

An overview of the FLUKA particle transport code and its graphical user interface Flair

Academic training lecture 14.09.2022

Introduction

FLUKA.CERN distribution

https://fluka.cern

Code history: FLUKA was born in the 60's at CERN from Johannes Ranft

It's in active development since then, where several institutes and collaborators have contributed.

Currently the 4th generation of the code is distributed by CERN.

The next release **FLUKA 4-3.0** is scheduled for **September 15, 2022**

Licensing scheme

Registration options	Includes access to the
FLUKA Single User License Agreement	
Affiliates of institutes with a FLUKA Institutional License Agreement	source code
CERN Staff members and Fellows	
Affiliates of institutes which signed the FLUKA Memorandum of Understanding	development version
Companies which purchased a FLUKA Commercial License Agreement	

- Licenses are free except for commercial use
- They are granted for **non-military use** only

User support

FLUKA User Forum

https://cern.ch/fluka-forum

Note: an independent one time registration is required to be able to participate

FLUKA Training

Three Beginner Online Training courses were held 2020 and one in 2021.

One Beginner Training course was held at the University of Brussels in 2022

Advanced course planned for spring 2023 in the US.

😂 FLUKA $Q \equiv$ Expand Details **FLUKA User Forum** Discussion forum for users of the FLUKA Monte Carlo code and its graphical user interface Flair distributed by CERN on fluka.cern and cern.ch/flair. all categories Latest Unread (37) + New Topic = Category Topics Latest Announcements No Random file available 晋 As of December 2019, this discussion list represents the official Installing, Running and Runtime Errors forum for users of the FLUKA Monte Carlo code and its graphical user interface Flair, distributed by the European Software requirements of FLUKA and Organization for Nuclear Research (CERN) 3 Flair 03 1d Installing, Running and Runtime Errors Installing, Running and Runtime Errors 26 Category for guestions related to installing and running FLUKA Bugs in FLAIR 3.0-8a and Flair. A Staff 1d Flair 27 Nothing provides python3-imaging-tk issue Category for questions related to the graphical user interface while installing geoviewer on centos 8 Flair. 1d Source Definition 2 Number of processed DETECT cards Category for questions concerning built-in source options, like 3d Scoring and Biasing particle beams, hadron-hadron collisions or isotropic sources. Geometry and Materials Gnuplot errors or warnings found 5 -5d Category for material and geometry-related questions including topics like transformations and lattices. Make: /usr/local/fluka/flutil/fff: Command not Scoring and Biasing 4 found Category for questions related to built-in scoring and biasing Advanced Features and User Routines options. Installation of FLAIR and the geoviewer on Physics, Transport and Magnetic Fields Mac OS Catalina with Home-brew Category for physics-related questions, as well as questions on

FLUKA capabilities

- hadron-hadron and hadron-nucleus interactions
- nucleus-nucleus interactions (including deuterons!)
- photon interactions (>100 eV)
- electron interactions (> 1 keV; including electronuclear)
- muon interactions (including photonuclear)
- neutrino interactions
- low energy (<20 MeV) neutron interactions and transport
- particle decay
- ionization and multiple (single) scattering (including all ions down to 250 eV/u)

- coherent effects in crystals (channelling)
- magnetic field, and electric field in vacuum
- combinatorial geometry and lattice capabilities
- voxel geometry and DICOM importing
- analogue or biased treatment
- on-line buildup and evolution of induced radioactivity and dose
- built-in scoring of several quantities (including DPA and dose equivalent)

In support of a wide range of applications

✓ Accelerator design
 ✓ Particle physics
 ✓ Cosmic ray physics
 ✓ Neutrino physics
 ✓ Medical applications

- ✓ Radiation protection (shielding design, activation)
- ✓Dosimetry
- ✓ Radiation damage
- \checkmark Radiation to electronics effects
- ✓ ADS systems, waste transmutation
- ✓Neutronics

Basic Input

Some history

• FLUKA's story begun a long time ago (1960s)...

