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RELATIVISTIC HYDPRODYNAMICS
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Provides a reliable description of strongly coupled
systems close to thermal equilibrium
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Real life: strongly coupled quark-gluon plasma in particle accelerators;

To determine the kinetic parameters of hydrodynamic equations (e.g.
shear viscoslity): study the associated microscopic theory

* [ he associated microscopic theory can be a QFI, such as strongly
coupled /' = 4 SuperYang-Mills (SYM), studied via holography

[HellerJanik,Witaszczyk' | || 3;1A,Meiring, Jankowski,Spalinski’ | 8]

» Other microscopic models have been studied
[Romatschke'| 7; Strickland,Noronha,Denicol | /]



STRONGLY COUPLED SYSTEMS

Kinematic regime: expanding plasma in the so-called central rapidity
region, where one assumes longitudinal boost invariance (Bjorken flow)

[Bjorken '83]

In hydrodynamic theories the energy-momentum tensor Is given by

THY :@u“u” + P(é)(n“” +(u “) +@

Pressure, In 4d conformal Shegr SJ.U”eSS tensor:
theories given by: dissipative effects

PE)=E/3 flow velocrty

Energy density

Symmetries: conformal invariance, transversely homogeneous,
invariance under longrtudinal Lorentz boosts




STRONGLY COUPLED SYSTEMS

Kinematic regime: expanding plasma in the so-called central rapidity
region, where one assumes longitudinal boost invariance (Bjorken flow)

[Bjorken '83]

In hydrodynamic theories the energy-momentum tensor Is given by

" = Eulu” + P(E)(n" + uu”) + TIH

/ Strongly coupled boost invariant plasma:
all physics encoded in £(7).

Obtaining this function is in general too difficult:
\\ perform a large proper time expansion 7> 1.
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LATE TIME BEHAVIOUR

Starting from highly non-equilibrium initial conditions, the microscopic
theory will reveal the transition to hydrodynamic behaviour at late times

Conformal theories: late-time behaviour of energy density highly constrained

A i €
E(T) = 1+ E S
(7) (AT)l/S ( O (AT)2k/3>

A is a dimensionful parameter encoding initial non-eq. conditions
* Leading behaviour predicted by boost-invariant perfect fluid

* Subleading terms: dissipative hydrodynamic effects
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, Viscous transition to equilibrium described by
Lhydrodynamics: ate time expansion




MIS CAUSAL HYDPRODYNAMICS
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”L Muller-Israel-Stewart (MIS) approac
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* embed hydrodynamics in a framework compatible with
relativistic causalrty;

* Introduces non-hydrodynamic degrees of freedom;

* means of generating the hydrodynamic gradient expansion,
studied as If It came from a microscopic theory

[MUller'6/;lsrael, Stewart /9]



MIS CAUSAL HYDPRODYNAMICS

Solve evolution equations of the Energy momentum tensor
vV, T" =0

* Assume boost invariant flow, conformal invariance

* Hydrodynamic gradient expansion: approximate shear stress tensor
by corrections to ideal fluid

[

| Muller-lsrael-Stuart (MIS) equations
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4C,  16C.m 2z
9 9 3

2Crnf ' +4Cuf? + (Z—

* Non-linear ODE describing the pressure anisotropy
» Crn, Oy are phenomenological parameters



THE SUCCESS OF HYDRODYNAMICS
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[ Hydrodynamic description accurate at

* barly time behaviour dictated by initial conditions

* Hydrodynamization: convergence to hydrodynamic description while the
system s still very anisotropic and iInhomogeneous

* Hydrodynamic description to equilibrium independent of inrtial conditions
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MIS [Heller,Spalinski '1 5]



HYDRODYNAMIC ATTRACTORS

How to describe this early convergence towards hydrodynamics!

* [ he hydrodynamic model contains non-hydrodynamic
degrees of freedom, non-perturbative in nature

* [hese modes play a major role during the early times of VALY \\\
the expanding plasma, very sensitive to initial condrtions

* At hydrodynamisation scale still far from equilibrium, but
the different inrtial solutions all become exponential close
to to each other; and the

* Evolution of the system towards equilibrium effectively
described by viscous hydrodynamics
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From asymptotics the phenomena of hydrodynamization is expected.
. et i

Series Is asymptotic:
€, factorially divergent!

