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Motivation

• Gluon fusion is the predominant Higgs-
boson production mode at the LHC

• Higgs-boson plays unique role in the SM:
• Only scalar particle

• Only particle with Yukawa interactions to 
fermions

Handbook of LHC Higgs cross sections:
4. Deciphering the nature of the Higgs sector 
Report of the LHC Higgs Cross Section Working Group `16

LHC @13 TeV
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Handbook of LHC Higgs cross sections:
4. Deciphering the nature of the Higgs sector 
Report of the LHC Higgs Cross Section 
Working Group `16

Theory 
uncertainties

Higgs Physics at the HL-LHC and HE-LHC
Report from Working Group 2 on the Physics of the HL-LHC, 
and Perspectives at the HE-LHC `19 

• 𝛿(scale) and 𝛿(PDF-TH) due to missing higher-
order terms in ො𝜎 and PDFs

• 𝛿(trunc) has been removed

• 𝛿(EW) was addressed recently

• 𝛿(t,b,c) and 𝛿(1/𝑚𝑡) related to quark mass 
effects

Bonetti, Melnikov, Tancredi `18
Anastasiou, del Duca, et al. `19
Becchetti, Bonciani, et al. `21

Anastasiou, et al. `15

Mistlberger `18

3



Contributions to 𝜎𝑡𝑜𝑡 HEFT

• Gluon-fusion is induced by quark loops

• NLO result available for arbitrary quark masses

• Radiative corrections beyond NLO restricted to top-
loop induced terms

• Dominant effect of top-loop induced terms can be 
accounted for in HEFT approximation

"Born-improved" total cross section:

Graudenz, Spira, Zerwas `93

Anastasiou, Melnikov `02
Harlander, Kilgore `02
Ravindran, Smith, van Neerven `03
Marzani, Ball, Del Duca, et al. `08
Harlander, Mantler, Marzani, et al. `09
Pak, Rogal, Steinhauser `09

4



HEFT
• Introduce effective Higgs-gluon vertex

→ reduce number of loops by one
→ reduce number of scales by one

• Very good agreement with exact result at NLO
→ Remarkable, because

• 𝑀𝑡 being the largest scale is invalid over large range of Ƹ𝑠
• 𝑀𝑡 → ∞ is applied to more than 50% of total cross section
• HEFT fails to capture top-mass effects for partonic quark 

channels

• Qualitative explanation:
• Suppression of large- Ƹ𝑠 region by PDFs
• Dominance of the soft region

• Only estimate of top-mass effects beyond HEFT at NNLO based on 
combination of 1/𝑀𝑡-expansion with leading terms in large- Ƹ𝑠 limit

Jones, Kerner, Luisoni `18

Spira `16

HEFT

→ Eliminate this uncertainty with exact 
calculation of top-quark mass effects

(also Bonciani, Del Duca, Frellesvig, et al. `22)



Ingredients for gluon fusion at NNLO
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Ingredients – Double Virtual

Light-fermion contribution (analytically): 
Harlander, Prausa, Usovitsch `19

Leading color contribution (analytically): 
Prausa, Usovitsch `20

Padé approximation: Davies, Gröber, Maier et al. `19
Numerically exact: Czakon, MN `20

𝑧 = 𝑚𝐻
2 /4𝑚𝑞
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Ingredients – Double Real
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Evaluation:

Analytically: Del Duca, Kilgore, Oleari, et al. `01
OpenLoops 2: Buccioni, Lang, Lindert, et al. `19

Analytically (more compact): Budge, Campbell, De Laurentis, et al. `20

+ quark channels with possibly different quark flavors



Ingredients – Real-Virtual
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Bonciani, Del Duca, Frellesvig, et al. `16
Bonciani, Del Duca, Frellesvig, et al. `19
Frellesvig, Hidding, Maestri, et al. `19

A,B,C,D:
F:
G:

→ leading to H+jet at NLO with top and bottom massive: 
Bonciani, Del Duca, Frellesvig, et al. `22

Contributions with two closed fermion chains 
are always factorizable:

vanishing color factor Elliptic sector



Workflow of the computation

• Get rid of tensor/colour structure to end up with 
a linear combination of scalar integrals with 
rational function coefficients in front

• Reduce the scalar integrals to a linearly 
independent set of master integrals (MI) (447
master integrals for gg→Hg)

• Reduction is highly non-trivial since rational 
coefficients depend on 5 variables!