... no graphical interfaces, input and output via text file

- Inputfile can be very long > 50k lines
- Inputfile based on "cards": .inp file

- Each card has 1 name, 6 values (called WHATs), 1 string (called SDUM)
- Two examples of cards (the actual meaning is not relevant here):

BEAMPOS	4750.5	130.0	4866.5			NEGATIVE	3
BEAM	-0.4	0.2	5.0	1.E-4	1.E-4	ELECTRON	1
		↑	Î	Î	Î		
Card name	WHAT(1)	WHAT(2)	WHAT(3)	WHAT(4)	WHAT(5)	WHAT(6) SDUM	

FLAIR

In 2006, Flair was born!

FLUKA advanced graphical user interface

Input file creation

Geometry visualization and construction

Simulation execution

Results visualization

- Flair acts as an intermediate layer between the user and the input file
- It allows a user friendly editing of the FLUKA input
- Based on a .flair file and generates the .inp file that is run by FLUKA

Flair *≠* FLUKA

FLAIR

https://flair.cern

Authors

authors: Vasilis Vlachoudis *(lead author)* Christian Theis Wioletta Kozlowska

> 3.1-15.1 Fri 22-Oct-2021

Features

- modern and intuitive design
- Input editor for error free inputs
- Interactive geometry editor, photorealistic ray tracer and debugger
- run and monitor the simulation
- back-end for post-processing of results
- I/O of other simulation formats (MCNPX,GDML,...)
- Medical file importing, DICOM, RT-PLAN, DOSE,...
- extended material library

🔚 🛷 👻 📔 🙀 Flair 🛛 💕 Ge	ometry 🛛 Input 🛛 🚴 Ru	n 🛄 Plot		🛛 🗐 Calcu	lator 🔻 🗊
📁 🎽 Cut 🔠 🗋 New 🕶 🥝	Fluka 🔻 📴 🍘 Preprocesso	r 🔻 🗙 Delete 🛛 👝	📑 Show 🗸 🔹 🕯 Move Up	*all*	▼ 🚴
Pasta Canu 🕄 🚰 Load 🚸	Import 🔻 🍹 🥥 Material 🔻	🔄 🕜 Change 🔻 🖤	😡 Comment 🗸 Goto	× Search	
Paste 📑 Copy 🔐 🖬 Save 🛛 🕹	Export • Add • Add	Clone State	🗕 🥜 Edit Card 🛛 🕹 Move Do	wn Replace	× 🗆 🐴 🖌
Clipboard Input	Card	1	Edit	niter 🔻	
0		Ιηρυτ			
= 🐑 Input	🕖 #define BIASFLA	G [⊥] :	T	T	
General	+1+2+3	+4+5	+6+7		
E-Geometry	TITLE FLUKA Cou	irse Exercise			
🕀 🗀 Media	use names everywher	and free forma	t for geometry		
Physics Transport	DEFAULTS	: PRECISIC) v		
	beam definitions				
🕂 🗀 Flair	* BEAM	Beam: Energy V	E: 3.5	Part: PROTON V	
H_ Preprocessor	∆p: Gauss ▼ ∆p Shape(X): Rectangula	D(FWHM): U.8 Ar ▼ Ax:	Δφ: Gauss ▼ Δφ (i Shape(Y): Rectangular	-WHM): 1.7	
	BEAMPOS	X:	V:	z: -0.1	
		cosx:	cosy:	Type: POSITIVE V	
	C				
	Geometry				
		Accuracy:	Option: 🔻	Paren:	
	G	eometry: 🔻	Out: 🔻	Fmt: COMBNAME V	
	Title: Cylindrical	Target			
	Bodies				
	Dis side size to in si				
		ude geometry	w 0.0		
	SFIL DLK	R: 10000.	y: 0.0	2: 0.0	
	Void sphere				
	SPH VOID	x: 0.0	y: 0.0	z: 0.0	
	Infinite cylinder	R: 1000.			
		×: 0.0	v: 0.0	P: 5	
	planes cutting t	ne cylinder	y. 0.0	N. J.	
	XYP ZTIow	z: 0.0			
	📙 🕹 XYP T1seg	z: 1 .			
	💄 XYP T2seg	z: 2.			
	📙 XYP ZThigh	z: 10.			
	RCC capsule	e x: 0.0	y: 0.0	z: -10.	
		Hx: 0.0	Ну: 0.0	Hz: 40 .	
		K: 10.	v: 0.0	P: 40	
		x: 0.0	y: 0.0	R: 40. B: 80	
		x: 0.0	y: 0.0	R: 120	-
	•				
	*+1+	.2+3	· · + · · ▼ 4 · · · · + · · · ·	5+6+	.7 🧷 🗂
	FLUKA Course Exerc	ise			
.					
Dukay av Biasing flair	Current:2 Total:00				∂ .a
riuka. ex_Blasing.nair	Current.2 Total:98				<u> </u>

