Noisy Gates for Quantum Computing

International Conference on Quantum Technologies for High-Energy Physics

CERN, 1-4 November 2022

Angelo Bassi University of Trieste & INFN - Italy

The Team & Collaborators

Sandro Donadi

Michele Vischi

Giovanni Di Bartolomeo

Francesco Cesa

Michele Grossi @CERN

www.qmts.it

Real Quantum Computers

In an ideal (= isolated) world, quantum computers run beautifully

In real life, they are subject to noise

- Quantum Error Correction, but even more qubits are needed
- NISQ (Noise Intermediate-Scale Quantum) devices

Study the noise

A **proper theoretical modelling** of the effect of the environment on a quantum systems allows to:

- Have a physical understanding of the sources of noise
- Suggest strategies to **mitigate errors**

 Perform accurate simulations to predict how the performances scale with the number of qubits/gates.

Georgopoulos, K., Emary, C., & Zuliani, P. (2021). Modeling and simulating the noisy behavior of near-term quantum computers. *Physical Review A, 104*(6), 062432. Sun, J., Yuan, X., Tsunoda, T., Vedral, V., Benjamin, S. C., & Endo, S. (2021). Mitigating realistic noise in practical noisy intermediate-scale quantum devices. *Physical Review Applied, 15*(3), 034026. Guerreschi, G. G., & Matsuura, A. Y. (2019). QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. *Scientific reports, 9*(1), 1-7. Xue, C., Chen, Z. Y., Wu, Y. C., & Guo, G. P. (2021). Effects of quantum noise on quantum approximate optimization algorithm. *Chinese Physics Letters, 38*(3), 030302. Resch, S., & Karpuzcu, U. R. (2021). Benchmarking quantum computers and the impact of quantum noise. *ACM Computing Surveys (CSUR), 54*(7), 1-35.

Standard noise model

Breuer and Petruccione: The Theory of Open Quantum Systems, Oxford University Press (2002)

Theory of open quantum systems

$$\begin{split} |\psi\rangle \ \to \ \rho = |\psi\rangle\langle\psi| \qquad \qquad \frac{d}{dt}\rho_t = -\frac{i}{\hbar}[H_t,\rho_t] + \sum_k \gamma_k \left[L_k\rho_t L_k^{\dagger} - \frac{1}{2}\{L_k^{\dagger}L_k,\rho_t\}\right] \\ \text{State vector} \qquad \text{Density matrix} \qquad \qquad \text{Internal evolution} \qquad \qquad \text{Effect of the environment} \end{split}$$

Issues to deal with:

- More complicated dynamics; how to model the environment efficiently
- With the density matrix, the problem scales quadratically with the size of the problem.

How to describe noises

- Gates and noise are formally **decoupled** (a sort of Trotterizzation), because time scales are small (IBM: gate time $\sim 10^{-8}$ s, decoherence times $\sim 10^{-4}$ s)
- Noises (like gates) formally act instantly: Lindblad \rightarrow Kraus

$$\rho \rightarrow \sum_{i} K_{i} \rho K_{i}^{\dagger} \qquad \sum_{i} K_{i}^{\dagger} K_{i} = 1$$

 Use the quantum-jump-like approach to replace the density matrix with (stochastic) state vector → stochastic dynamics

Noisy Gates

Our approach: provide a more accurate description of the noisy behaviour of a quantum computer

- Noises are **embedded** in the gate \rightarrow more realistic picture
- State vector (stochastic) description

From Lindblad to stochastic differential equations (SDE)

$$\frac{d}{dt}\rho_{t} = -\frac{i}{\hbar}[H_{t},\rho_{t}] + \underbrace{\sum_{k}\gamma_{k}\left[L_{k}\rho_{t}L_{k}^{\dagger} - \frac{1}{2}\{L_{k}^{\dagger}L_{k},\rho_{t}\}\right]}_{\text{Gate}} = \mathfrak{D}(\rho)$$

$$\text{Gate}$$
Noise

$$d|\psi_t\rangle = \left[-\frac{i}{\hbar}H_t dt + \sum_k \left(i\sqrt{\gamma_k}L_k dW_{k,t} - \frac{\gamma_k}{2}L_k^{\dagger}L_k dt\right)\right]|\psi_t\rangle$$

Stochastic evolution for the state vector (stochastic unravelling)

Formal equivalence: $\rho_t = \mathbb{E}[|\psi_t\rangle\langle\psi_t|]$

Noisy gate

Bassi, A., & Deckert, D. A. (2008). Noise gates for decoherent quantum circuits. *Physical Review A*, 77(3), 032323.

