✏2

1
� ✏2

2

4

sin(✓/2)

✓/2
R
�
✓, �̄

�
; (23)

such an expression can be exponentiated, leading to
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, (24)

where we defined F (✓) = ✏21�✏22
4

sin(✓/2)
✓/2 . Secondly, we turn

to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
first calculate the expressions for the jump operators Lk,s

in the interaction picture. For k = 1, 2 one has
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Rxy(�)± iR(2s̄✓, �̄)
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, (25)

and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
venient to define the following real stochastic variables:

⇠k,± =
1

2i(1⌥1)/2
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dWk,s

⇥
eis✓ ± e�is✓

⇤
, (26)

which have variances

E
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and correlations
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arranging conveniently, we get

⌅(✓,�|⇠) = if0Z + if1Rxy(�) + if2Rxy(�̄), (29)

where we defined the following set of complex stochastic
coe�cients:
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Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
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2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads
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where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where
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where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)
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hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
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such an expression can be exponentiated, leading to
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to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
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in the interaction picture. For k = 1, 2 one has
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and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
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Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
~✓
2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads

D(1,2)
✏2 (⇢) = �

X

i2{0,1}

3X

k=1

⇥
L(i)
k ⇢L(i)†

k � 1

2

�
L(i)†
k L(i)

k , ⇢
 ⇤

,

(34)
where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where

⇤i(✓,�) = �
R
1

0
ds[✏2

1
�+(i)
s ��(i)

s + ✏2
2
��(i)
s �+(i)

s ]/2. For
i = 1, one has the simple expression

⇤1(✓,�) = �✏2
1
+ ✏2

2

2
1 � ✏2

1
� ✏2

2

2
Z(1), (35)

while for i = 2 it can be calculated that

⇤2(✓,�) = �✏2
1
+ ✏2

2

4
1 � F (✓)R(1,2)(✓, �̄), (36)

where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)

s = Z(1) and

�±(1)

s = e±is✓R2
xy(�)�±(1); for i = 2, Z(2)

s = R(1,2)(s✓, �̄)
and

�±(2)

s = cos(s✓)�±(2) ± ei�̄ sin(s✓)Z(1)Z(2). (37)

3

order to get the solution to this equation in a form which
is useful to us, we perform a linear stochastic unraveling;
then, the solution will be given in the form of an ensemble
average on quantum trajectories,

⇢s = E
h
| s(⇠)i h s(⇠)|

i
, (13)

where the state vector | s(⇠)i is the solution, at time s,
of the Itô equation

d | si=

� i

~Hsds+
N2�1X

k=1

h
i✏dWk,sLk�

✏2

2
dsL†

kLk

i�
| si ;

(14)
here, dWk,s are di↵erentials of Wiener processes, i.e.
stochastic infinitesimal increments such that E

⇥
dWk,s

⇤
=

0 and E
⇥
dWk,sdWk0,s0

⇤
= �k,k0�(s� s0)ds; the ⇠ label in

Eq. (13) indicates that the solution depends on some
random variables, which in turn depend on the single
realization of the Wiener processes. Such an equation,
being linear, will allow us to deduce a noisy gate N̄(⇠)
such that | s=1(⇠)i = N̄(⇠) | 0i; however, the Itô equa-
tion is not norm preserving in general, so that N̄(⇠) will
not be unitary: the preservation of the trace is ensured
only at the level of Eq. (13), after the averages over
the Wiener processes are carried out. In general, Eq.
(14) is not solvable in a closed form; in Appendix A we
show how an approximate solution to order O(✏2) can be
derived, which leaves us with a noisy gate of the form
N̄(⇠) = Uge⇤e⌅̄(⇠), where we defined

⇤ = �✏
2

2

Z
1

0

ds
N2�1X

k=1

⇥
L†
k,sLk,s � L2

k,s

⇤
(15)

and

⌅̄(⇠) = i✏
N2�1X

k=1

Z
1

0

dWk,sLk,s �
✏2

2
C(⇠); (16)

here, C(⇠) =
PN2�1

k,l=1

R
1

0
dWk,s

R s
0
dWl,s0

⇥
Lk,s,Ll,s0

⇤
. In

the equations above, Lk,s := U†
sLkUs are the jump oper-

ators in the interaction picture. In the cases of interest
to us the term (15) can always be exponentiated, so that
we will always be able to directly calculate e⇤. Now, one
can immediately see that E

⇥
C(⇠)

⇤
= 0; hence, in the final

average (13) this term does not give any contribution to
order ✏2. We can therefore simply drop it from the ex-
pression for the noisy gate, and finally use the noisy gate,
equivalent to N̄(⇠), defined as

Ng(⇠) = Uge
⇤e⌅(⇠), (17)

with simply

⌅(⇠) := i✏
N2�1X

k=1

Z
1

0

dWk,sLk,s. (18)

This last term is the only stochastic one which enters the
noisy gate, and involves many random variables ⇠ arising
due to the presence of the stochastic processes dWk,s.
These random variables may be defined in several ways,
and the best choice depends on the particular cases; here
we just show the main idea, which however leads to an
over estimation of the actual number of random variables
we expect to be needed for practical purposes. Let us call
Lkij,s = L+

kij,s + iL�
kij,s the entries of the matrix form of

the jump operator Lk,s, divided in real and imaginary
part; then, each entry of the stochastic matrix is of the

form ⌅ij(⇠) = i✏
PN2�1

k=1

⇥
⇠+kij + i⇠�kij

⇤
, where we defined

the random variables

⇠+kij =

Z
1

0

dWk,sL
+

kij,s, ⇠�kij =

Z
1

0

dWk,sL
�
kij,s. (19)

These real random variables, being Itô integrals of de-
terministic functions, are all normally distributed with
zero mean, E

⇥
⇠±kij

⇤
= 0, and variances E[(⇠±kij)

2] =
R
1

0
ds[L±

kij ]
2. Moreover, one can easily check that they

are correlated the one with another as

E
⇥
⇠±kij⇠

±
k0i0j0

⇤
= �k,k0

Z
1

0

dsL±
kij,sL

±
ki0j0,s; (20)

hence, one has at most 2N2(N2 � 1) random variables,
each being correlated with at most other 2N2 � 1 ones.
However, we immediately point out that one shall not ex-
pect nor the number of random variables, nor the number
of correlations between them to really grow this way in
practice. This is mainly due to the fact that real quan-
tum computers usually perform single and two qubit na-
tive gates, and single qubit noises are dominating. In
the following sections, as we go through the straightfor-
ward deduction of the native set of noisy gates for IBM’s
computers, we shall make this claim more clear.

