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Real life: strongly coupled quark-gluon plasma in particle accelerators; 

To determine the kinetic parameters of hydrodynamic equations (e.g. 
shear viscosity): study the associated microscopic theory

•The associated microscopic theory can be a QFT, such as strongly 
coupled  Super Yang-Mills (SYM), studied via holography

•Other microscopic models have been studied

! = 4

RELATIVISTIC HYDRODYNAMICS

Provides a reliable description of strongly coupled 
systems close to thermal equilibrium

[Romatschke’17; Strickland,Noronha,Denicol’17]

[Heller,Janik,Witaszczyk’11,’13;IA,Meiring, Jankowski,Spalinski'18]



Kinematic regime: expanding plasma in the so-called central rapidity 
region, where one assumes longitudinal boost invariance (Bjorken flow)

[Bjorken ’83]

STRONGLY COUPLED SYSTEMS  

In hydrodynamic theories the energy-momentum tensor is given by 

Tµ⌫ = E uµu⌫ + P(E)(⌘µ⌫ + uµu⌫) +⇧µ⌫

Symmetries:  conformal invariance, transversely homogeneous,  
             invariance under longitudinal Lorentz boosts

Energy density

P(E) = E/3

Pressure, in 4d conformal 
theories given by:

flow velocity

Shear stress tensor: 
dissipative effects



Kinematic regime: expanding plasma in the so-called central rapidity 
region, where one assumes longitudinal boost invariance (Bjorken flow)

[Bjorken ’83]

STRONGLY COUPLED SYSTEMS  

Strongly coupled boost invariant plasma: 
all physics encoded in         .E(⌧)

Obtaining this function is in general too difficult:
perform a large proper time expansion           . ⌧ � 1

In hydrodynamic theories the energy-momentum tensor is given by 

Tµ⌫ = E uµu⌫ + P(E)(⌘µ⌫ + uµu⌫) +⇧µ⌫



Starting from highly non-equilibrium initial conditions, the microscopic 
theory will reveal the transition to hydrodynamic behaviour at late times

LATE TIME BEHAVIOUR

Conformal theories:  late-time behaviour of energy density highly constrained 

E (⌧) =
⇤

(⇤⌧)1/3

 
1 +

+1X

k=1

✏k

(⇤⌧)2k/3

!
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•     is a dimensionful parameter encoding initial non-eq. conditions
• Leading behaviour predicted by boost-invariant perfect fluid 
• Subleading terms: dissipative hydrodynamic effects

⇤

Viscous
hydrodynamics:

transition to equilibrium described by 
late time expansion 



MIS CAUSAL HYDRODYNAMICS

• embed hydrodynamics in a framework compatible with 
relativistic causality;

• introduces non-hydrodynamic degrees of freedom;
• means of generating the hydrodynamic gradient expansion, 
studied as if it came from a microscopic theory

Müller-Israel-Stewart (MIS) approach 

[Müller’67;Israel, Stewart’79]



MIS CAUSAL HYDRODYNAMICS

Solve evolution equations of the Energy momentum tensor

Müller-Israel-Stuart (MIS) equations 

rµT
µ⌫ = 0

• Assume boost invariant flow, conformal invariance
• Hydrodynamic gradient expansion: approximate shear stress tensor 

by corrections to ideal fluid
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• Non-linear ODE describing the pressure anisotropy
•              are phenomenological parametersC⌧⇧, C⌘



THE SUCCESS OF HYDRODYNAMICS

[Heller,Spalinski ’15]

Hydrodynamic description accurate at earlier times than expected!

•Early time behaviour dictated by initial conditions

•Hydrodynamization: convergence to hydrodynamic description while the 
system is still very anisotropic and inhomogeneous

•Hydrodynamic description to equilibrium independent of initial conditions

MIS! = 4SYM [Spalinski ’17]



HYDRODYNAMIC ATTRACTORS

How to describe this early convergence towards hydrodynamics?

