Reinterpretation Forum LHC Higgs Working Group Meeting

Lukas Heinrich, TUM

Big Picture

Given the unique nature of the LHC, we should try to extract as much science out of the data as we cap Hadron Collider]

Fundamental Issue: many more questions we could ask than we have capacity in experiments to answer.

Need strategies to overcome this tension.

CERN

The LHC Reinterpretation Forum

Community of ~ 100 physicists across theory & experiment working on tools to make this as easy as possible

Forum on the Interpretation of the LHC Results for BSM studies

The quest for new physics beyond the Standard Model is arguably the driving topic for Run 2 of the LHC. Indeed, the LHC collaborations are pursuing searches for new physics in a vast variety of channels. While the collaborations typically provide themselves interpretations of their results, for instance in terms of simplified models, **the full understanding of the implications of these searches requires the interpretation of the experimental results in the context of all kinds of theoretical models.** This is a very active field, with close theory-experiment interaction and with several public tools being developed.

With this forum, we want to provide a platform for continued discussion of topics related to the BSM (re)interpretation of LHC data, including the development of the necessary **public** <u>RecastingTools</u> and related infrastructure.

Web	https://twiki.cern.ch/tw
Mailing List	info-LHC-interpretation
Meetings	https://indico.cern.ch/c

viki/bin/view/LHCPhysics/InterpretingLHCresults

n@cern.ch

category/14156/

Recommendations

To provide guidance to experiments & theorists the Forum developed recommendations on what types of information experiments should publish.

Close collaboration with experiments to develop new norms.

Sci Post

Reinterpretation of LHC results for new physics: status and recommendations after run 2

Abstract

We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data.

Copyright W. Abdallah et al. This work is licensed under the Creative Commons Attribution 4.0 International License Published by the SciPost Foundation.

SciPost Phys. 9, 022 (2020)

The LHC BSM Reinterpretation Forum

Received 02-04-2020 Accepted 06-08-2020 Check for updates Published 21-08-2020 doi:10.21468/SciPostPhys.9.2.022

Contents

- 1 Introduction
- 2 Information provided by experiments
 - 2.1 Direct BSM searches
 - 2.1.1 Background estimates
 - 2.1.2 Correlations
 - Smearing functions and efficiencies 2.1.3
 - Full likelihoods 2.1.4
 - Simplified model results 2.1.5
 - Statistical method 2.1.6
 - Further metadata 2.1.7
 - 2.1.8Pseudocode, code snippets
 - Direct analysis code preservation 2.1.9
 - 2.1.10 Open questions
 - 2.2 Measurements
 - 2.2.1 Primary data
 - Background estimates 2.2.2
 - 2.2.3 Correlations
 - Likelihoods 2.2.4
 - 2.2.5Desirable reproduction metadata
 - Theoretical predictions 2.2.6
 - Higgs signal strengths and STXS 2.2.7
 - 2.2.8 Summary of key recommendations
- 2.3 Open Data

3 Comparison of reinterpretation methods

- 3.1 Public tools for interpretation of BSM searches
- 3.2 Interpretation of measurements
- 4 Global fits to LHC data
- 5 Summary
- A Technical recommendations on how to publish correlations

References

-5 6 7 9 9 11 11 13 14 15 16 16 17 18 18 19 19 19 20 20 21 22 23 24 28 30 31 33 34

HepData - a central data Hub.

tools, etc)

Strong culture within experiments to provide a lot of high quality data

Since many decades the primary platform for exchanging information has been HepData: From a database to a full-fledged web service (with APIs,