$$\mathrm{d} \left| \psi_{s} \right\rangle = \left[-\frac{i}{\hbar} \mathrm{H}_{s} \mathrm{d}s + \sum_{k=1}^{N^{2}-1} \left[i\epsilon \mathrm{d} \mathrm{W}_{k,s} - \frac{\epsilon^{2}}{2} \mathrm{d}s \mathrm{L}_{k}^{\dagger} \right] \mathrm{L}_{k} \right] \left| \psi_{s} \right\rangle$$

The dynamics is **linear**, therefore it can be represented as a gate (noisy gate)

$$|\psi_{s=1}(\boldsymbol{\xi})\rangle = \bar{\mathrm{N}}(\boldsymbol{\xi}) |\psi_0\rangle$$

Due to the noises **ξ**, the gate is not unitary and norm preserving. But at the statistical level the trace is preserved, and one recovers the standard (Lindblad) behaviour.

Solution of the SDE

Gardiner, C. W. (1985). *Handbook of stochastic methods* (Vol. 3, pp. 2-20). Berlin: Springer. Arnold, L. (1974). Stochastic differential equations. *New York:* John Wiley & Sons

$$\bar{\mathbf{N}}(\boldsymbol{\xi}) = \mathbf{U}_g e^{\Lambda} e^{\Xi(\boldsymbol{\xi})}$$

 U_g = noiseless gate

$$s \in [0,1]$$

$$\Lambda = -\frac{\epsilon^2}{2} \int_0^1 \mathrm{d}s \sum_{k=1}^{N^2 - 1} \left[\mathbf{L}_{k,s}^{\dagger} \mathbf{L}_{k,s} - \mathbf{L}_{k,s}^2 \right]$$
$$\Xi(\boldsymbol{\xi}) = i\epsilon \sum_{k=1}^{N^2 - 1} \int_0^1 \mathrm{dW}_{k,s} \mathbf{L}_{k,s}$$

Deterministic contribution of the noise, to order $O(\epsilon^2)$

Stochastic contribution of the noise, to order $O(\epsilon^2)$

••••••••• Operators in the interaction picture

IBM single qubit gates

Krantz, P., Kjaergaard, M., Yan, F., Orlando, T. P., Gustavsson, S., & Oliver, W. D. (2019). A quantum engineer's guide to superconducting qubits. *Applied Physics Reviews*, 6(2), 021318.

$$U(\theta,\phi) = e^{-i\theta R_{xy}(\phi)/2} \qquad \qquad R_{xy}(\phi) = \cos(\phi)X + \sin(\phi)Y$$

Generated by the Hamiltonian

$$H(\theta,\phi) = \frac{\theta\hbar}{2}R_{xy}(\phi)$$
 for a duration $s \in [0,1]$

Rotations along the z-axis are implemented as virtual gates.

Note: how to implement the pulse

IBM computers: main single qubit noises

Krantz, P., Kjaergaard, M., Yan, F., Orlando, T. P., Gustavsson, S., & Oliver, W. D. (2019). A quantum engineer's guide to superconducting qubits. *Applied Physics Reviews*, *6*(2), 021318. Georgopoulos, K., Emary, C., & Zuliani, P. (2021). Modeling and simulating the noisy behavior of near-term quantum computers. *Physical Review A*, *104*(6), 062432.

Depolarization: initial state \rightarrow maximally mixed state

$$\mathfrak{D}_d(\rho) = \gamma_d \sum_{k=1}^3 \left[\sigma^k \rho \sigma^k - \rho \right]$$

Relaxation: amplitude damping (initial state → ground state) + phase damping

$$\mathfrak{D}_R(\rho) = \gamma_1 \left[\sigma^+ \rho \sigma^- - \frac{1}{2} \left\{ \mathbb{P}^{(1)}, \rho \right\} \right] + \gamma_z \left[\mathbb{Z}\rho \mathbb{Z} - \rho \right]$$

