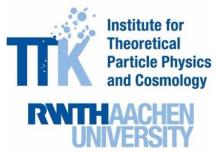
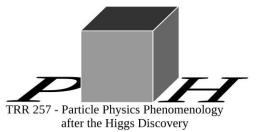
Quark Mass Effects in Gluon Fusion at NNLO in QCD

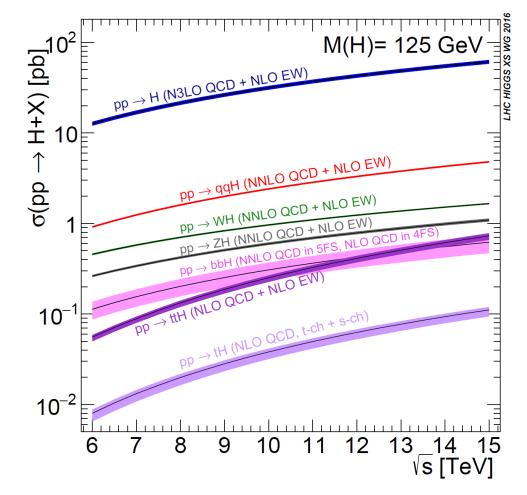

Marco Niggetiedt


in collaboration with M. Czakon, R.V. Harlander and J. Klappert

RWTH Aachen University

Max-Planck-Institute for Physics Munich

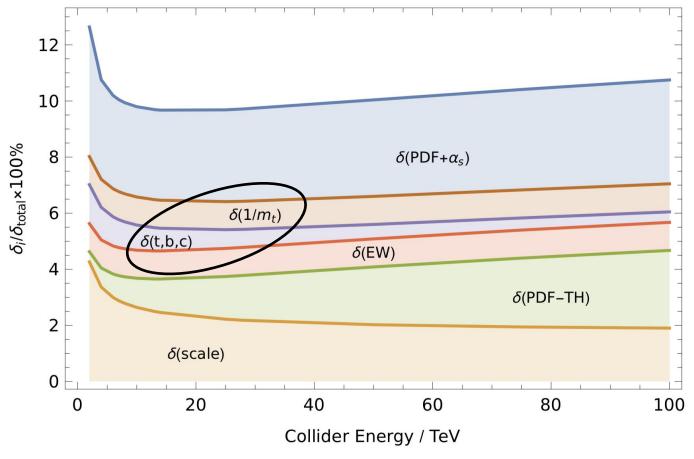
Based on PRL 127 (2021), 162002



Motivation

- Gluon fusion is the predominant Higgsboson production mode at the LHC
- Higgs-boson plays unique role in the SM:
 - Only scalar particle
 - Only particle with Yukawa interactions to fermions

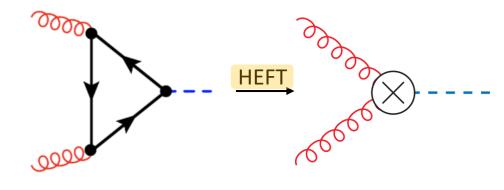
Handbook of LHC Higgs cross sections:4. Deciphering the nature of the Higgs sectorReport of the LHC Higgs Cross Section Working Group `16


LHC @13 TeV

$$\sigma = 48.58 \, \mathrm{pb}_{-3.27 \, \mathrm{pb} \, (-6.72\%)}^{+2.22 \, \mathrm{pb} \, (+4.56\%)}$$
 (theory) $\pm 1.56 \, \mathrm{pb} \, (3.20\%)$ (PDF+ α_s)

Theory uncertainties

- δ (scale) and δ (PDF-TH) due to missing higherorder terms in $\hat{\sigma}$ and PDFs Anastasiou, et al. `15
- δ (trunc) has been removed Mistlberger `18
- δ(EW) was addressed recently
 Bonetti, Melnikov, Tancredi `18
 Anastasiou, del Duca, et al. `19
 Becchetti, Bonciani, et al. `21
- $\delta({\rm t,b,c})$ and $\delta({\rm 1}/m_t)$ related to quark mass effects

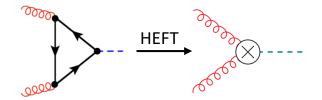

Higgs Physics at the HL-LHC and HE-LHC Report from Working Group 2 on the Physics of the HL-LHC, and Perspectives at the HE-LHC `19

_						
	δ (scale)	δ (trunc)	$\delta(\text{PDF-TH})$	$\delta(EW)$	$\delta(t,b,c)$	$\delta(1/m_t)$
	$+0.10 \text{ pb} \\ -1.15 \text{ pb}$	$\pm 0.18~\mathrm{pb}$	±0.56 pb	±0.49 pb	±0.40 pb	±0.49 pb
	$+0.21\% \\ -2.37\%$	$\pm 0.37\%$	$\pm 1.16\%$	±1%	$\pm 0.83\%$	±1%

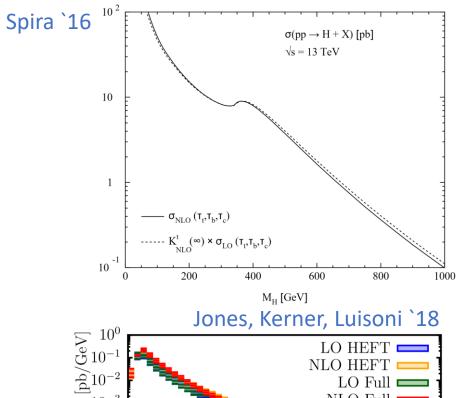
Handbook of LHC Higgs cross sections:
4. Deciphering the nature of the Higgs sector
Report of the LHC Higgs Cross Section
Working Group `16