V. SINGLE QUBIT NOISY GATES

IBM’s superconducting devices act on single qubits
with unitaries of the form U(✓,�) = e�i✓Rxy(�)/2, where
we set Rxy(�) = cos(�)X + sin(�)Y; such evolutions are
achieved by driving the system with an Hamiltonian

H(✓,�) =
✓~
2
Rxy(�) (21)

for a duration s 2 [0, 1]. Rotations around the z�axis are
implemented as virtual gates, in the sense that they are
propagated through all the others until the final measure-
ment, where they do not a↵ect the outcome [REF]. Notice
that in general the Hamiltonian is controlled by time-
dependent pulses, so that in the previous equation one
shall consider ✓ ! !s, and set

R
1

0
ds!s = ✓; in this paper,

we choose to work with constant pulses for simplicity, the
generalization to general functions being straightforward.
Here, we aim at finding the noisy gate N(✓,�|⇠) which

4

corresponds to such unitaries when depolarization and
relaxations are taken in account during the evolution;
hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
ing the deterministic, non unitary term ⇤(✓,�). Since in
the interaction picture the evolution is unitary, one sees
that the term corresponding to k = 3 is always vanish-
ing, and one has ⇤(✓,�) = � 1

2

R
1

0
ds[✏2

1
�+

s �
�
s + ✏2

2
��
s �

+

s ],
where we set ✏k ⌘ ✏�k/�; hence, we first calculate
�±
s �

⌥
s = U†

s�
±�⌥Us, and after integration we get

Z
1

0

ds�±
s �

⌥
s =

1

2

h
1 ± sin(✓/2)

✓/2
R(✓, �̄)

i
, (22)

where R(✓,�) = cos(✓/2)Z + sin(✓/2)Rxy(�) and �̄ =
�+ ⇡/2, so that one has

⇤(✓,�) = �✏2
1
+ ✏2

2

4
1 � ✏2

1
� ✏2

2

4

sin(✓/2)

✓/2
R
�
✓, �̄

�
; (23)

such an expression can be exponentiated, leading to

e⇤(✓,�) = e�
✏21+✏22

4


coshF (✓)� R

�
✓, �̄

�
sinhF (✓)

�
, (24)

where we defined F (✓) = ✏21�✏22
4

sin(✓/2)
✓/2 . Secondly, we turn

to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
first calculate the expressions for the jump operators Lk,s

in the interaction picture. For k = 1, 2 one has

�±
s (✓,�) =

e±i�

2

h
Rxy(�)± iR(2s̄✓, �̄)

i
, (25)

and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
venient to define the following real stochastic variables:

⇠k,± =
1

2i(1⌥1)/2

Z
1

0

dWk,s

⇥
eis✓ ± e�is✓

⇤
, (26)

which have variances

E
⇥
⇠2k,±

⇤
=

1

2

⇥
1± sin(2✓)

2✓

⇤
(27)

and correlations

E
⇥
⇠k,+⇠j,�

⇤
=

1� cos(2✓)

4✓
�kj ; (28)

moreover, we define ⇠k,w =
R
1

0
dWk,s, such that

E
⇥
⇠2k,w

⇤
= 1, E

⇥
⇠k,+⇠k,w

⇤
= sin(✓)/✓ and E

⇥
⇠k,�⇠k,w

⇤
=⇥

1 � cos(✓)
⇤
/✓. Then, summing everything and re-

arranging conveniently, we get

⌅(✓,�|⇠) = if0Z + if1Rxy(�) + if2Rxy(�̄), (29)

where we defined the following set of complex stochastic
coe�cients:

f0 =✏3⇠3,+ � i
ei�✏2⇠2,� � e�i�✏1⇠1,�

2
, (30)

f1 =
ei�✏2⇠2,w + e�i�✏1⇠1,w

2
, (31)

f2 =✏3⇠3,� + i
ei�✏2⇠2,+ � e�i�✏1⇠1,+

2
. (32)

Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
~✓
2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads

D(1,2)
✏2 (⇢) = �

X

i2{0,1}

3X

k=1

⇥
L(i)
k ⇢L(i)†

k � 1

2

�
L(i)†
k L(i)

k , ⇢
 ⇤

,

(34)
where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where

⇤i(✓,�) = �
R
1

0
ds[✏2

1
�+(i)
s ��(i)

s + ✏2
2
��(i)
s �+(i)

s ]/2. For
i = 1, one has the simple expression

⇤1(✓,�) = �✏2
1
+ ✏2

2

2
1 � ✏2

1
� ✏2

2

2
Z(1), (35)

while for i = 2 it can be calculated that

⇤2(✓,�) = �✏2
1
+ ✏2

2

4
1 � F (✓)R(1,2)(✓, �̄), (36)

where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)

s = Z(1) and

�±(1)

s = e±is✓R2
xy(�)�±(1); for i = 2, Z(2)

s = R(1,2)(s✓, �̄)
and

�±(2)

s = cos(s✓)�±(2) ± ei�̄ sin(s✓)Z(1)Z(2). (37)

4

corresponds to such unitaries when depolarization and
relaxations are taken in account during the evolution;
hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
ing the deterministic, non unitary term ⇤(✓,�). Since in
the interaction picture the evolution is unitary, one sees
that the term corresponding to k = 3 is always vanish-
ing, and one has ⇤(✓,�) = � 1

2

R
1

0
ds[✏2

1
�+

s �
�
s + ✏2

2
��
s �

+

s ],
where we set ✏k ⌘ ✏�k/�; hence, we first calculate
�±
s �

⌥
s = U†

s�
±�⌥Us, and after integration we get

Z
1

0

ds�±
s �

⌥
s =

1

2

h
1 ± sin(✓/2)

✓/2
R(✓, �̄)

i
, (22)

where R(✓,�) = cos(✓/2)Z + sin(✓/2)Rxy(�) and �̄ =
�+ ⇡/2, so that one has

⇤(✓,�) = �✏2
1
+ ✏2

2

4
1 � ✏2

1
� ✏2

2

4

sin(✓/2)

✓/2
R
�
✓, �̄

�
; (23)

such an expression can be exponentiated, leading to

e⇤(✓,�) = e�
✏21+✏22

4


coshF (✓)� R

�
✓, �̄

�
sinhF (✓)

�
, (24)

where we defined F (✓) = ✏21�✏22
4

sin(✓/2)
✓/2 . Secondly, we turn

to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
first calculate the expressions for the jump operators Lk,s

in the interaction picture. For k = 1, 2 one has

�±
s (✓,�) =

e±i�

2

h
Rxy(�)± iR(2s̄✓, �̄)

i
, (25)

and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
venient to define the following real stochastic variables:

⇠k,± =
1

2i(1⌥1)/2

Z
1

0

dWk,s

⇥
eis✓ ± e�is✓

⇤
, (26)

which have variances

E
⇥
⇠2k,±

⇤
=

1

2

⇥
1± sin(2✓)

2✓

⇤
(27)

and correlations

E
⇥
⇠k,+⇠j,�

⇤
=

1� cos(2✓)