* described by a divergent, asymptotic perturbative series;

* resurgent properties encode all the information about the exponentially
small non-hydrodynamic modes;

* Inrtial conditions uniguely encoded In a set of parameters determining the
strength of the non-hydrodynamic modes



RESURGENCE AND ASYMPTOTICS

A i € . e
E(r) = FURNYE (1 +y N k2k/3> , 7> 1 Series is divergent, resurgent!
(A7) =1 (AT)
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. How can we match the late-time behaviour to any given initial condition?

Beyond a purely numerical analysis, can we describe the system at all times!?

Can we hope to describe the analytic behaviour of our observable?

\
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Resurgence and asymptotics

* asymptotic expansions "converge” quite quickly;

* established asymptotic summation methods with exponential accuracy,
effectively distinguishing between the exponentially close solutions at late-times;

* obtain global analytic properties of the asymptotic observables.



OUTLINE

0. Motvation

|, Introduction to resurgent transseries

» Resurgence and Borel transforms

» Summations

2. Mduller-lsrael-Stewart hydrodynamics

» From late to early times: dependence on inrtial conditions

» Branch points and global behaviour

3. Summary



1.
INTRODUCTION TO RESURGENT
TRANSSERIES

[IA,BasanSchiappa’ | 8]



pPOoUBLE WELL IN &M
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g=0 == Harmonic oscillator |

A

g V@) =3 -’
Coupling (~ h) /

» Hamiltonian

2 | g >0
H = —% (i) + V(x) \\ d
» Schrodinger Ea:

Hy(z,g) = E(g) ¥(z,g)




PERTURBATION THEORY IN @M

\ ) * Series is asymptotic: For large enough n
I > E,~nlA™"
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| Why asymptotic! Existence of instantons

Corrections to E, 5. ~ e =479 Z E™M g™ Suppressed!
\ ) n=0




BEYOND PERTURBATION THEORY
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Higher instanton
corrections

—

[Vanstein'64;Bender,Wu'/ 3;Bogomolny,Zinn-justin'80]
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k-Instanton contribution, |

each 1s asymptotic |
(k)™ )

c// 3
I

- Formal expansion In transmonomials

\d E%) ~ p

* the small parameter @

* non-perturbative term e~ A/9 ,
* 0 encodes boundary/initial conditions |

Ey.5.(9,0) requires all instantons to be well defined
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ADDING ALL CONTRIBUTIONS




ADDING ALL CONTRIBUTIONS

Optimal error:

' Contributes at order
(E 5 Ez@)) (9)
&‘ = = —_— .

e_A/g




Optimal error after summing

\_ E®(g) +e 9 EWN(g) 1
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EW ~N" BN g asymptotic series!|

n=0

Optimal error after summing

\_ E®(g) +e 9 EWN(g) 1
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" Error after summing perturbative

|
k Fop ( E©) 4 g=A/g E(l))

— - 5 = — ——




' Error after summing perturbative and |-instanton is |

k Eg.s. — (E(O) e A/9 E(l)) ~ e 2479
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- Again E® ~) EPg" asymptotic series!
n=0
)

L Y = ?

- [wo-Instanton sector addresses the new error

— n— P——

Fg.s. — (E(O) + e~ 479 p() 4 ¢=24/9 E(2)) ~ o 34/9




ADDING ALL CONTRIBUTIONS

|

. vV e
| -iInstanton

.

Z2-Instanton

s
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k All iInstanton contributions conspire to cancel the
|

errors at higher and higher orders!

= - = = —— —  —



= __

< | -instanton

.

Z2-Instanton

k I,

o

¢ REsurgence

— =

* [Ecalle’8l]



A TRUE ANALYTIC SOLUTION?