	••• • • • <	> • •	🔒 hepdata.net		۲
	HEPData			About	lp 🗋 File Form
		Q Search HEPData	× ATLAS	Search Advanced	
🕄 About 🗘 Su	t Max results →	ort by \rightarrow \downarrow_A^Z Reverse order	Showing 10 of 625 results		
HEP Data	Date		« (1 2	> »	
lication-related High-Energy Physics data	2010	HistFactory Search three or more <i>b</i> -jets detector	for supersymmetry in final stat in 139 fb $^{-1}$ of proton $-$ proton co	tes with missing transver ollisions at $\sqrt{s}=13$ TeV v	se moment with the ATI
2 publications and 121115 data tables.	Collaboration <u>Reset</u> XATLAS 625	The ATLAS collaboration CERN-EP-2022-213, 2022.	b DOI 10.17182/hepdata.95928		
, title has "photon collisions" , collaboration is LHCf or D0 .	CMS 1 Subject_areas	A search for supersymmetry ir $ ilde{\chi}^0$) is reported. It exploits LHC	volving the pair production of gluinos decayin proton—proton collision data at a centre-of-n	ig via off-shell third-generation squa nass energy $\sqrt{s}=13$ TeV with an ir	rks into the light tegrated lumino
Data from the LHC	hep-ex 625 nucl-ex 40 Instrumentation 4	■ 138 data tables Systematic summary of t table for uncertainties a SR_Gtt_0L_B	he uncertainties in the background estimates f re assumed to be uncorrelated and are combin	for SR-Gtt-0L-B. The individual exper ned by adding in quadrature.	imental and theo
CMS View Data	Phrases	Systematic summary of t table for uncertainties a SR_Gtt_0L_M1	he uncertainties in the background estimates f re assumed to be uncorrelated and are combin	for SR-Gtt-0L-M1. The individual expo ned by adding in quadrature.	erimental and th
	Proton-Proton Scattering 75	Systematic summary of t table for uncertainties a	he uncertainties in the background estimates f re assumed to be uncorrelated and are combin	for SR-Gtt-0L-M2. The individual exponent of the second seco	erimental and th

Extracting the most Science by Reuse

Instead of developing an entirely new analyses:

extract more scientific results by reusing existing analyses

Combination

- Much less labor- and compute intensive
- Reuses experiment-approved elements of the analysis chain

Reinterpretation

nsive ments of the analysis chain

Reuse with Combination

independent measurements in the context of the same theory model.

Combination (many data - single theory): accumulate sensitivity from multiple

Good if you have identified a target theory (i.e. Standard Model) and many orthogonal measurements $H \rightarrow \gamma \gamma$, $H \rightarrow bb$, ...

Best example: Higgs Combination

Requires availability of highly detailed likelihood information for analyes

A recent highlight - public Likelihoods

For a long time, combination-grade likelihoods have been kept internal, but recent push to make more public - Higgs Likelihoods are a prime target!

Any disagreement? Carried unanimously. That's actually quite an achievement for this Workshop.

2000

Sep 2021 10[hep-ph] 09.04981v1 arXiv:2

SciPost Physics

Publishing statistical models: Getting the most out of particle physics experiments

2021

Kyle Cranmer ^{1*}, Sabine Kraml ^{2‡}, Harrison B. Prosper ^{3§} (editors), Philip Bechtle ⁴, Florian U. Bernlochner ⁴, Itay M. Bloch ⁵, Enzo Canonero ⁶, Marcin Chrzaszcz ¹/₀, Andrea Coccaro ⁸/₀, Jan Conrad ⁹/₉, Glen Cowan ¹⁰, Matthew Feickert ¹¹/₉, Nahuel Ferreiro Iachellini ^{12,13} Andrew Fowlie ¹⁴/₉, Lukas Heinrich ¹⁵/₉, Alexander Held ¹/₉, Thomas Kuhr ^{13,16}/₉, Anders Kvellestad ¹⁷/₉, Maeve Madigan ¹⁸/₉, Farvah Mahmoudi ^{15,19}/₉, Knut Dundas Morå ²⁰/₉, Mark S. Neubauer ¹¹/₉, Maurizio Pierini ¹⁵/₉, Juan Rojo ⁸/₉, Sezen Sekmen ²²/₉, Luca Silvestrini ²³/₉, Veronica Sanz ^{24,25}/₉, Giordon Stark ²⁶/₉, Riccardo Torre ³⁰/₉, Robert Thorne ²⁷, Wolfgang Waltenberger ²⁸, Nicholas Wardle ²⁹, Jonas Wittbrodt ³⁰