4✓
�kj ; (28)

moreover, we define ⇠k,w =
R
1

0
dWk,s, such that

E
⇥
⇠2k,w

⇤
= 1, E

⇥
⇠k,+⇠k,w

⇤
= sin(✓)/✓ and E

⇥
⇠k,�⇠k,w

⇤
=⇥

1 � cos(✓)
⇤
/✓. Then, summing everything and re-

arranging conveniently, we get

⌅(✓,�|⇠) = if0Z + if1Rxy(�) + if2Rxy(�̄), (29)

where we defined the following set of complex stochastic
coe�cients:

f0 =✏3⇠3,+ � i
ei�✏2⇠2,� � e�i�✏1⇠1,�

2
, (30)

f1 =
ei�✏2⇠2,w + e�i�✏1⇠1,w

2
, (31)

f2 =✏3⇠3,� + i
ei�✏2⇠2,+ � e�i�✏1⇠1,+

2
. (32)

Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
~✓
2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads

D(1,2)
✏2 (⇢) = �

X

i2{0,1}

3X

k=1

⇥
L(i)
k ⇢L(i)†

k � 1

2

�
L(i)†
k L(i)

k , ⇢
 ⇤

,

(34)
where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where

⇤i(✓,�) = �
R
1

0
ds[✏2

1
�+(i)
s ��(i)

s + ✏2
2
��(i)
s �+(i)

s ]/2. For
i = 1, one has the simple expression

⇤1(✓,�) = �✏2
1
+ ✏2

2

2
1 � ✏2

1
� ✏2

2

2
Z(1), (35)

while for i = 2 it can be calculated that

⇤2(✓,�) = �✏2
1
+ ✏2

2

4
1 � F (✓)R(1,2)(✓, �̄), (36)

where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)

s = Z(1) and

�±(1)

s = e±is✓R2
xy(�)�±(1); for i = 2, Z(2)

s = R(1,2)(s✓, �̄)
and

�±(2)

s = cos(s✓)�±(2) ± ei�̄ sin(s✓)Z(1)Z(2). (37)

4

corresponds to such unitaries when depolarization and
relaxations are taken in account during the evolution;
hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
ing the deterministic, non unitary term ⇤(✓,�). Since in
the interaction picture the evolution is unitary, one sees
that the term corresponding to k = 3 is always vanish-
ing, and one has ⇤(✓,�) = � 1

2

R
1

0
ds[✏2

1
�+

s �
�
s + ✏2

2
��
s �

+

s ],
where we set ✏k ⌘ ✏�k/�; hence, we first calculate
�±
s �

⌥
s = U†

s�
±�⌥Us, and after integration we get

Z
1

0

ds�±
s �

⌥
s =

1

2

h
1 ± sin(✓/2)

✓/2
R(✓, �̄)

i
, (22)

where R(✓,�) = cos(✓/2)Z + sin(✓/2)Rxy(�) and �̄ =
�+ ⇡/2, so that one has

⇤(✓,�) = �✏2
1
+ ✏2

2

4
1 � ✏2

1
� ✏2

2

4

sin(✓/2)

✓/2
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�
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�
; (23)

such an expression can be exponentiated, leading to

e⇤(✓,�) = e�
✏21+✏22

4


coshF (✓)� R

�
✓, �̄

�
sinhF (✓)

�
, (24)

where we defined F (✓) = ✏21�✏22
4

sin(✓/2)
✓/2 . Secondly, we turn

to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
first calculate the expressions for the jump operators Lk,s

in the interaction picture. For k = 1, 2 one has

�±
s (✓,�) =

e±i�

2

h
Rxy(�)± iR(2s̄✓, �̄)

i
, (25)

and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
venient to define the following real stochastic variables:

⇠k,± =
1

2i(1⌥1)/2

Z
1

0

dWk,s

⇥
eis✓ ± e�is✓

⇤
, (26)

which have variances

E
⇥
⇠2k,±

⇤
=

1

2

⇥
1± sin(2✓)

2✓

⇤
(27)

and correlations

E
⇥
⇠k,+⇠j,�

⇤
=

1� cos(2✓)

4✓
�kj ; (28)

moreover, we define ⇠k,w =
R
1

0
dWk,s, such that

E
⇥
⇠2k,w

⇤
= 1, E

⇥
⇠k,+⇠k,w

⇤
= sin(✓)/✓ and E

⇥
⇠k,�⇠k,w

⇤
=⇥

1 � cos(✓)
⇤
/✓. Then, summing everything and re-

arranging conveniently, we get

⌅(✓,�|⇠) = if0Z + if1Rxy(�) + if2Rxy(�̄), (29)

where we defined the following set of complex stochastic
coe�cients:

f0 =✏3⇠3,+ � i
ei�✏2⇠2,� � e�i�✏1⇠1,�

2
, (30)

f1 =
ei�✏2⇠2,w + e�i�✏1⇠1,w

2
, (31)

f2 =✏3⇠3,� + i
ei�✏2⇠2,+ � e�i�✏1⇠1,+

2
. (32)

Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
~✓
2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads

D(1,2)
✏2 (⇢) = �

X

i2{0,1}

3X

k=1

⇥
L(i)
k ⇢L(i)†

k � 1

2

�
L(i)†
k L(i)

k , ⇢
 ⇤

,

(34)
where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where

⇤i(✓,�) = �
R
1

0
ds[✏2

1
�+(i)
s ��(i)

s + ✏2
2
��(i)
s �+(i)

s ]/2. For
i = 1, one has the simple expression

⇤1(✓,�) = �✏2
1
+ ✏2

2

2
1 � ✏2

1
� ✏2

2

2
Z(1), (35)

while for i = 2 it can be calculated that

⇤2(✓,�) = �✏2
1
+ ✏2

2

4
1 � F (✓)R(1,2)(✓, �̄), (36)

where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)

s = Z(1) and

�±(1)

s = e±is✓R2
xy(�)�±(1); for i = 2, Z(2)

s = R(1,2)(s✓, �̄)
and

�±(2)

s = cos(s✓)�±(2) ± ei�̄ sin(s✓)Z(1)Z(2). (37)

4

corresponds to such unitaries when depolarization and
relaxations are taken in account during the evolution;
hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
ing the deterministic, non unitary term ⇤(✓,�). Since in
the interaction picture the evolution is unitary, one sees
that the term corresponding to k = 3 is always vanish-
ing, and one has ⇤(✓,�) = � 1

2

R
1

0
ds[✏2

1
�+

s �
�
s + ✏2

2
��
s �

+

s ],
where we set ✏k ⌘ ✏�k/�; hence, we first calculate
�±
s �

⌥
s = U†

s�
±�⌥Us, and after integration we get

Z
1

0

ds�±
s �

⌥
s =

1

2

h
1 ± sin(✓/2)