Transseries  E,., ~ Zake_’“‘/g E™(g) E® ~ % EFg"
k=0

 Re-sum all asymptotic sectors SE®(g)
* Detemine o from external data (boundary/inrtial conditions)

* [his can be done for any value of g and encodes:

Analytic data (poles, zeros, branch cuts)

Phase transitions (Stokes phenomena)

= — s — e e —

.~ Next:  Borel transform and re-summation




BOREL TRANSFORMS
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~ Remove the factorial growth to get a convergent seri
_ inverse Laplace transform to each term

= = ks A h




BOREL TRANSFORMS
Lmnfy our example! |

= ==

/ - Original Series:

@)

Eys.(g) = Z Ef,(q,o) g"

n=0

single pole at s = A

The position of the pole is s=A
controlled by instanton action




BOREL TRANSFORMS

* Non-perturbative phenomena: singularities in Borel plane
*Singularities usually will be branch cuts
*Singular directions: Stokes lines

* Structure of singularities can be very complex
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[IA,Russo,Schiappa’ | 4]



TRANSSERIES SUMMATIONS

Al =

kHovv to associate a function to the original asymptotic series?

» Optimal truncation and Hyperasymptotics
* Borel summation

* Transasymptotics



OPTIMAL TRUNCATION

* Assume ¢ fixed and small

N
e Define fn(g) = Z fng"
n=0

}

@)~ fug"
n=0

” Non—pertu rbative
\ effect!




LEVEL-1 HYPERASYMPTOTICS

Apprgximate the transsgries E,, =~ EO) + ce™ 8 EW(g) + ...
including first exponential sector
<\\ E, s nyp(8) =2 Epyn0(8) + 0 L 1(8) Error ~ clSas

Nygyp(8)—1 Nigyp(8)/2—1 Newo. () —
g)
Epyp0(8) = z' EOgm 4 gNay@-11 2' EO(FO ( & )

271
Niyp(8)/2-1 k«
— 1
Eggpi(9) = € % E{lg" RGN ¢

m=0 (

. M
Hyperterminant: F% (g; | >

ﬁ,
L Truncation: Ny, () ~ 2A/g

da
eg+mM 1— MF(M)F(I—M—
g ,

[Berry,Howls'90,9 |;0lde Daalhuis'95]




BOREL RESUMMATION

Borel resummation: | aplace transform

* Straightforward in the directions without singularities

* Re-summation along Stokes directions: Non-perturbative ambiguity

A

® > t Ambigurty in choice of }

t j\.
S\] Con —~ e ———

S = S = 7{ ds e5/9 ~ o= A/9
s=A A—s

[IA,BasanSchiappa’ | 8]




ASIDE: NUMERICAL SUMMATION
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K\/\/hat if we don't know the functional form of B
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T we know finite number (V) of terms of Borel transform

* Approximation methods such as Pade approximants

BPY (s)

* Numerical re-summation for each value of ¢

SNEQ,S,(g):/ dSBP(EN)(S)e_S/g
0



BOREL RESUMMATION

Approximate the transseries E, . ~EO9g) +ce M8 ED(g) + ---
including first exponential sector e
<\\ E, 58 = SyE%) +oe 88y EV(g) P
. r+00 |
Sy EY = dée s BPy [EV](&)
Jo

St

"r S ° ° °
- Truncation: N, any, but at least 2A/g to minimise error
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TRANSASYMPTOTIC SUMMATION

Transseries  E,., ~ Zake_’“‘/g E™(g) E® ~ % EFg"
k=0

Change the order of summation: sum all exponentials for each order g"

- Z ok e—kAlg Z E(k) g =

twhere F.(7) = 2 kE(k)
k=0

__

* Validity: small g, exponentials can be order |
* Study analytic properties of solution: e.g. branch points

[Costin'99,'01]
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MULLER-ISRAEL-STEWART
HYDPRODYNAMICS



MIS CAUSAL HYDPRODYNAMICS
Look back at the Muller-Israel-Stewart (MIS) ODE:

40 16071‘[ 2

16C';
ZCTHff/+4CTHf2+< H)f—— 9 —EZO

Write solution at late times as a resurgent transseries:
* single, purely decaying non-hydrodynamic mode
* describes decay to hydrodynamic attractor

[Heller,Spalinski’| 5; BasarnDunne'l 5; IA,Spalinski’ | 5]



SOLUTION AT EARLY TIMES

1.0 v " .
R I
B
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Finite solution: Stable solution, converging
to a finite value at early times