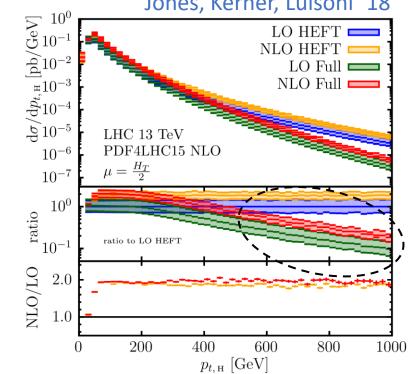
Contributions to σ_{tot}

"Born-improved" total cross section:


$$\sigma_{\mathrm{HEFT}}^{\mathrm{HO}} = \left(\frac{\sigma^{\mathrm{HO}}}{\sigma^{\mathrm{LO}}}\right)_{M_{\mathrm{t}} \to \infty} \sigma^{\mathrm{LO}}$$

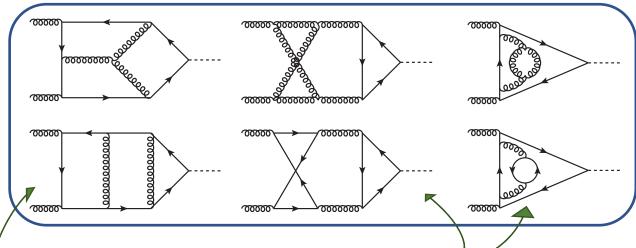
- Gluon-fusion is induced by quark loops
 - NLO result available for arbitrary quark masses Graudenz, Spira, Zerwas `93
 - Radiative corrections beyond NLO restricted to toploop induced terms
- Dominant effect of top-loop induced terms can be accounted for in HEFT approximation


Anastasiou, Melnikov `02
Harlander, Kilgore `02
Ravindran, Smith, van Neerven `03
Marzani, Ball, Del Duca, et al. `08
Harlander, Mantler, Marzani, et al. `09
Pak, Rogal, Steinhauser `09


HEFT

- Introduce effective Higgs-gluon vertex
 - → reduce number of loops by one
 - → reduce number of scales by one

- Very good agreement with exact result at NLO
- → Remarkable, because
 - M_t being the largest scale is invalid over large range of $\sqrt{\hat{s}}$
 - $M_t \to \infty$ is applied to more than 50% of total cross section
 - HEFT fails to capture top-mass effects for partonic quark channels
- Qualitative explanation:
 - Suppression of large- \hat{s} region by PDFs
 - Dominance of the soft region
- Only estimate of top-mass effects beyond HEFT at NNLO based on combination of $1/M_t$ -expansion with leading terms in large- \hat{s} limit
 - → Eliminate this uncertainty with exact calculation of top-quark mass effects

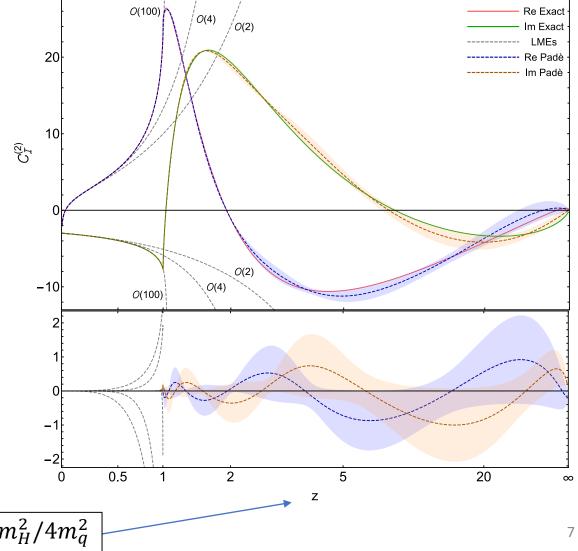


(also Bonciani, Del Duca, Frellesvig, et al. `22)

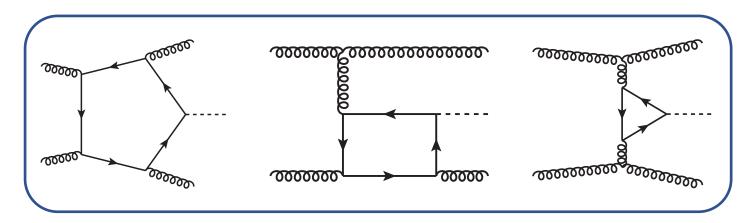
Ingredients for gluon fusion at NNLO

Ingredients – Double Virtual

Light-fermion contribution (analytically):


Harlander, Prausa, Usovitsch `19

Leading color contribution (analytically):


Prausa, Usovitsch `20

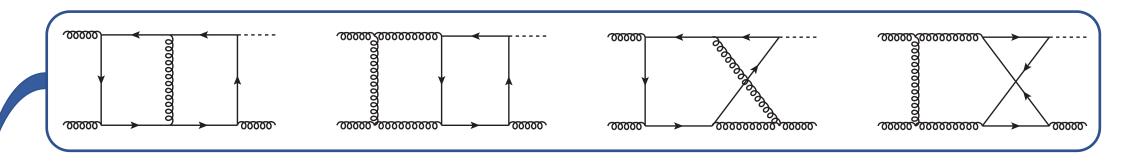
Padé approximation: Davies, Gröber, Maier et al. `19