•The hydrodynamic model contains non-hydrodynamic 
degrees of freedom, non-perturbative in nature

•These modes play a major role during the early times of 
the expanding plasma, very sensitive to initial conditions 

•At hydrodynamisation scale still far from equilibrium, but 
the different initial solutions all become exponential close 
to to each other, and the 

•Evolution of the system towards equilibrium effectively 
described by viscous hydrodynamics

Hydrodynamic attractors



LATE TIME ASYMPTOTICS

E (⌧) =
⇤

(⇤⌧)1/3
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From asymptotics the phenomena of hydrodynamization is expected.                

Series is asymptotic: 
 factorially divergent!ϵk

• described by a divergent, asymptotic perturbative series;
• resurgent properties encode all the information about the exponentially 

small non-hydrodynamic modes;
• initial conditions uniquely encoded in a set of parameters determining the 

strength of the non-hydrodynamic modes

Late-time hydrodynamic attractor: 



RESURGENCE AND ASYMPTOTICS

E (⌧) =
⇤

(⇤⌧)1/3
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!
, ⌧ � 1 Series is divergent, resurgent!

Resurgence and asymptotics 

How can we match the late-time behaviour to any given initial condition? 
Beyond a purely numerical analysis, can we describe the system at all times? 

Can we hope to describe the analytic behaviour of our observable?

• asymptotic expansions "converge" quite quickly;
• established asymptotic summation methods with exponential accuracy, 

effectively distinguishing between the exponentially close solutions at late-times;
• obtain global analytic properties of the asymptotic observables.



OUTLINE

1. Introduction to resurgent transseries
Resurgence and Borel transforms
Summations

2. Müller-Israel-Stewart hydrodynamics
From late to early times: dependence on initial conditions
Branch points and global behaviour

3. Summary

0.   Motivation



1. 
INTRODUCTION TO RESURGENT 

TRANSSERIES

[IA,Basar,Schiappa’18]



DOUBLE  WELL IN QM
V (x)

x

e.g.

H = �1

2

✓
d

dx

◆2

+ V (x)

‣  Schrödinger Eq:
H �(x, g) = E(g)�(x, g)

‣  Hamiltonian

Coupling

g = 0 Harmonic oscillator

x

VH(x) =
1

2
x2

Eg.s. =
1

2

(⇠ ~)

g > 0 How can we solve it?

V (x) =
1

2
x2 (1�p

g x)2



PERTURBATION THEORY IN QM

    very smallg Eg.s.(g) '
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nPerturbation

theory

En ⇠ n!A�n

For  large enough n• Series is asymptotic:

Why asymptotic? Existence of instantons

Corrections to  Suppressed!

V (x)

x

V (x) =
1

2
x2 (1�p

g x)2

Eg.s. ⇠ e�A/g
1X

n=0

E(1)
n gn



BEYOND PERTURBATION THEORY

    very smallg

⇠ e�A/g
1X

n=0

E(1)
n gnInstanton corrections to Eg.s.

Eg.s.(g) '
1X

n=0

E(0)
n gn

O

⇣
e�2A/g

⌘Higher instanton 
corrections

V (x)

x

x0 x1

[Vanstein’64;Bender,Wu’73;Bogomolny,Zinn-Justin’80]



TRANSSERIES SOLUTION

k-instanton contribution, 
each is  asymptoticFormal expansion in transmonomials

• the small parameter
• non-perturbative term
•    encodes boundary/initial conditions 

g
e�A/g

requires all instantons to be well defined

E(k)(g) '
1X

n=0

E(k)
n gn

E(k)
n ⇠ n! (kA)�n

[Edgar'08]
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Eg.s.(g,�)



ADDING ALL CONTRIBUTIONS

Eg.s.(g) '
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k=0

e�kA/g E(k)(g)



ADDING ALL CONTRIBUTIONS

Eg.s.(g) '
1X

k=0

e�kA/g E(k)(g)Eg.s.(g) � E(0)(g) + e�A/g E(1)(g) + e�2A/g E(2)(g) · · ·

Optimal error : Contributes at order

The one-instanton sector addresses the 
error from the perturbative series 

⇣
E � E(0)

N

⌘
(g) ⇠ e�A/g

e�A/g



ADDING ALL CONTRIBUTIONS

Eg.s.(g) � E(0)(g) + e�A/g E(1)(g) + e�2A/g E(2)(g) · · ·

Optimal error after summing

E(0)(g) + e�A/g E(1)(g) ?