2 C‘ SL:.U | LJ’|J ,N» 2.0 30
fﬁnite(Z) N E <1 IB | @(Z)>, % O [Heller,Spalinski "1 5]

Generic solution: | -parameter family of solutions
divergent at early times

e C
fc(Z)=§ <—+2+@(z)), z—0

Z4

\




FROM LATE TO EARLY TIMES

Approximation attime z, : hyperasymptotics

fapprox(ZO) = f Hyp,O(ZO) T Gf Hyp,l(ZO)

Approximation at time z; : Borel summation

Japprox(Zp) = & NOCDO(ZO) +oe 0§ NOCD(D(ZO)

Approximation at time z, : Taylor series method

Use analytic continuation via numerical Taylor series method, £ (z0)
to bring early times solution to the finite value z : an\*)

—— e

Solve fappmx(zo) = f,,(z9) to obtain o(C)
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FROM LATE TO EARLY TIMES

* Ambiguity cancelation: |
Imo constrained
by Stokes constant =

. S
1Imo = 7 ~ 10.0027

1073

* Strength of non-hydrodynamic mode o highly sensitive to initial condition

» Choice of interpolation point z, changes accuracy:
|. Larger z Increases accuracy

2. Include extra exponential sectors to increase accuracy at smaller z,



TRANSASYMPTOTICS

Rearrange order of transmonomials in the transseries:
+00 +00 +00 +00
n
F(2,0) = Z Z_kz (az_ﬂ e_AZ) algn) = Z Z_kz 7 alg’”‘)

Sum the transseries in a new regime z7! < 7 < 1.

+00 + 00
F(z,7) =) 27* Fu(r) =
k=0 n=0

— N ——— = e

Jhe sumM over powers of 7 can

——

Study analytic behaviour: poles, branch points...

&
|
|

|

[Costin et al'Ol-13; A Schiappa,Vonk to appear]



TRANSASYMPTOTICS

+00 4+ 00
Flzm) =) 2 M (1) Fi(r) = ) ma}
k=0 -

. . 2 3 N .
Recursive calculation: Fo(7) = 3 (1 w (57)) Lambert-VV function

Wi(z)eW® =g

PAF(T))
Fy (1) = Qk ((F(())((Z)))) Polynomials

* [This summation can also be used for determining o(C)

* F(z,7) = 0 are square root branch points, related to the single square root
branch point of W(z)at 7= —¢e™ !,



BRANCH POINTS

Asymptotic prediction:

W (t)Ni—Elo (t)+i<ﬁ210 (t)+,62+5/3—3) as t— o0
A A T Aq i A’

30€
2A—P

where t = log ( ) + 71(1 + 2n), neJ’z

O - ﬂumel”ica oranch cut 3_- © © © ©0 0 0 0 0 000ocKm
o - numerical branch point R, S
o - predicted branch point | g
1_
(o)
0 0.1 0.2

c=2/3



2.0

0.9F

0.0

O Hyperasymptotics
Borel-Padé

Transasymptotics
O Optimal truncation

] Numerical solution
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0.6 0.8

A f](w)

For the finite solution at early times f. (z)

10—10 L

10—20 L

10—30

10—40

10—50

NUMERICS VS ASYMPTOTICS

L O Hyperasymptotics
Borel-Padé .
Transasymptotics a_

- O Optimal truncation o




4.
SUMMARY/
FUTURE PIRECTIONS



SUMMARY

Hydrodynamic gradient expansion
* convergence towards attractor at late times

* description of the system after the decay of non-
hydro modes,

* asymptotic properties encode the non-
perturbative scales

Hydrodynamic Transseries

* encodes multiple scales of early and late times

* exponentially accurate summations interpolate
between initial condrtions and hydrodynamic

regime
* global analytic behaviour: branch points

2.0

1.5¢

O Hyperasymptotics
Borel-Padé

Transasymptotics

O Optimal truncation
O Numerical solution

0.0
0.0

0.2

0.4
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w
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FUTURE DIRECTIONS

Applications to SYM plasma/other microscopic theories

* existence of a hydrodynamic attractor

* early time descriptions attainable

* multiple non-hydro modes

Analytic properties beyond hydrodynamics \

* zeros of partition functions and phase
transrtions

* prediction of bifurcation phenomena In
discrete systems

* connect distinct regimes of asymptotics