Combining the noises and diagonalizing in the canonical form:

$$\lambda_k \sim 10^4 \text{Hz}$$

$$t_g \sim 10^{-8} s$$

$$\epsilon = \sqrt{\lambda t_g} \ll 1$$

Single qubit noisy gate

$$\bar{\mathbf{N}}(\boldsymbol{\xi}) = \mathbf{U}_g e^{\Lambda} e^{\bar{\Xi}(\boldsymbol{\xi})}$$

$$\Lambda(\theta,\phi) = -\frac{\epsilon_1^2 + \epsilon_2^2}{4} \mathbb{1} - \frac{\epsilon_1^2 - \epsilon_2^2}{4} \frac{\sin(\theta/2)}{\theta/2} \mathcal{R}(\theta,\bar{\phi})$$

$$\bar{\phi} = \phi + \pi/2$$

 $\Xi(\theta, \phi | \boldsymbol{\xi}) = i f_0 \mathbf{Z} + i f_1 \mathbf{R}_{xy}(\phi) + i f_2 \mathbf{R}_{xy}(\bar{\phi})$

$$f_{0} = \epsilon_{3}\xi_{3,+} - i\frac{e^{i\phi}\epsilon_{2}\xi_{2,-} - e^{-i\phi}\epsilon_{1}\xi_{1,-}}{2}$$

$$f_{1} = \frac{e^{i\phi}\epsilon_{2}\xi_{2,w} + e^{-i\phi}\epsilon_{1}\xi_{1,w}}{2},$$

$$f_{2} = \epsilon_{3}\xi_{3,-} + i\frac{e^{i\phi}\epsilon_{2}\xi_{2,+} - e^{-i\phi}\epsilon_{1}\xi_{1,+}}{2}$$

Stochastic properties of the noise

$$\mathbb{E}[\xi_{k,\pm}^2] = \frac{1}{2} \left[1 \pm \frac{\sin(2\theta)}{2\theta} \right]$$
$$\mathbb{E}[\xi_{k,\pm}\xi_{j,-}] = \frac{1 - \cos(2\theta)}{4\theta} \delta_{kj}$$
$$\mathbb{E}[\xi_{k,w}^2] = 1, \ \mathbb{E}[\xi_{k,\pm}\xi_{k,w}] = \sin(\theta)/\theta$$
$$\mathbb{E}[\xi_{k,-}\xi_{k,w}] = \left[1 - \cos(\theta) \right]/\theta$$

IBM two qubit gates and noises

Krantz, P., Kjaergaard, M., Yan, F., Orlando, T. P., Gustavsson, S., & Oliver, W. D. (2019). A quantum engineer's guide to superconducting qubits. Applied Physics Reviews, 6(2), 021318. McKay, D. C., Wood, C. J., Sheldon, S., Chow, J. M., & Gambetta, J. M. (2017). Efficient Z gates for quantum computing. Physical Review A, 96(2), 022330. Rigetti, C., & Devoret, M. (2010). Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies. Physical Review B, 81(13), 134507.

$$U^{(1,2)}(\theta,\phi) = e^{-i\theta Z^{(1)} \otimes R^{(2)}_{xy}(\phi)/2}$$

 $R_{xy}(\phi) = \cos(\phi)X + \sin(\phi)Y$

Generated by the Hamiltonian

$$\mathbf{H}^{(1,2)}(\theta,\phi) = \frac{\hbar\theta}{2} \mathbf{Z}^{(1)} \otimes \mathbf{R}_{xy}^{(2)} \quad \text{ for a duration } s \in [0,1]$$

Single qubit **noises**

$$\mathfrak{D}_{\epsilon^{2}}^{(1,2)}(\rho) = \lambda \sum_{i \in \{0,1\}} \sum_{k=1}^{3} \left[\mathbf{L}_{k}^{(i)} \rho \mathbf{L}_{k}^{(i)\dagger} - \frac{1}{2} \left\{ \mathbf{L}_{k}^{(i)\dagger} \mathbf{L}_{k}^{(i)}, \rho \right\} \right]$$

Simulation of the (single qubit) noisy X gate

Initial state = $|0\rangle$ Shown: $\langle 0|\rho|0\rangle$

Simulation of the (single qubit) noisy X gate

Fidelity

Lindblad and noisy gates

Lindblad and Qiskit simulator

100 independent simulations each including 1000 runs

(5 shown on the left)

Simulation of the (two qubit) noisy CR gate

Initial state = $|10\rangle$ Shown: $\langle 10|\rho|10\rangle$

Simulation of the (single qubit) noisy X gate

Fidelity

Lindblad and noisy gates

Lindblad and Qiskit simulator

100 independent simulations each including 1000 runs

Future work

Better analysis of noises, especially for two qubit gates

Comparison with real quantum computer

Application to algorithm of interest, to extract "long-time" behaviour

Thank you

Check the **poster** of **Giovanni di Bartolomeo** and **Michele Vischi** for further details