→ Use finite fields to reconstruct symbolic 
coefficients from numerical probes of the 
system of equations

DiaGen

Czakon (unpublished)

FORM

Vermaseren `00

Kira⊕FireFly

Klappert, Lange, et al. `20
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Computation of the MIs



Parametrization

12
~𝜆

~𝑧

• Variables: Ƹ𝑠, Ƹ𝑡, ො𝑢, 𝑚𝐻
2 , 𝑚𝑡

2

• Introduce dimensionless variables 
and fix ratio 𝑚𝑡

2/𝑚𝐻
2

➢ 𝑧 parametrizes soft limit

➢ 𝜆 parametrizes collinear limit

𝑧 = 1-𝑚𝐻
2 / Ƹ𝑠

𝜆 = Ƹ𝑡/( Ƹ𝑡+ො𝑢)

Ƹ𝑡/ Ƹ𝑠 = 𝑧 𝜆

ො𝑢/ Ƹ𝑠 = 𝑧 (1-𝜆)

𝑧 = 1-𝑚𝐻
2 / Ƹ𝑠

𝜆 = Ƹ𝑡/( Ƹ𝑡+ො𝑢)

𝑚𝑡
2/𝑚𝐻

2 = 23/12
Range of parameters:
• 𝜆 ∈ (0,1)
• 𝑧 ∈ (0,1)



𝑧 = 1-𝑚𝐻
2 / Ƹ𝑠

𝜆 = Ƹ𝑡/( Ƹ𝑡+ො𝑢)

𝑚𝑡
2/𝑚𝐻

2 = 23/12
Range of parameters:
• 𝜆 ∈ (0,1)
• 𝑧 ∈ (0,1)

Evolution of differential equations

𝑧𝑡ℎ𝑟 = 1 -
𝑚𝐻
2

4𝑚𝑞
2

For 𝑚𝑡
2/𝑚𝐻

2 = 23/12:
𝑧𝑡ℎ𝑟 = 20/23 ≈ 0.87
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Evolution in the (𝑧,𝜆)-plane

Poles of 
differential 
equations 
in 𝜆

𝑧 = 1-𝑚𝐻
2 / Ƹ𝑠

𝜆 = Ƹ𝑡/( Ƹ𝑡+ො𝑢)

𝑚𝑡
2/𝑚𝐻

2 = 23/12
Range of parameters:
• 𝜆 ∈ (0,1)
• 𝑧 ∈ (0,1)
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Evolution in the (𝑧,𝜆)-plane

Boundaries 
for numerical 
integration in 
the mass

Collect numerical 
samples for MI along 
straight integration 
contours

𝑧 = 1-𝑚𝐻
2 / Ƹ𝑠

𝜆 = Ƹ𝑡/( Ƹ𝑡+ො𝑢)

𝑚𝑡
2/𝑚𝐻

2 = 23/12
Range of parameters:
• 𝜆 ∈ (0,1)
• 𝑧 ∈ (0,1)
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Evolution in the (𝑧,𝜆)-plane

• 302 integration 
contours at different 𝑧

• Collected more than 
1.5 × 106 samples

𝑧 = 1-𝑚𝐻
2 / Ƹ𝑠

𝜆 = Ƹ𝑡/( Ƹ𝑡+ො𝑢)

𝑚𝑡
2/𝑚𝐻

2 = 23/12
Range of parameters:
• 𝜆 ∈ (0,1)
• 𝑧 ∈ (0,1)
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Evolution in the (𝑧,𝜆)-plane

Exploit 
symmetry of 
the problem

𝑧 = 1-𝑚𝐻
2 / Ƹ𝑠

𝜆 = Ƹ𝑡/( Ƹ𝑡+ො𝑢)

𝑚𝑡
2/𝑚𝐻

2 = 23/12
Range of parameters:
• 𝜆 ∈ (0,1)
• 𝑧 ∈ (0,1)
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Evolution in the (𝑧,𝜆)-plane

Region below 
threshold 
covered by LME

LME
𝓞((1/𝑚𝑞

2)40)