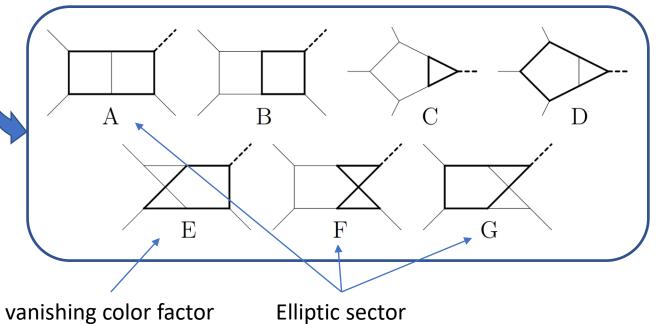
Numerically exact: Czakon, MN `20

Ingredients – Double Real

+ quark channels with possibly different quark flavors

Evaluation:


Analytically: Del Duca, Kilgore, Oleari, et al. `01


OpenLoops 2: Buccioni, Lang, Lindert, et al. `19

Analytically (more compact): Budge, Campbell, De Laurentis, et al. `20

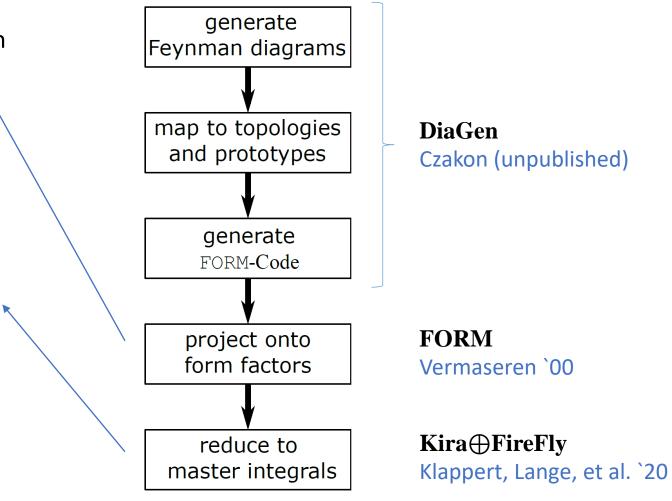
Ingredients – Real-Virtual

A,B,C,D: Bonciani, Del Duca, Frellesvig, et al. `16 F: Bonciani, Del Duca, Frellesvig, et al. `19

G: Frellesvig, Hidding, Maestri, et al. `19

→ leading to H+jet at NLO with top and bottom massive:

Bonciani, Del Duca, Frellesvig, et al. `22


Contributions with two closed fermion chains are always factorizable:

000000

Workflow of the computation

 Get rid of tensor/colour structure to end up with a linear combination of scalar integrals with rational function coefficients in front

- Reduce the scalar integrals to a linearly independent set of master integrals (MI) (447 master integrals for gg→Hg)
- Reduction is highly non-trivial since rational coefficients depend on 5 variables!
 - → Use finite fields to reconstruct symbolic coefficients from numerical probes of the system of equations

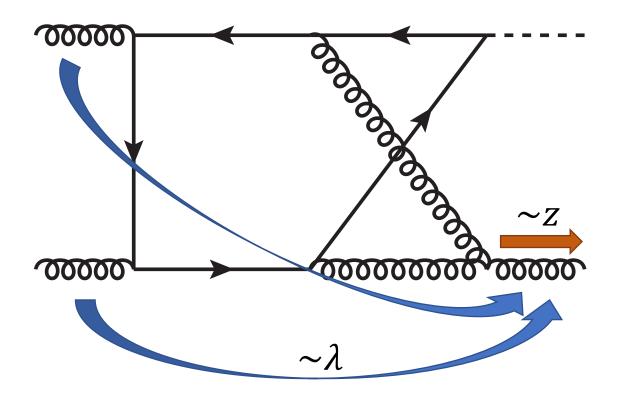
Computation of the MIs

Parametrization

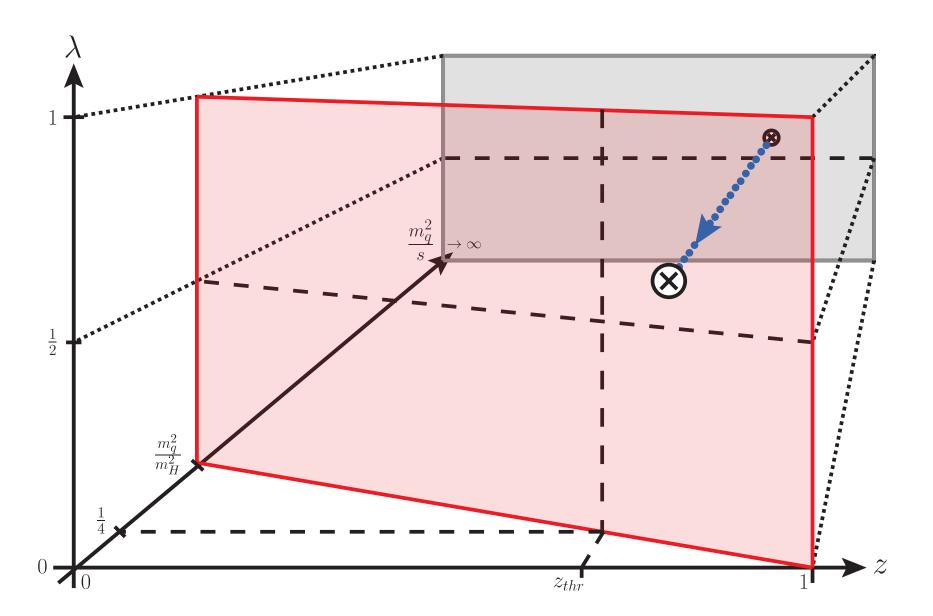
- Variables: \hat{s} , \hat{t} , \hat{u} , m_H^2 , m_t^2
- Introduce dimensionless variables and fix ratio m_t^2/m_H^2
 - > z parametrizes soft limit
 - $\triangleright \lambda$ parametrizes collinear limit