ADDING ALL CONTRIBUTIONS

Eg.s.(g) � E(0)(g) + e�A/g E(1)(g) + e�2A/g E(2)(g) · · ·

Optimal error after summing

E(0)(g) + e�A/g E(1)(g) ?

asymptotic series!

Optimal error :
⇣
E(1) � E(1)

N

⌘
(g) ⇠ e�A/g

E(1) '
1X

n=0

E(1)
n gn

Error after summing perturbative and 1-instanton is
Eg.s. �

⇣
E(0) + e�A/g E(1)

⌘
⇠ e�2A/g



ADDING ALL CONTRIBUTIONS

Eg.s.(g) � E(0)(g) + e�A/g E(1)(g) + e�2A/g E(2)(g) · · ·

Error after summing perturbative and 1-instanton is
Eg.s. �

⇣
E(0) + e�A/g E(1)

⌘
⇠ e�2A/g

asymptotic series!Again E(2) '
1X
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E(2)
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Two-instanton sector addresses the new error
Eg.s. �

⇣
E(0) + e�A/g E(1) + e�2A/g E(2)

⌘
⇠ e�3A/g

⇣
E(2) � E(2)

N

⌘
(g) ⇠ e�A/g



ADDING ALL CONTRIBUTIONS

Eg.s.(g) � E(0)(g) + e�A/g E(1)(g) + e�2A/g E(2)(g) · · ·

....

1-instanton

2-instanton

All instanton contributions conspire to cancel the 
errors at higher and higher orders!



ADDING ALL CONTRIBUTIONS

Eg.s.(g) � E(0)(g) + e�A/g E(1)(g) + e�2A/g E(2)(g) · · ·

....

1-instanton

2-instanton

All instanton contributions conspire to cancel the 
errors at higher and higher orders!Resurgence

[Écalle’81]



A TRUE ANALYTIC SOLUTION?

Transseries E(k) ⇠
1X

n=0

E(k)
n gnEg.s. '

1X

k=0

�ke�kA/g E(k)(g)

• Re-sum all asymptotic sectors "E(k)(g)

• Detemine    from external data (boundary/initial conditions)σ

• This can be done for any value of      and encodes:g

Analytic data (poles, zeros, branch cuts)
Phase transitions (Stokes phenomena)

Next: Borel transform and re-summation



BOREL TRANSFORMS

Determine NP phenomena from an asymptotic series

Eg.s.(g) '
1X

n=0

E(0)
n gn

E(0)
n ⇠ n!

An for large enough n

Remove the factorial growth to get a convergent series: 
inverse Laplace transform to each term

BE(s) =
1X

n=0

E(0)
n

n!
sn



BOREL TRANSFORMS
Let’s simplify our example!

Borel transform:Original Series:
Eg.s.(g) '

1X

n=0

E(0)
n gn

E(0)
n =

n!

An

BE(s) =
1X

n=0

E(0)
n

n!
sn =

1X

n=0

⇣ s

A

⌘n

=
A

A� s

s = A

s� plane

single pole at s = A

The position of the pole is 
controlled by instanton action



BOREL TRANSFORMS
•Non-perturbative phenomena: singularities in Borel plane           
•Singularities usually will be branch cuts
•Singular directions: Stokes lines

•Structure of singularities can be very complex
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[IA,Russo,Schiappa’14]



TRANSSERIES SUMMATIONS

How to associate a function to the original asymptotic series?

• Optimal truncation and Hyperasymptotics

• Borel summation

• Transasymptotics



OPTIMAL TRUNCATION

f(g) '
1X

n=0

fn g
n

N(optimal)
N

-10

-20
-A/g

log(f � fN )

Optimal error :

for some value A

(f � fN ) (g) ⇠ e�A/g

• Assume    

• Define  fN (g) =
NX

n=0

fn g
n

g fixed and small

N(optimal) ⇡ A/g

Non-perturbative 
effect!