✓/2
R(✓, �̄)

i
, (22)

where R(✓,�) = cos(✓/2)Z + sin(✓/2)Rxy(�) and �̄ =
�+ ⇡/2, so that one has

⇤(✓,�) = �✏2
1
+ ✏2

2

4
1 � ✏2

1
� ✏2

2

4

sin(✓/2)

✓/2
R
�
✓, �̄

�
; (23)

such an expression can be exponentiated, leading to

e⇤(✓,�) = e�
✏21+✏22

4


coshF (✓)� R

�
✓, �̄

�
sinhF (✓)

�
, (24)

where we defined F (✓) = ✏21�✏22
4

sin(✓/2)
✓/2 . Secondly, we turn

to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
first calculate the expressions for the jump operators Lk,s

in the interaction picture. For k = 1, 2 one has

�±
s (✓,�) =

e±i�

2

h
Rxy(�)± iR(2s̄✓, �̄)

i
, (25)

and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
venient to define the following real stochastic variables:

⇠k,± =
1

2i(1⌥1)/2

Z
1

0

dWk,s

⇥
eis✓ ± e�is✓

⇤
, (26)

which have variances

E
⇥
⇠2k,±

⇤
=

1

2

⇥
1± sin(2✓)

2✓

⇤
(27)

and correlations

E
⇥
⇠k,+⇠j,�

⇤
=

1� cos(2✓)

4✓
�kj ; (28)

moreover, we define ⇠k,w =
R
1

0
dWk,s, such that

E
⇥
⇠2k,w

⇤
= 1, E

⇥
⇠k,+⇠k,w

⇤
= sin(✓)/✓ and E

⇥
⇠k,�⇠k,w

⇤
=⇥

1 � cos(✓)
⇤
/✓. Then, summing everything and re-

arranging conveniently, we get

⌅(✓,�|⇠) = if0Z + if1Rxy(�) + if2Rxy(�̄), (29)

where we defined the following set of complex stochastic
coe�cients:

f0 =✏3⇠3,+ � i
ei�✏2⇠2,� � e�i�✏1⇠1,�

2
, (30)

f1 =
ei�✏2⇠2,w + e�i�✏1⇠1,w

2
, (31)

f2 =✏3⇠3,� + i
ei�✏2⇠2,+ � e�i�✏1⇠1,+

2
. (32)

Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
~✓
2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads

D(1,2)
✏2 (⇢) = �

X

i2{0,1}

3X

k=1

⇥
L(i)
k ⇢L(i)†

k � 1

2

�
L(i)†
k L(i)

k , ⇢
 ⇤

,

(34)
where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where

⇤i(✓,�) = �
R
1

0
ds[✏2

1
�+(i)
s ��(i)

s + ✏2
2
��(i)
s �+(i)

s ]/2. For
i = 1, one has the simple expression

⇤1(✓,�) = �✏2
1
+ ✏2

2

2
1 � ✏2

1
� ✏2

2

2
Z(1), (35)

while for i = 2 it can be calculated that

⇤2(✓,�) = �✏2
1
+ ✏2

2

4
1 � F (✓)R(1,2)(✓, �̄), (36)

where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)

s = Z(1) and

�±(1)

s = e±is✓R2
xy(�)�±(1); for i = 2, Z(2)

s = R(1,2)(s✓, �̄)
and

�±(2)

s = cos(s✓)�±(2) ± ei�̄ sin(s✓)Z(1)Z(2). (37)

4

corresponds to such unitaries when depolarization and
relaxations are taken in account during the evolution;
hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
ing the deterministic, non unitary term ⇤(✓,�). Since in
the interaction picture the evolution is unitary, one sees
that the term corresponding to k = 3 is always vanish-
ing, and one has ⇤(✓,�) = � 1

2

R
1

0
ds[✏2

1
�+

s �
�
s + ✏2

2
��
s �

+

s ],
where we set ✏k ⌘ ✏�k/�; hence, we first calculate
�±
s �

⌥
s = U†

s�
±�⌥Us, and after integration we get

Z
1

0

ds�±
s �

⌥
s =

1

2

h
1 ± sin(✓/2)

✓/2
R(✓, �̄)

i
, (22)

where R(✓,�) = cos(✓/2)Z + sin(✓/2)Rxy(�) and �̄ =
�+ ⇡/2, so that one has

⇤(✓,�) = �✏2
1
+ ✏2

2

4
1 � ✏2

1
� ✏2

2

4

sin(✓/2)

✓/2
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�
; (23)

such an expression can be exponentiated, leading to

e⇤(✓,�) = e�
✏21+✏22

4


coshF (✓)� R

�
✓, �̄

�
sinhF (✓)

�
, (24)

where we defined F (✓) = ✏21�✏22
4

sin(✓/2)
✓/2 . Secondly, we turn

to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
first calculate the expressions for the jump operators Lk,s

in the interaction picture. For k = 1, 2 one has

�±
s (✓,�) =

e±i�

2

h
Rxy(�)± iR(2s̄✓, �̄)

i
, (25)

and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
venient to define the following real stochastic variables:

⇠k,± =
1

2i(1⌥1)/2

Z
1

0

dWk,s

⇥
eis✓ ± e�is✓

⇤
, (26)

which have variances

E
⇥
⇠2k,±

⇤
=

1

2

⇥
1± sin(2✓)

2✓

⇤
(27)

and correlations

E
⇥
⇠k,+⇠j,�

⇤
=

1� cos(2✓)

4✓
�kj ; (28)

moreover, we define ⇠k,w =
R
1

0
dWk,s, such that

E
⇥
⇠2k,w

⇤
= 1, E

⇥
⇠k,+⇠k,w

⇤
= sin(✓)/✓ and E

⇥
⇠k,�⇠k,w

⇤
=⇥

1 � cos(✓)
⇤
/✓. Then, summing everything and re-

arranging conveniently, we get

⌅(✓,�|⇠) = if0Z + if1Rxy(�) + if2Rxy(�̄), (29)

where we defined the following set of complex stochastic
coe�cients:

f0 =✏3⇠3,+ � i
ei�✏2⇠2,� � e�i�✏1⇠1,�

2
, (30)

f1 =
ei�✏2⇠2,w + e�i�✏1⇠1,w

2
, (31)

f2 =✏3⇠3,� + i
ei�✏2⇠2,+ � e�i�✏1⇠1,+

2
. (32)

Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
~✓
2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads
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X

i2{0,1}
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,

(34)
where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where

⇤i(✓,�) = �
R
1

0
ds[✏2

1
�+(i)
s ��(i)

s + ✏2
2
��(i)
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s ]/2. For
i = 1, one has the simple expression
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while for i = 2 it can be calculated that