$$\hat{t}/\hat{s} = z \lambda$$

$$\hat{u}/\hat{s} = z (1-\lambda)$$

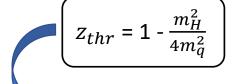


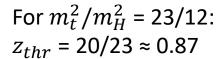
$$z = 1-m_H^2/\hat{s}$$
$$\lambda = \hat{t}/(\hat{t}+\hat{u})$$

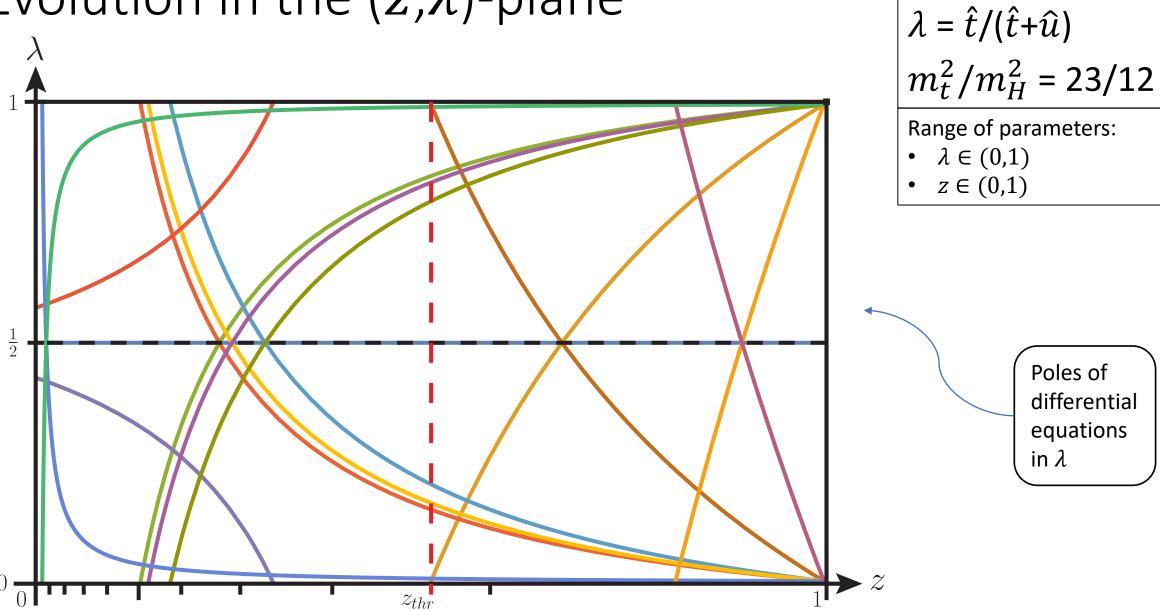

$$z = 1-m_H^2/\hat{s}$$
$$\lambda = \hat{t}/(\hat{t}+\hat{u})$$
$$m_t^2/m_H^2 = 23/12$$

Range of parameters:

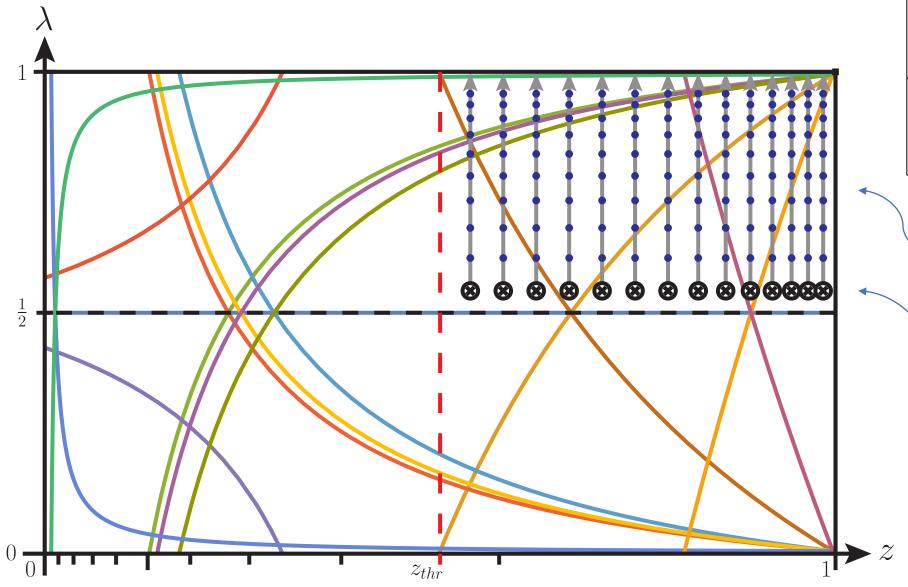
- $\lambda \in (0,1)$
- $z \in (0,1)$


Evolution of differential equations




$$z = 1-m_H^2/\hat{s}$$
$$\lambda = \hat{t}/(\hat{t}+\hat{u})$$
$$m_t^2/m_H^2 = 23/12$$