LEVEL-1 HYPERASYMPTOTICS

Truncation:  NHyp(g) ∼ 2A/g

        Error Eg.s.,Hyp(g) ≃ EHyp,0(g) + σ EHyp,1(g) ∼ e−2A/g

Approximate the transseries 
including first exponential sector

Eg.s. ≃ E(0)(g) + σ e−A/g E(1)(g) + ⋯

[Berry,Howls’90,’91;Olde Daalhuis'95]

EHyp,0(g) =
NHyp(g)−1

∑
m=0

E(0)
m gm + gNHyp(g)−1 S1

2πi

NHyp(g)/2−1

∑
m=0

E(1)
m F(1) (g;

NHyp(g) − m
−A )

EHyp,1(g) = e−A/g
NHyp(g)/2−1

∑
m=0

E(1)
m gm

Hyperterminant:

e a
g +iπMg1−M Γ(M) Γ (1 − M, a

g )
F(1) (g; M

a )



BOREL RESUMMATION

• Straightforward in the directions without singularities
• Re-summation along Stokes directions: Non-perturbative ambiguity

Ambiguity in choice of 
contour

S+

S�

BE(s) =
A

A� s
SEg.s.(g) =

Z 1

0
dsBE(s)e

�s/g

Borel resummation: Laplace transform

S+ � S� =

I

s=A
ds

A

A� s
e�s/g ⇠ e�A/g

[IA,Basar,Schiappa’18]



ASIDE: NUMERICAL SUMMATION     

What if we don’t know the functional form of            ?      

If we know finite number (   ) of terms of Borel transform

BE(s)

•Approximation methods such as Padé approximants

BP(N)
E (s)

N

•Numerical re-summation for each value of g

SNEg.s.(g) =

Z 1

0
dsBP(N)

E (s)e�s/g



BOREL RESUMMATION

Approximate the transseries 
including first exponential sector

Eg.s. ≃ E(0)(g) + σ e−A/g E(1)(g) + ⋯

        Error Eg.s.,B(g) ≃ "N0
E0(g) + σ e−A/g "N0

E(1)(g) ∼ e−2A/g

"N0
E( j) = ∫

+∞

0
dξ e−ξ/g BPN0

[E( j)](ξ)

Truncation:   any, but at least  to minimise errorN0 2A/g



TRANSASYMPTOTIC SUMMATION

Change the order of summation: sum all exponentials for each order gn

τ

Transseries E(k) ⇠
1X

n=0

E(k)
n gnEg.s. '

1X

k=0

�ke�kA/g E(k)(g)

• Validity: small g, exponentials can be order 1 
• Study analytic properties of solution: e.g. branch points

Eg.s. ≃
+∞

∑
k=0

σk e−kA/g
+∞

∑
n=0

E(k)
n gn =

+∞

∑
n=0

gn
+∞

∑
k=0

(σ e−A/g)k E(k)
n =

+∞

∑
n=0

gn Fn(τ)

where  Fn(τ) =
+∞

∑
k=0

τk E(k)
n

[Costin’99,'01]



3. 
MÜLLER-ISRAEL-STEWART 

HYDRODYNAMICS



MIS CAUSAL HYDRODYNAMICS

Look back at the Müller-Israel-Stewart (MIS) ODE: 

z C⌧⇧f f 0 + 4C⌧⇧f
2 +

✓
z � 16C⌧⇧

3

◆
f � 4C⌘

9
+
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9
� 2z

3
= 0

Write solution at late times as a resurgent transseries: 
• single, purely decaying non-hydrodynamic mode
• describes decay to hydrodynamic attractor

�n (z) = z�n�
+1X

k=0

a(n)k z�k

F (z,�) =
+1X

n=0

�n e�nAz �n (z)

A =
3

2C⌧⇧
� = � C⌘

C⌧⇧
[Heller,Spalinski’15; Basar,Dunne’15; IA,Spalinski’15]