⇤2(✓,�) = �✏2
1
+ ✏2

2

4
1 � F (✓)R(1,2)(✓, �̄), (36)

where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)

s = Z(1) and

�±(1)

s = e±is✓R2
xy(�)�±(1); for i = 2, Z(2)

s = R(1,2)(s✓, �̄)
and

�±(2)

s = cos(s✓)�±(2) ± ei�̄ sin(s✓)Z(1)Z(2). (37)

4

corresponds to such unitaries when depolarization and
relaxations are taken in account during the evolution;
hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
ing the deterministic, non unitary term ⇤(✓,�). Since in
the interaction picture the evolution is unitary, one sees
that the term corresponding to k = 3 is always vanish-
ing, and one has ⇤(✓,�) = � 1

2
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1

0
ds[✏2
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s + ✏2

2
��
s �

+

s ],
where we set ✏k ⌘ ✏�k/�; hence, we first calculate
�±
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⌥
s = U†
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±�⌥Us, and after integration we get
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i
, (22)

where R(✓,�) = cos(✓/2)Z + sin(✓/2)Rxy(�) and �̄ =
�+ ⇡/2, so that one has
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such an expression can be exponentiated, leading to

e⇤(✓,�) = e�
✏21+✏22

4
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�
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where we defined F (✓) = ✏21�✏22
4

sin(✓/2)
✓/2 . Secondly, we turn

to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
first calculate the expressions for the jump operators Lk,s

in the interaction picture. For k = 1, 2 one has

�±
s (✓,�) =

e±i�

2

h
Rxy(�)± iR(2s̄✓, �̄)

i
, (25)

and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
venient to define the following real stochastic variables:

⇠k,± =
1

2i(1⌥1)/2

Z
1

0

dWk,s

⇥
eis✓ ± e�is✓

⇤
, (26)

which have variances

E
⇥
⇠2k,±
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⇤
(27)

and correlations
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=
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4✓
�kj ; (28)

moreover, we define ⇠k,w =
R
1

0
dWk,s, such that

E
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⇤
= 1, E

⇥
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= sin(✓)/✓ and E

⇥
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⇤
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⇤
/✓. Then, summing everything and re-

arranging conveniently, we get

⌅(✓,�|⇠) = if0Z + if1Rxy(�) + if2Rxy(�̄), (29)

where we defined the following set of complex stochastic
coe�cients:

f0 =✏3⇠3,+ � i
ei�✏2⇠2,� � e�i�✏1⇠1,�

2
, (30)

f1 =
ei�✏2⇠2,w + e�i�✏1⇠1,w

2
, (31)

f2 =✏3⇠3,� + i
ei�✏2⇠2,+ � e�i�✏1⇠1,+

2
. (32)

Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
~✓
2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads
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where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where
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while for i = 2 it can be calculated that
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1
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2

4
1 � F (✓)R(1,2)(✓, �̄), (36)

where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)

s = Z(1) and

�±(1)

s = e±is✓R2
xy(�)�±(1); for i = 2, Z(2)

s = R(1,2)(s✓, �̄)
and

�±(2)

s = cos(s✓)�±(2) ± ei�̄ sin(s✓)Z(1)Z(2). (37)

4

corresponds to such unitaries when depolarization and
relaxations are taken in account during the evolution;
hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
ing the deterministic, non unitary term ⇤(✓,�). Since in
the interaction picture the evolution is unitary, one sees
that the term corresponding to k = 3 is always vanish-
ing, and one has ⇤(✓,�) = � 1

2
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where we set ✏k ⌘ ✏�k/�; hence, we first calculate
�±
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±�⌥Us, and after integration we get
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where R(✓,�) = cos(✓/2)Z + sin(✓/2)Rxy(�) and �̄ =
�+ ⇡/2, so that one has
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such an expression can be exponentiated, leading to
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where we defined F (✓) = ✏21�✏22
4

sin(✓/2)
✓/2 . Secondly, we turn

to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
first calculate the expressions for the jump operators Lk,s

in the interaction picture. For k = 1, 2 one has
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2

h
Rxy(�)± iR(2s̄✓, �̄)

i
, (25)

and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
venient to define the following real stochastic variables:

⇠k,± =
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which have variances
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moreover, we define ⇠k,w =
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/✓. Then, summing everything and re-

arranging conveniently, we get

⌅(✓,�|⇠) = if0Z + if1Rxy(�) + if2Rxy(�̄), (29)

where we defined the following set of complex stochastic
coe�cients:
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Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
~✓
2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads
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where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where
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0
ds[✏2
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while for i = 2 it can be calculated that
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1
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2

4
1 � F (✓)R(1,2)(✓, �̄), (36)

where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)

s = Z(1) and

�±(1)

s = e±is✓R2
xy(�)�±(1); for i = 2, Z(2)

s = R(1,2)(s✓, �̄)
and

�±(2)

s = cos(s✓)�±(2) ± ei�̄ sin(s✓)Z(1)Z(2). (37)

Stochastic properties of the noise
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corresponds to such unitaries when depolarization and
relaxations are taken in account during the evolution;
hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
ing the deterministic, non unitary term ⇤(✓,�). Since in
the interaction picture the evolution is unitary, one sees
that the term corresponding to k = 3 is always vanish-
ing, and one has ⇤(✓,�) = � 1

2
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0
ds[✏2

1
�+

s �
�
s + ✏2

2
��
s �

+

s ],
where we set ✏k ⌘ ✏�k/�; hence, we first calculate
�±
s �

⌥
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±�⌥Us, and after integration we get
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where R(✓,�) = cos(✓/2)Z + sin(✓/2)Rxy(�) and �̄ =
�+ ⇡/2, so that one has
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such an expression can be exponentiated, leading to

e⇤(✓,�) = e�
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�
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where we defined F (✓) = ✏21�✏22
4

sin(✓/2)
✓/2 . Secondly, we turn

to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
first calculate the expressions for the jump operators Lk,s

in the interaction picture. For k = 1, 2 one has

�±
s (✓,�) =
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2

h
Rxy(�)± iR(2s̄✓, �̄)

i
, (25)

and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
venient to define the following real stochastic variables:

⇠k,± =
1

2i(1⌥1)/2
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eis✓ ± e�is✓
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, (26)

which have variances
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and correlations
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moreover, we define ⇠k,w =
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0
dWk,s, such that
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/✓. Then, summing everything and re-

arranging conveniently, we get

⌅(✓,�|⇠) = if0Z + if1Rxy(�) + if2Rxy(�̄), (29)

where we defined the following set of complex stochastic
coe�cients:

f0 =✏3⇠3,+ � i
ei�✏2⇠2,� � e�i�✏1⇠1,�

2
, (30)

f1 =
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f2 =✏3⇠3,� + i
ei�✏2⇠2,+ � e�i�✏1⇠1,+

2
. (32)

Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
~✓
2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads
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where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where
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0
ds[✏2
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while for i = 2 it can be calculated that
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1
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4
1 � F (✓)R(1,2)(✓, �̄), (36)

where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)

s = Z(1) and

�±(1)

s = e±is✓R2
xy(�)�±(1); for i = 2, Z(2)

s = R(1,2)(s✓, �̄)
and

�±(2)

s = cos(s✓)�±(2) ± ei�̄ sin(s✓)Z(1)Z(2). (37)
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corresponds to such unitaries when depolarization and
relaxations are taken in account during the evolution;
hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
ing the deterministic, non unitary term ⇤(✓,�). Since in
the interaction picture the evolution is unitary, one sees
that the term corresponding to k = 3 is always vanish-
ing, and one has ⇤(✓,�) = � 1
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where we set ✏k ⌘ ✏�k/�; hence, we first calculate
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±�⌥Us, and after integration we get
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where R(✓,�) = cos(✓/2)Z + sin(✓/2)Rxy(�) and �̄ =
�+ ⇡/2, so that one has
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such an expression can be exponentiated, leading to
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where we defined F (✓) = ✏21�✏22
4

sin(✓/2)
✓/2 . Secondly, we turn

to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
first calculate the expressions for the jump operators Lk,s

in the interaction picture. For k = 1, 2 one has
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and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
venient to define the following real stochastic variables:

⇠k,± =
1

2i(1⌥1)/2
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which have variances
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moreover, we define ⇠k,w =
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/✓. Then, summing everything and re-

arranging conveniently, we get

⌅(✓,�|⇠) = if0Z + if1Rxy(�) + if2Rxy(�̄), (29)

where we defined the following set of complex stochastic
coe�cients:

f0 =✏3⇠3,+ � i
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. (32)

Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
~✓
2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads
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where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where
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while for i = 2 it can be calculated that

⇤2(✓,�) = �✏2
1
+ ✏2

2

4
1 � F (✓)R(1,2)(✓, �̄), (36)

where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)

s = Z(1) and

�±(1)

s = e±is✓R2
xy(�)�±(1); for i = 2, Z(2)

s = R(1,2)(s✓, �̄)
and

�±(2)

s = cos(s✓)�±(2) ± ei�̄ sin(s✓)Z(1)Z(2). (37)

4

corresponds to such unitaries when depolarization and
relaxations are taken in account during the evolution;
hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
ing the deterministic, non unitary term ⇤(✓,�). Since in
the interaction picture the evolution is unitary, one sees
that the term corresponding to k = 3 is always vanish-
ing, and one has ⇤(✓,�) = � 1

2

R
1

0
ds[✏2

1
�+

s �
�
s + ✏2

2
��
s �

+

s ],
where we set ✏k ⌘ ✏�k/�; hence, we first calculate
�±
s �

⌥
s = U†

s�
±�⌥Us, and after integration we get

Z
1

0

ds�±
s �

⌥
s =

1

2

h
1 ± sin(✓/2)

✓/2
R(✓, �̄)

i
, (22)

where R(✓,�) = cos(✓/2)Z + sin(✓/2)Rxy(�) and �̄ =
�+ ⇡/2, so that one has

⇤(✓,�) = �✏2
1
+ ✏2

2

4
1 � ✏2

1
� ✏2

2

4

sin(✓/2)

✓/2
R
�
✓, �̄

�
; (23)

such an expression can be exponentiated, leading to

e⇤(✓,�) = e�
✏21+✏22

4


coshF (✓)� R

�
✓, �̄

�
sinhF (✓)

�
, (24)

where we defined F (✓) = ✏21�✏22
4

sin(✓/2)
✓/2 . Secondly, we turn

to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
first calculate the expressions for the jump operators Lk,s

in the interaction picture. For k = 1, 2 one has

�±
s (✓,�) =

e±i�

2

h
Rxy(�)± iR(2s̄✓, �̄)

i
, (25)

and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
venient to define the following real stochastic variables:

⇠k,± =
1

2i(1⌥1)/2

Z
1

0

dWk,s

⇥
eis✓ ± e�is✓

⇤
, (26)

which have variances

E
⇥
⇠2k,±

⇤
=

1

2

⇥
1± sin(2✓)

2✓

⇤
(27)

and correlations

E
⇥
⇠k,+⇠j,�

⇤
=

1� cos(2✓)

4✓
�kj ; (28)

moreover, we define ⇠k,w =
R
1

0
dWk,s, such that

E
⇥
⇠2k,w

⇤
= 1, E

⇥
⇠k,+⇠k,w

⇤
= sin(✓)/✓ and E

⇥
⇠k,�⇠k,w

⇤
=⇥

1 � cos(✓)
⇤
/✓. Then, summing everything and re-

arranging conveniently, we get

⌅(✓,�|⇠) = if0Z + if1Rxy(�) + if2Rxy(�̄), (29)

where we defined the following set of complex stochastic
coe�cients:

f0 =✏3⇠3,+ � i
ei�✏2⇠2,� � e�i�✏1⇠1,�

2
, (30)

f1 =
ei�✏2⇠2,w + e�i�✏1⇠1,w

2
, (31)

f2 =✏3⇠3,� + i
ei�✏2⇠2,+ � e�i�✏1⇠1,+

2
. (32)

Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
~✓
2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads

D(1,2)
✏2 (⇢) = �

X

i2{0,1}

3X

k=1

⇥
L(i)
k ⇢L(i)†

k � 1

2

�
L(i)†
k L(i)

k , ⇢
 ⇤

,

(34)
where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where

⇤i(✓,�) = �
R
1

0
ds[✏2

1
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s ��(i)

s + ✏2
2
��(i)
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s ]/2. For
i = 1, one has the simple expression
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while for i = 2 it can be calculated that

⇤2(✓,�) = �✏2
1
+ ✏2

2

4
1 � F (✓)R(1,2)(✓, �̄), (36)

where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)

s = Z(1) and

�±(1)

s = e±is✓R2
xy(�)�±(1); for i = 2, Z(2)

s = R(1,2)(s✓, �̄)
and

�±(2)

s = cos(s✓)�±(2) ± ei�̄ sin(s✓)Z(1)Z(2). (37)
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corresponds to such unitaries when depolarization and
relaxations are taken in account during the evolution;
hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
ing the deterministic, non unitary term ⇤(✓,�). Since in
the interaction picture the evolution is unitary, one sees
that the term corresponding to k = 3 is always vanish-
ing, and one has ⇤(✓,�) = � 1
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s ],
where we set ✏k ⌘ ✏�k/�; hence, we first calculate
�±
s �

⌥
s = U†

s�
±�⌥Us, and after integration we get
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⌥
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1 ± sin(✓/2)
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i
, (22)

where R(✓,�) = cos(✓/2)Z + sin(✓/2)Rxy(�) and �̄ =
�+ ⇡/2, so that one has
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4
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such an expression can be exponentiated, leading to

e⇤(✓,�) = e�
✏21+✏22

4
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�
sinhF (✓)

�
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where we defined F (✓) = ✏21�✏22
4

sin(✓/2)
✓/2 . Secondly, we turn

to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
first calculate the expressions for the jump operators Lk,s

in the interaction picture. For k = 1, 2 one has

�±
s (✓,�) =

e±i�

2

h
Rxy(�)± iR(2s̄✓, �̄)

i
, (25)

and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
venient to define the following real stochastic variables:

⇠k,± =
1

2i(1⌥1)/2

Z
1

0

dWk,s

⇥
eis✓ ± e�is✓

⇤
, (26)

which have variances

E
⇥
⇠2k,±

⇤
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2✓

⇤
(27)

and correlations
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moreover, we define ⇠k,w =
R
1

0
dWk,s, such that

E
⇥
⇠2k,w

⇤
= 1, E

⇥
⇠k,+⇠k,w

⇤
= sin(✓)/✓ and E

⇥
⇠k,�⇠k,w

⇤
=⇥

1 � cos(✓)
⇤
/✓. Then, summing everything and re-

arranging conveniently, we get

⌅(✓,�|⇠) = if0Z + if1Rxy(�) + if2Rxy(�̄), (29)

where we defined the following set of complex stochastic
coe�cients:

f0 =✏3⇠3,+ � i
ei�✏2⇠2,� � e�i�✏1⇠1,�

2
, (30)

f1 =
ei�✏2⇠2,w + e�i�✏1⇠1,w

2
, (31)

f2 =✏3⇠3,� + i
ei�✏2⇠2,+ � e�i�✏1⇠1,+

2
. (32)

Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
~✓
2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads

D(1,2)
✏2 (⇢) = �

X

i2{0,1}

3X

k=1

⇥
L(i)
k ⇢L(i)†

k � 1

2

�
L(i)†
k L(i)

k , ⇢
 ⇤

,

(34)
where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where

⇤i(✓,�) = �
R
1

0
ds[✏2

1
�+(i)
s ��(i)

s + ✏2
2
��(i)
s �+(i)

s ]/2. For
i = 1, one has the simple expression

⇤1(✓,�) = �✏2
1
+ ✏2

2

2
1 � ✏2

1
� ✏2

2

2
Z(1), (35)

while for i = 2 it can be calculated that

⇤2(✓,�) = �✏2
1
+ ✏2

2

4
1 � F (✓)R(1,2)(✓, �̄), (36)

where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)

s = Z(1) and

�±(1)

s = e±is✓R2
xy(�)�±(1); for i = 2, Z(2)

s = R(1,2)(s✓, �̄)
and

�±(2)

s = cos(s✓)�±(2) ± ei�̄ sin(s✓)Z(1)Z(2). (37)

Single qubit noises
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FIG. 1. Time evolution of the ⇢00 entry of the density matrix for the X gate. In orange the numerical solution of the Lindblad
equation, in blue the noisy gates simulation and in red the Qiskit simulation. Noisy gates and Qiskit simulations are obtained
with 1000 realizations, and qualitatively they reproduce the time evolution obtained from the Lindblad equation. Vertical
dashed lines represent the time scales of relaxation: T1 (green) and T2 (yellow), and depolarization Td (grey).

FIG. 2. Fidelity (on the top) and Hellinger distance (on the
bottom) for the X gate for 100 independent simulations of the
two methods considered: on the left, the fidelity and Hellinger
distance of the Noisy Gates method (in blue) and of the Qiskit
simulations (in red) with the numerical solution of the Lind-
blad; On the right, the mean of the same simulations and
their variance.

circuit depth increases. We run the QFT for n = 2, . . . , 5
on ibmq manila, a device, available on the cloud, com-
prising five superconducting transmon qubits. We also
run the corresponding classical simulations.

The circuit implementing the QFT requires to per-
form gates that are not in the set of native gates of
ibmq manila, hence in order to work with the actual op-
erations executed by the quantum computer we directly
translate in Noisy Gates the transpiled circuit which com-
prises the actual Hamiltonian controls sent to the device.
We have defined a custom noise model in Qiskit, by con-
sidering after each gate of the transpiled circuit the depo-
larizing and relaxation channels, and the bit-flip channel
before measurements. Similarly, in the Noisy Gates simu-
lation each gate is replaced with its noisy version. During
idle-times of qubits we put the relaxation Noisey Gates
in order to take in account the stand-by time of the phys-

ical qubit; before measurements, we apply bit-flip Noisy
Gates which accounts for read-out errors. Runs on real
quantum computers are performed by taking 1000 shots,
i.e. measurements. As the output of the real quantum
computer are just classical probability distributions and
not quantum states, we test the performances of the two
methods by the Hellinger distance only. The results are
shown in Fig. 5, where we plot the value of the Hellinger
distance as the number of qubits increases from 2 to 5.
As in the previous section, we have run 100 independent
simulations for both methods and for each n, in order to
get the error bars also shown in the figure. The Hellinger
distances are very close to each other at every n, the
Qiskit approach having a smaller one.

Appendix A: Derivation of the approximate solution

In this appendix, let us show how the approximate
solution to Eq. (14) can be rigorously derived to order
O(✏2). We propose two di↵erent methods.

1. Proof 1

As a first proof, let us perform the stochastic unrav-
eling in the interaction picture, hence defining the state
quantum trajectory at any time as | s(⇠)i = Us |�s(⇠)i,
where the state vector |�s(⇠)i is the solution, at time s,
of the Ito equation

d |�si =

i✏

N2�1X

k=1

dWk,sLk,s�
✏2

2

N2�1X

k=1

dsLdagk,sLk,s

�
|�si ;

(A1)
here, dWk,s are defined as in the main text, and we
defined the jump operators in the interaction picture,
Lk,s := UdagsLkUs. Then, formally the solution to Eq.
(14) can be written as N̄(⇠) = Ug limM!1 N̄M , where
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VII. SIMULATIONS

In the following, we use our model to simulate the noisy
behaviour of IBM’s quantum devices, with the purpose
of understanding the performances of the Noisy Gates
method, and of comparing it to standard methods; par-
ticularly, we want to compare our method with the Qiskit
simulator. First in section VIIA we test which method
is able to reproduce with more accuracy and precision
the solution of Lindblad equations of the form (10), fo-
cusing on those which are relevant to IBM’s native gate
set. Then, in section VIIB we compare the predictions
of both methods with the behaviour of an actual quan-
tum device by running the QFT algorithm on the IBM’s
quantum processor ibmq manila.