Range of parameters:

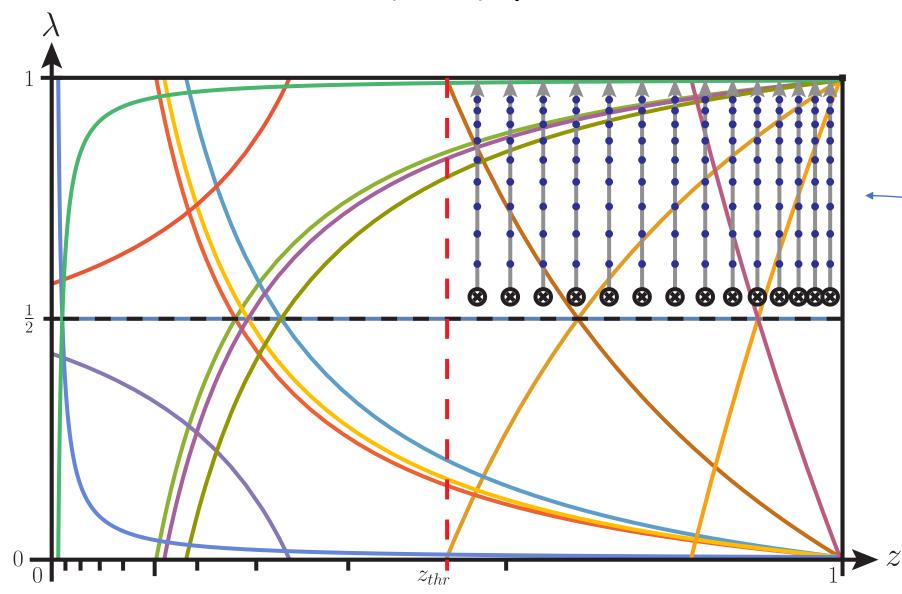

- $\lambda \in (0,1)$
- $z \in (0,1)$

 $z = 1 - m_H^2 / \hat{s}$

$$Z = 1 - m_H^2 / \hat{s}$$

$$\lambda = \hat{t} / (\hat{t} + \hat{u})$$

$$\lambda = \hat{t}/(\hat{t}+\hat{u})$$


$$m_t^2/m_H^2 = 23/12$$

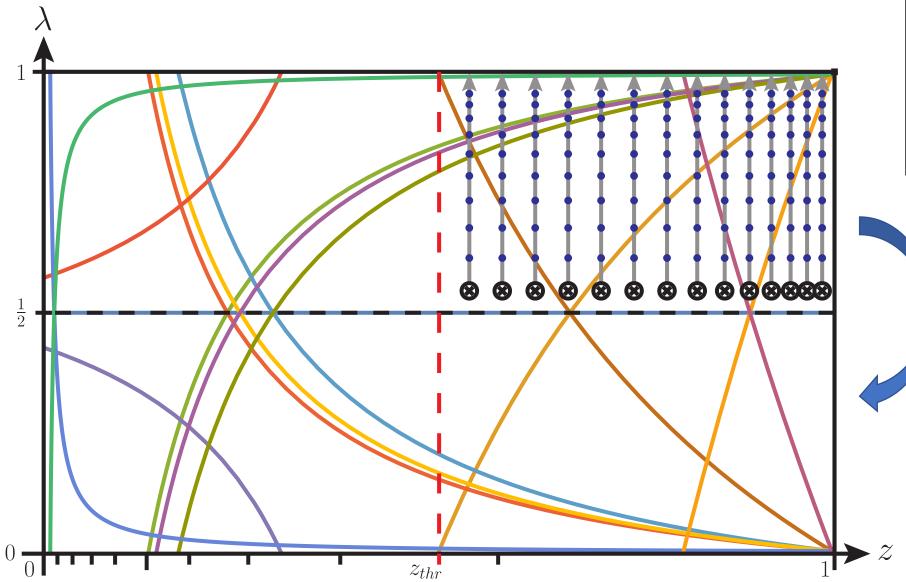
Range of parameters:

- $\lambda \in (0,1)$
- $z \in (0,1)$

Collect numerical samples for MI along straight integration contours

Boundaries for numerical integration in the mass

$$z = 1-m_H^2/\hat{s}$$


$$\lambda = \hat{t}/(\hat{t}+\hat{u})$$

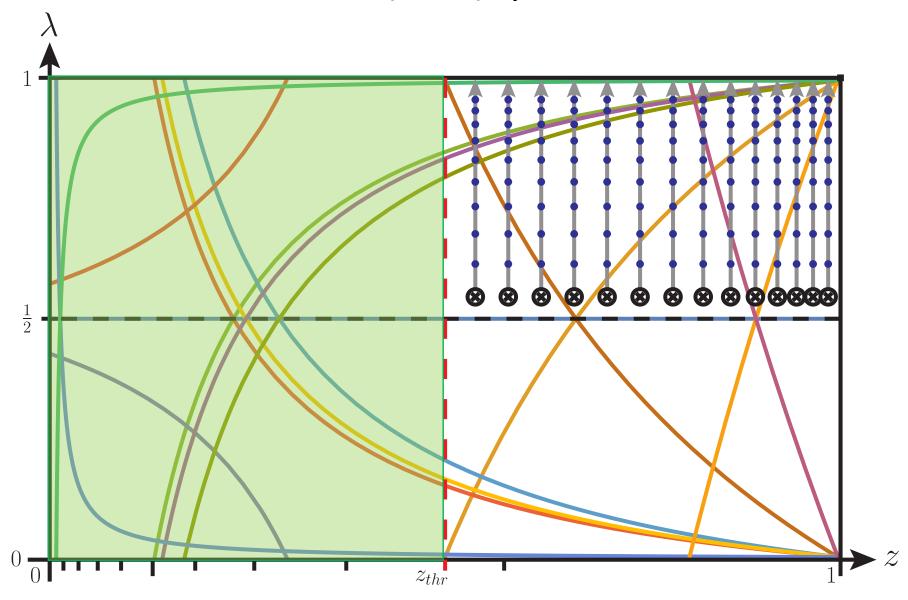
$$m_t^2/m_H^2 = 23/12$$

Range of parameters:

- $\lambda \in (0,1)$
- $z \in (0,1)$

- 302 integration contours at different z
- Collected more than 1.5×10^6 samples

$$z = 1-m_H^2/\hat{s}$$


$$\lambda = \hat{t}/(\hat{t}+\hat{u})$$

$$m_t^2/m_H^2 = 23/12$$

Range of parameters:

- $\lambda \in (0,1)$
- $z \in (0,1)$

Exploit symmetry of the problem

$$z = 1-m_H^2/\hat{s}$$

$$\lambda = \hat{t}/(\hat{t}+\hat{u})$$

$$m_t^2/m_H^2 = 23/12$$

Range of parameters:

- $\lambda \in (0,1)$
- $z \in (0,1)$

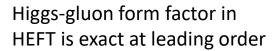
Region below threshold covered by LME

LME $\mathcal{O}((1/m_q^2)^{40})$

Subtraction of IR limits

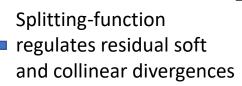
Subtraction for $gg \rightarrow gH$

 $z = 1-m_H^2/\hat{s}$ $\lambda = \hat{t}/(\hat{t}+\hat{u})$ $m_t^2/m_H^2 = 23/12$


- Interested in finite results
 - > Soft and collinear divergences
 - Amplitudes have to be regulated
 - Directly evaluate difference between HEFT and exact result:

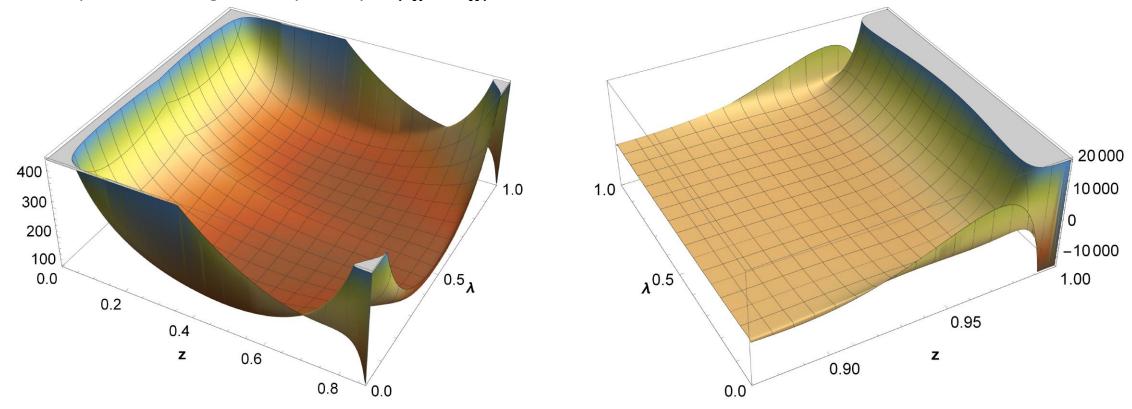
NLO:
$$\langle M_{\mathrm{exact}}^{(1)} | M_{\mathrm{exact}}^{(1)} \rangle \Big|_{\mathrm{regulated}} \equiv \langle M_{\mathrm{exact}}^{(1)} | M_{\mathrm{exact}}^{(1)} \rangle - \left| \langle M_{\mathrm{HEFT}}^{(1)} | M_{\mathrm{HEFT}}^{(1)} \rangle \right|$$

$$\text{NNLO: } \langle M_{\text{exact}}^{(1)} | M_{\text{exact}}^{(2)} \rangle \big|_{\text{regulated}} \equiv \langle M_{\text{exact}}^{(1)} | M_{\text{exact}}^{(2)} \rangle - \left| \langle M_{\text{HEFT}}^{(1)} | M_{\text{HEFT}}^{(2)} \rangle + \frac{8\pi\alpha_s}{\hat{t}} \left\langle P_{gg}^{(0)} \left(\frac{\hat{s}}{\hat{s} + \hat{u}} \right) \right\rangle \langle F^{(1)} | \left(F_{\text{exact}}^{(2)} - F_{\text{HEFT}}^{(2)} \right) \rangle \right|$$


- > Better numerical stability!
- > Appearance of divergences delayed!
 - Simple counterterms!