𝑧 = 1-𝑚𝐻
2 / Ƹ𝑠

𝜆 = Ƹ𝑡/( Ƹ𝑡+ො𝑢)

𝑚𝑡
2/𝑚𝐻

2 = 23/12
Range of parameters:
• 𝜆 ∈ (0,1)
• 𝑧 ∈ (0,1)
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Subtraction of IR limits



Subtraction for gg → gH
𝑧 = 1-𝑚𝐻

2 / Ƹ𝑠

𝜆 = Ƹ𝑡/( Ƹ𝑡+ො𝑢)

𝑚𝑡
2/𝑚𝐻

2 = 23/12

• Interested in finite results
➢ Soft and collinear divergences
➢ Amplitudes have to be regulated

• Directly evaluate difference between HEFT and exact result:

Splitting-function 
regulates residual soft 
and collinear divergences

➢ Better numerical stability!
➢ Appearance of divergences delayed!

➢ Simple counterterms!

One of the reasons for the smallness of 
top-quark mass effects beyond HEFT

NNLO:

NLO:

20

Higgs-gluon form factor in 
HEFT is exact at leading order



Subtraction for gg → gH

• Real part of the regulated quantity at 𝜇𝑅 = 𝑚𝐻/2:

• Integrate in 𝜆 and convolute with PDFs to obtain contribution to 𝜎𝑡𝑜𝑡
• Subtraction term and other contributions are computed with Monte Carlo methods using Stripper Czakon (unpublished)

𝑧 = 1-𝑚𝐻
2 / Ƹ𝑠

𝜆 = Ƹ𝑡/( Ƹ𝑡+ො𝑢)

𝑚𝑡
2/𝑚𝐻

2 = 23/12
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Results
• Effects of a finite top-quark mass on the total hadronic Higgs-boson production cross section for the LHC

• PDF set: NNPDF31_nnlo_as_0118

• 𝜇𝑅 = 𝜇𝐹 = 𝑚𝐻/2
• 𝑀𝐻 = 125 GeV ⇒𝑀𝑡 ≈ 173.055 GeV
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Results
• Effects of a finite top-quark mass on the total hadronic Higgs-boson production cross section for the LHC

• PDF set: NNPDF31_nnlo_as_0118

• 𝜇𝑅 = 𝜇𝐹 = 𝑚𝐻/2
• 𝑀𝐻 = 125 GeV ⇒𝑀𝑡 ≈ 173.055 GeV

(= 0.08   + 0.54)

(= -15.5  - 0.5)
(= +27     - 42)

(= -0.64  + 0.38)

(= 0.18   + 0.44)

(= -17.5  - 0.5)
(= +34     - 38)

(= -0.42  + 0.32)

23



Comparison with HEFT ⊕ 1/𝑀𝑡
𝑛

• The impact of subleading terms in 1/𝑀𝑡
2 is determined with SusHi

• Include terms up to 1/𝑀𝑡
4 at NLO and NNLO and match with high-energy limit

• Total result of 1/𝑀𝑡 approximation very close to exact result

24

Harlander, Liebler, Mantler `16



Summary
✓ The hadronic Higgs production cross section including the full top-quark mass dependence was 

computed!

✓ Slight decrease relative to HEFT at NNLO
• -0.26% at 13 TeV
• -0.10% at 8 TeV

✓ The result confirms and eliminates the uncertainty estimate from the lack of knowledge of the 
exact top-quark mass effects!

✓ Amplitudes for gg → gH (and quark channels) have been computed numerically for a physical top 
quark mass by supplementing a deep LME with a dense grid of phase space samples above 
threshold
• Computation can be repeated for different values of 𝑚𝑞

2 and 𝑚𝐻
2

• Now straightforward for 𝑚𝑡
2/𝑚𝐻

2 ~ 23/12

➢ Same techniques can be applied to compute bottom quark mass effects…
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Summary
➢ Same techniques can be applied to compute bottom quark mass effects…

• Large hierarchy between 𝑚𝑏
2 and 𝑚𝐻

2 can lead to numerical instabilities when solving the 
differential equations

• Boundaries at 𝑚𝑞
2 → ∞ not optimal

26

Corrections to gg → H at three loops for 
two different massive quark flavors unknown