A. Comparison with the numerical solution of
Lindblad equations

First, let us compare our method with the Qiskit sim-
ulator in the task of simulating Lindblad equations. To
this purpose, we simulate the same Lindblad equation
with both methods, and then benchmark it with a nu-
merical solution obtained with Mathematica; we will al-
ways compare two di↵erent density matrices ⇢ and �
via their fidelity and Hellinger distance, respectively de-
fined by

p
F(⇢,�) = Tr

p
�1/2⇢�1/2 and H2(⇢,�) =

PN2

k=1

�p
⇢kk � p

�kk

�2
/2, where ⇢kk denotes the diag-

onal element of ⇢. We decided to run the simulations on
both single and two qubit gates, choosing those which
constitute the native set for IBM’s quantum computers.

Single qubit simulations. First, we benchmark our
method with the Qiskit simulator in the simulation of
the X gate, which can be obtained by putting ✓ = ⇡ and
� = 0 in (21); hence, we initialize the qubit in |0i and
consider the corresponding Hamiltonian H = ~⇡X/2 in
the presence of the noises discussed in Section III. We
consider the evolution for a time T = N tg, with N an
integer. In Fig. VIIA we plot the time evolution of the
population of the ground state, ⇢00, as obtained with the
three methods. In the noiseless case, ⇢00 should oscillate
between 0 and 1 with period 2tg, as at each step of tg
a complete X rotation is performed; in the presence of
noises, the oscillations are damped due to the relaxation
of the qubit, while the depolarization drives it towards
the asymptotic value ⇢00 ! 0.5. Both our simulation
and Qiskit’s one qualitatevily reproduce this behaviour.
In Fig. VIIA we have also highlighted with dashed verti-
cal lines the characteristic times of relaxation and depo-
larization (see the caption); for times approaching these
values the state is not a reliable quantum state any-
more, as the density matrix becomes completely mixed.
Given this consideration, in the following plots we choose
N = 2000. In order to inspect which of the two models
reproduces more accurately and precisely the Lindblad

evolution, we have run 100 independent simulations with
both the Noisy Gates method and the Qiskit simulator,
computing for each run the fidelities and Hellinger dis-
tances between the results obtained with the each of two
methods and the one given by the numerical simulation
with Mathematica. We computed the means over the 100
independent simulations, F̄ and H̄, and the variances�F
and �H; see Fig. VIIA and caption for the results. We
notice that during the relevant time interval [0, T ] the fi-
delity and Hellinger distance of the Noisy Gates method
are closer to one and zero, respectively, than the Qiskit
simulations; however, both results are compatible within
the error bars. Finally, we remark that the variances as-
sociated to the Noisy Gates simulations are significantly
smaller than those of the Qiskit simulations.
Two qubits simulations. Next, we benchmark the two

methods with the numerical solution in the simulation
of the Cross-resonance operation (33), where we choose
� = 0 and ✓ = ⇡. We initialize the system in the state
|10i. In Fig. 3 and 3 we show, respectively, the time
evolution of the entries ⇢00 and ⇢22 = h10|⇢|10i; the x-
axis is normalized in terms of the two-qubit gate time
tg. The two-qubit state goes asymptotically to the com-
pletely mixed state as both ⇢00 and ⇢22 reach the asymp-
totic value 0.25. The probability ⇢22, which in the ideal
case should flip between one and zero, is again damped
over time by relaxation e↵ects. We have highlighted with
vertical dashed lines the characteristic time scales of the
noises, showing only the T1 and T2 values of the target
qubit as representative values. The depolarizing error is
the dominant one, spoiling the quantum state already
after ⇠ 100 gates; therefore we will consider a total du-
ration N ⇠ 100. We notice that in both cases the Noisy
Gates method performs better already at the qualitative
level within the interval [0, T ]. As before, we report the
fidelity and Hellinger distances, showing the di↵erent re-
sults of 100 independent simulations and their mean and
variance in figures 4 and 4. As in the single qubit case,
we notice that within the relevant time interval [0, T ] fi-
delities and Hellinger distances obtained with the Noisy
Gates simulations are closer to one and zero, respectively,
than those obtained with the Qiskit simulator. However
now, di↵erently from the single qubit case, the two results
are not compatible between error bars.

B. Comparison with the behaviour of a real
quantum computer

Now, want to inspect the performances of the Noisy
Gates approach when trying to reproduce the behaviour
of a real quantum computer. To this purpose, we choose
to focus on the Quantum Fourier Transform (QFT),
which is a subroutine of many important quantum al-
gorithms, such as Shor’s factorization. As an important
feature of QFT, we notice that given the QFT circuit for
n qubits, it is readily extendable to n+1 qubits; thus we
can e�ciently test the robustness of the method as the

Average over 1000 realizations Average over 1000 realizationsNumerical solution
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FIG. 3. Time evolution of the ⇢00 (on the top) and ⇢22 (on the bottom) entries of the density matrix for the CR gate with
✓ = ⇡ and � = 0. In orange the numerical solution of the Lindblad equation, in blue the Noisy Gates simulation and in red the
Qiskit simulation. The Noisy Gates simulations reproduce qualitatively better the time evolution obtained from the numerical
solution; vertical dashed lines represent the time scales of relaxation, T1 (in green) and T2 (in yellow) of the target qubit, and
depolarization Td (grey).

FIG. 4. Fidelity (on the top) and Hellinger distance (on the
bottom) for the cross resonance gate. On the left, 100 inde-
pendent simulations for the Noisy Gates, in blue, and for the
Qiskit simulations, in red. On the right, the mean over the
simulations and their variance.
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FIG. 5. Hellinger distance for the QFT algorithm for n =
2, . . . , 5 qubits. Each value is the mean of 100 independent
simulations for the noisy gates, in blue, and for the Qiskit
simulations, in red.

At this stage, we are dropping the dependence ⇠ on the
realization of the Wiener processes just to avoid the for-
malism becoming too heavy. For general purposes (and,
in particular, for ours) N̄(⇠) can not be calculated ana-
lytically; hence, we show how to obtain a general form
to the second order in ✏ (i.e., to first order in �tg). First,
let us prove that the following approximation holds:
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FIG. 3. Time evolution of the ⇢00 (on the top) and ⇢22 (on the bottom) entries of the density matrix for the CR gate with
✓ = ⇡ and � = 0. In orange the numerical solution of the Lindblad equation, in blue the Noisy Gates simulation and in red the
Qiskit simulation. The Noisy Gates simulations reproduce qualitatively better the time evolution obtained from the numerical
solution; vertical dashed lines represent the time scales of relaxation, T1 (in green) and T2 (in yellow) of the target qubit, and
depolarization Td (grey).
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Future work

Better analysis of noises, especially for two qubit gates

Comparison with real quantum computer

Application to algorithm of interest, to extract “long-time” behaviour



Thank you

Check the poster of Giovanni di Bartolomeo and Michele Vischi for further details