One of the reasons for the smallness of top-quark mass effects beyond HEFT

$$\left| F_{\text{exact}}^{(1)} \right|^2 = \left| F_{\text{HEFT}}^{(1)} \right|^2$$



Subtraction for $gg \rightarrow gH$

$$z = 1-m_H^2/\hat{s}$$
$$\lambda = \hat{t}/(\hat{t}+\hat{u})$$
$$m_t^2/m_H^2 = 23/12$$

$$\langle M_{\text{exact}}^{(1)}|M_{\text{exact}}^{(2)}\rangle\big|_{\text{regulated}} \equiv \langle M_{\text{exact}}^{(1)}|M_{\text{exact}}^{(2)}\rangle - \left[\langle M_{\text{HEFT}}^{(1)}|M_{\text{HEFT}}^{(2)}\rangle + \frac{8\pi\alpha_s}{\hat{t}}\left\langle P_{gg}^{(0)}\left(\frac{\hat{s}}{\hat{s}+\hat{u}}\right)\right\rangle \langle F^{(1)}|\left(F_{\text{exact}}^{(2)} - F_{\text{HEFT}}^{(2)}\right)\rangle\right]$$

Real part of the regulated quantity at $\mu_R = m_H/2$:

- Integrate in λ and convolute with PDFs to obtain contribution to σ_{tot}
- Subtraction term and other contributions are computed with Monte Carlo methods using Stripper Czakon (unpublished) 21

Results

- Effects of a finite top-quark mass on the total hadronic Higgs-boson production cross section for the LHC
 - PDF set: NNPDF31_nnlo_as_0118
 - $\mu_R = \mu_F = m_H/2$
 - M_H = 125 GeV \Rightarrow M_t \approx 173.055 GeV

channel	$\sigma_{\text{HEFT}}^{\text{NNLO}} [\text{pb}]$ $\mathcal{O}(\alpha_s^2) + \mathcal{O}(\alpha_s^3) + \mathcal{O}(\alpha_s^4)$	$(\sigma_{ ext{exact}}^{ ext{NNLO}} \ \mathcal{O}(lpha_s^3)$	$-\sigma_{\mathrm{HEFT}}^{\mathrm{NNLO}}) \; [\mathrm{pb}] \ \mathcal{O}(\alpha_s^4)$	$(\sigma_{\mathrm{exact}}^{\mathrm{NNLO}}/\sigma_{\mathrm{HEFT}}^{\mathrm{NNLO}}-1)$ [%]		
$\sqrt{s} = 8 \mathrm{TeV}$						
gg	7.39 + 8.58 + 3.88	+0.0353	$+0.0879 \pm 0.0005$	+0.62		
qg	0.55 + 0.26	-0.1397	-0.0021 ± 0.0005	-18		
qq	0.01 + 0.04	+0.0171	-0.0191 ± 0.0002	-4		
total	7.39 + 9.15 + 4.18	-0.0873	$+0.0667 \pm 0.0007$	-0.10		
$\sqrt{s} = 13 \mathrm{TeV}$						
gg	16.30 + 19.64 + 8.76	+0.0345	$+0.2431 \pm 0.0020$	+0.62		
qg	1.49 + 0.84	-0.3696	-0.0115 ± 0.0010	-16		
qq	0.02 + 0.10	+0.0322	-0.0501 ± 0.0006	-15		
total	16.30 + 21.15 + 9.70	-0.3029	$+0.1815 \pm 0.0023$	-0.26		

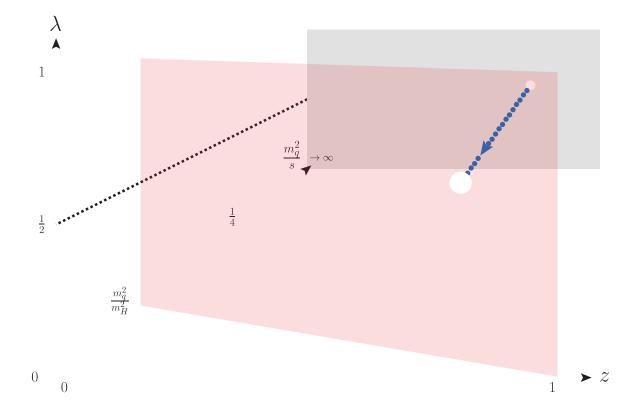
Results

- Effects of a finite top-quark mass on the total hadronic Higgs-boson production cross section for the LHC
 - PDF set: NNPDF31_nnlo_as_0118
 - $\mu_R = \mu_F = m_H/2$
 - M_H = 125 GeV \Rightarrow M_t \approx 173.055 GeV