1 New York University, USA 2 SC Grenoble, France 3 Florida State University, USA 4 University of Bonn, Germany 5 School of Physics and Astronomy, Tel-Aviv University, Israel 6 University of Genova, Italy 7 Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland 8 INFN, Sezione di Genova, Italy 9 Oskar Klein Centre, Stockholm University, Sweden 10 Royal Holloway, University of London, UK 11 University of Illinois at Urbana-Champaign, USA 12 Max Planck Institute for Physics, Munich, Germany 13 Exzellenzcluster ORIGINS, Garching, Germany 14 Nanjing Normal University, Nanjing, PRC 15 CERN, Switzerland 16 Ludwig-Maximilians-Universität München, Germany 17 University of Oslo, Norway 18 DAMTP, University of Cambridge, UK 19 Lyon University, France 20 Columbia University 10027, USA 21 VU Amsterdam and Nikhef, The Netherlands 22 Kyungpook National University, Daegu, Korea 23 INFN, Sezione di Roma, Italy 24 University of Sussex, UK 25 IFIC, Universidad de Valencia-CSIC, Spain 26 SCIPP, UC Santa Cruz, CA, USA 27 University College London, UK 28 HEPHY and University of Vienna, Austria 29 Imperial College London, UK 30 Lund University, Sweden

* kyle.cranmer@nyu.edu, ‡ sabine.kraml@lpsc.in2p3.fr, § harry@hep.fsu.edu (mailing list: open-likelihoods@cern.ch)

September 9, 2021

Abstract

The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this

Submission

A recent highlight - public Likelihoods 2012:

Profile Likelihood Scans released for Higgs Couplings

2020:

Full Likelihoods released regularly by ATLAS for SUSY Searches

Reuse with Reinterpretation

Reinterpretation (single data - many theories):

Often the phasespace analyzed by a given measurement is sensitive to many theories at once. Even if not optimal can give strong limits

Requires richer information about analysis (on top of likelihood data)

Reuse with Reinterpretation

Reinterpretation is attractive because most of the work is already done.

- backgrounds are estimated with full systematics
- event selection & observables already fixed

Reinterpretation Toolchains

Within the reinterpretation forum we recommend to complementary ways:

approximate & fast public pipelines for use by non-collaboration members

preservation of the original analysis pipeline for collaboration-approvable results

Reinterpretation Toolchains

Within the reinterpretation forum we recommend to complementary ways:

(most toolmakers active in Reinterpretation Forum)

approximate & fast public pipelines for use by non-collaboration members

preservation of the original analysis pipeline for collaboration-approvable results

Reinterpretation Toolchains

cross-check their approximate implementations

- cutflows
- efficiency maps
- yield tables
- model descriptions
- public copies of trained ML models
- internal truth-level codes (new!)

For toolmakers the experiemnts provide a broad range of resources to

Events

In order to develop consensus & adoption of tools, there are regular events on reinterpretation topics

- Yearly Workshops (next one in 2 weeks): have a look!

(Re)interpretation of the LHC results for new physics

12–15 Dec 2022 CERN Europe/Paris timezone

Overview		
Timetable		
Registration		
Call for Abstracts		
Participant List		
Videoconference		
Practical information		
Accommodation		
Internet/wifi access		

+++ We have hit the limit of room capacity for in-person participation on Tue/Wed (smaller meeting rooms than on Mon/Thu). Registration for the workshop is still possible, in particular for online attendance, but we cannot guarantee place in the room for late birds wishing to attend in person +++

This is the 7th general workshop of the "Forum on the interpretation of the LHC results for BSM studies", or LHC Reinterpretation Forum (RIF) for short. Its aim is to review new developments on the tools, pheno, and the experimental sides, and to prepare for the Run 3 results of the LHC. In this context, major topics of this workshop will be: i) the publication and reuse of statistical models, ii) the reinterpretation of analyses that employ machine learning, and iii) global analyses and global fits.

Continuing the conversation from the last workshop session, we would like to include general best practices for reinterpretation/reuse of experimental results beyond the LHC, and particularly welcome contributions regarding results from precision or astrophysical experiments.

RAMP Seminars: showcase of specific analyses and their reinterpretations

Summary & Outlook

much science from the analyses we prepare at the LHC

In recent years lots of new momentum due to some key events (e.g. likelihood publishing)

A lot of the insights can be (and is) carried over to Higgs analyses, not just a **BSM** topic.

The Reinterpretation Forum is a central place to discuss how to extract as