SOLUTION AT EARLY TIMES

Finite solution: Stable solution, converging 
to a finite  value at early times 

Generic solution: 1-parameter family of solutions 
divergent at early times

ffinite(z) = 2
3 (1 − β + )(z)), z → 0 [Heller,Spalinski ’15]

fC(z) = 2
3 ( C

z4 + 2 + )(z)), z → 0

Can we relate transseries parameter  and parameter  ?σ C



FROM LATE TO EARLY TIMES

Approximation attime  : hyperasymptoticsz0

fapprox(z0) ≃ fHyp,0(z0) + σ fHyp,1(z0)

Approximation at time  : Borel summationz0

fapprox(z0) ≃ "N0
Φ0(z0) + σ e−A z0 "N0

Φ(1)(z0)

Approximation at time  : Taylor series methodz0

Use analytic continuation via numerical Taylor series method,  
to bring early times solution to the finite value  :z0

fan(z0)

Solve    to obtain  fapprox(z0) = fan(z0) σ(C)



FROM LATE TO EARLY TIMES

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

-0.4

-0.2

0.0

0.2

0.4• Ambiguity cancelation: 
 constrained 

by Stokes constant 
Imσ

i Imσ = S1
2 ∼ i0.0027

• Strength of non-hydrodynamic mode  highly sensitive to initial condition

• Choice of interpolation point  changes accuracy:
1. Larger  increases accuracy
2. Include extra exponential sectors to increase accuracy at smaller 

σ

z0
z0

z0

Re (σf+) ∼ − 0.3493



TRANSASYMPTOTICS

Rearrange order of transmonomials in the transseries:

[Costin et al’01-13; IA,Schiappa,Vonk ’to appear]

Sum the transseries in a new regime  :z−1 ≪ τ ≪ 1

F(z, ⌧) =
+1X

k=0

z�k Fk(⌧) Fk(⌧) =
+1X

n=0

⌧n ank

The sum over powers of   can be done exactly!τ

ℱ(z, σ) =
+∞

∑
k=0

z−k
+∞

∑
n=0

(σ z−β e−Az)n a(n)
k =

+∞

∑
k=0

z−k
+∞

∑
n=0

τn a(n)
k

Study analytic behaviour: poles, branch points…



TRANSASYMPTOTICS

F(z, ⌧) =
+1X

k=0

z�k Fk(⌧) Fk(⌧) =
+1X

n=0

⌧n ank

Recursive calculation: F0(⌧) =
2

3

✓
1 +W

✓
3

2
⌧

◆◆

Fk(⌧) =
Pk (F0(⌧))

Qk (F0(⌧))

...

W (x) eW (x) = x

Lambert-W function

Polynomials

• This summation can also be used for determining 
•  are square root branch points, related to the single square root 

branch point of   at  .

σ(C)
ℱ(z, τ) = 0

W(τ) τ = − e−1



BRANCH  POINTS

wbp(t) ≃ t
A

− β
A

log(t) + 1
A t (β2 log(t) + β2 + 5β − 3

A ) , as t → ∞

where  t ≡ log ( 3σe
2A−β ) + πi(1 + 2n), n ∈ ℤ

- numerical branch cut
- numerical branch point
- predicted branch point

σ = 2/3

Asymptotic prediction:



NUMERICS VS ASYMPTOTICS

For the finite solution at early times  f+(z)
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4. 
SUMMARY/ 

FUTURE DIRECTIONS



SUMMARY

Hydrodynamic Transseries
• encodes multiple scales of early and late times 
• exponentially accurate summations interpolate 
between initial conditions and hydrodynamic 
regime
• global analytic behaviour: branch points

Hydrodynamic gradient expansion
• convergence towards attractor at late times 
• description of the system after the decay of non-
hydro modes, 
• asymptotic properties encode the non-
perturbative scales
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FUTURE DIRECTIONS

Analytic properties beyond hydrodynamics

Applications to SYM plasma/other microscopic theories

• existence of a hydrodynamic attractor 
• early time descriptions attainable 
• multiple non-hydro modes

• zeros of partition functions and phase 
transitions
• prediction of bifurcation phenomena in 
discrete systems
• connect distinct regimes of asymptotics
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