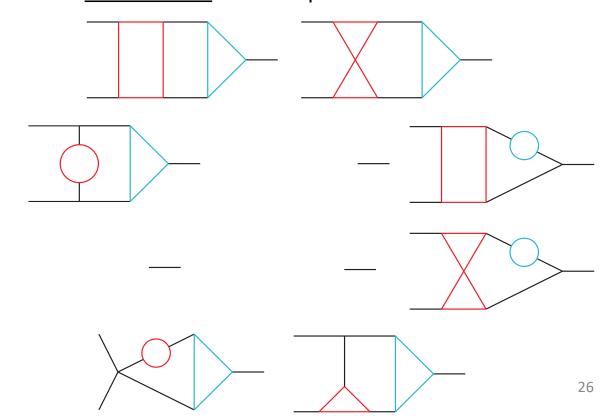
channel	$\sigma_{ ext{HEFT}}^{ ext{NNLO}} ext{ [pb]} \ \mathcal{O}(lpha_s^2) + \mathcal{O}(lpha_s^3) + \mathcal{O}(lpha_s^4)$	$egin{array}{c} (\sigma_{ m exact}^{ m NNLO} & - \ \mathcal{O}(lpha_s^3) \end{array}$	$-\sigma_{\mathrm{HEFT}}^{\mathrm{NNLO}})~\mathrm{[pb]} \ \mathcal{O}(\alpha_s^4)$	$(\sigma_{\rm exact}^{\rm NNLO}/\sigma_{\rm HEFT}^{\rm NNLO}-1)$ [%]		
$\sqrt{s} = 8 \mathrm{TeV}$						
gg	7.39 + 8.58 + 3.88	+0.0353	$+0.0879 \pm 0.0005$	+0.62 (= 0.18 + 0.44		
qg	0.55 + 0.26	-0.1397	-0.0021 ± 0.0005	-18 (= -17.5 - 0.5)		
qq	0.01 + 0.04	+0.0171	-0.0191 ± 0.0002	-4 (= +34 - 38)		
total	7.39 + 9.15 + 4.18	-0.0873	$+0.0667 \pm 0.0007$	-0.10 (=-0.42 + 0.32)		
$\sqrt{s} = 13 \mathrm{TeV}$						
gg	16.30 + 19.64 + 8.76	+0.0345	$+0.2431 \pm 0.0020$	+0.62 (= 0.08 + 0.54		
qg	1.49 + 0.84	-0.3696	-0.0115 ± 0.0010	-16 (= -15.5 - 0.5)		
qq	0.02 + 0.10	+0.0322	-0.0501 ± 0.0006	-15 (= +27 - 42)		
total	16.30 + 21.15 + 9.70	-0.3029	$+0.1815 \pm 0.0023$	-0.26 (= -0.64 + 0.38		

Comparison with HEFT $\bigoplus (1/M_t^n)$

- The impact of subleading terms in $1/M_t^2$ is determined with SusHi Harlander, Liebler, Mantler `16
 - Include terms up to $1/M_t^4$ at NLO and NNLO and match with high-energy limit
 - Total result of $1/M_t$ approximation very close to exact result


channel	$\sigma_{\text{HEFT}}^{\text{NNLO}} [\text{pb}]$ $\mathcal{O}(\alpha_s^2) + \mathcal{O}(\alpha_s^3) + \mathcal{O}(\alpha_s^4)$	$egin{aligned} (\sigma_{ m subl.}^{ m NNLO} - \ \mathcal{O}(lpha_s^3) \end{aligned}$	$-\sigma_{ m HEFT}^{ m NNLO})~{ m [pb]} \ {\cal O}(lpha_s^4)$	$(\sigma_{\mathrm{subl.}}^{\mathrm{NNLO}}/\sigma_{\mathrm{HEFT}}^{\mathrm{NNLO}}-1)$ [%]		
$\sqrt{s} = 8 \mathrm{TeV}$						
\overline{gg}	7.39 + 8.58 + 3.88	-0.0104	+0.1088	+0.50		
qg	0.55 + 0.26	-0.1265	+0.0142	-14		
qq	0.01 + 0.04	+0.0025	-0.0076	-10		
total	7.39 + 9.15 + 4.18	-0.1344	+0.1153	-0.09		
$\sqrt{s} = 13 \mathrm{TeV}$						
gg	16.30 + 19.64 + 8.76	-0.1145	+0.3127	+0.44		
qg	1.49 + 0.84	-0.3348	+0.0482	-12		
qq	0.02 + 0.10	+0.0036	-0.0246	-17		
total	16.30 + 21.15 + 9.70	-0.4457	+0.3363	-0.23		

Summary


- ✓ The hadronic Higgs production cross section including the full top-quark mass dependence was computed!
- ✓ Slight decrease relative to HEFT at NNLO
 - -0.26% at 13 TeV
 - -0.10% at 8 TeV
- ✓ The result confirms and eliminates the uncertainty estimate from the lack of knowledge of the exact top-quark mass effects!
- ✓ Amplitudes for gg → gH (and quark channels) have been computed numerically for a physical top quark mass by supplementing a deep LME with a dense grid of phase space samples above threshold
 - Computation can be repeated for different values of m_q^2 and m_H^2
 - Now straightforward for $m_t^2/m_H^2 \sim 23/12$
- > Same techniques can be applied to compute bottom quark mass effects...

Summary

- > Same techniques can be applied to compute bottom quark mass effects...
- Large hierarchy between m_b^2 and m_H^2 can lead to numerical instabilities when solving the differential equations
- Boundaries at $m_q^2 \to \infty$ not optimal

Corrections to $gg \rightarrow H$ at three loops for two different massive quark flavors unknown