TITLE

Assign a title to the simulations

- The title is printed in the output files
- Not a mandatory card

DEFAULTS

Select one of the physics defaults settings

- To be defined at the very beginning of input, only preceded by the **TITLE** and **GLOBAL** cards
- Any of the physics defaults can be overridden later in the input with specific cards
- Given the progress over time in computer power, it is a reasonable approach to always select the most detailed physics defaults (**PRECISIO**) and override specific settings later depending on the needs of the problem

🔚 🗠 👻 📔 🎬 Flair 🛛 💕 Ge	ometry 🕅 Input 🔏 Rur	n 💽 Plot		🛛 🗂 Calc	ulator 🔻 🗊
👝 🔏 Cut 🔡 🗋 New 🗸 🏩	Fluka 🔹 👘 Preprocessor	🕶 🗙 Delete	🚰 Show 👻 🔹 🔮 Move Up	*all*	V 🚴 🗸
Load 🔌	Import 🔻 🍟 🥥 Material 🔻	📀 Change 🔻 🌄	Ϙ Comment 🕶 Goto	< Search	x 🗆 🔎 (
Paste 🔄 Copy 🔐 🔒 Save 🔹 🚸	Export • Add • Add	🗙 🟦 Clone 🛛 State 🗸	Cedit Card 🛛 🕹 Move Down	Replace	× 🗆 🐴 🖌
Clipboard Input	Card		Edit	- Alter▼	
\odot		Input			
🗆 🕐 Input	#define BIASFLA	G [⊥] :		_1	<u> </u>
+- General	+1+2+3.	+4+5	.+6+7		
⊕- Geometry	TITLE FLUKA Cou	rse Exercise			
🕂 🗀 Media	use names everywhere	and free format	for geometry		
+ Physics	DEFAULTS	: PRECISIO	▼		
⊕- Biasing					
🕀 🗀 Scoring	beam definitions	_			
⊕- 🔁 Flair	BEAM	Beam: Energy V	E: 3.5	Part: PROTON V	
HPreprocessor	Shape(X): Rectangula	(FWHM): 0.8 Γ▼ Δχ:	Shape(Y): Rectangular •	Δν:	
	W BEAMPOS	X:	y:	z: -0.1	
		cosx:	cosy:	Type: POSITIVE 🔻 🔭	
	Coometry				
	A GEOBEGIN	ccuracy:	Option: V P	aren:	
	G	eometry: 🔻	Out: 🔻	Fmt: COMBNAME V	
	Title: Cylindrical	Target			
	Bodies				
	Ripskholo to inclu	ido goomotru			
		x 0.0	v: 0.0	7.00	
		R: 10000.	<i>y</i> : 0.0	2. 0.0	
	Void sphere				
	SPH VOID	x: 0.0	y: 0.0	z: 0.0	
	Infinite cylinder	R: 1000.			
	ZCC TARG	x: 0.0	v: 0.0	R: 5 .	
	planes cutting th	e cylinder			
	XYP ZTIOW	z: 0.0			
	📙 XYP T1seg	z: 1.			
	XYP T2seg	z: 2.			
	XYP ZThigh	z: 10.	0.0	10	
	RCC capsule	x: 0.0	y: 0.0	z: -10.	
		R: 10.	Hy: 0.0	HZ: 40.	
	SCC sh1	x: 0.0	y: 0.0	R: 40.	
	C ZCC sh2	x: 0.0	y: 0.0	R: 80.	
	ZCC sh3	x· 0 0	v· 0 0	R· 120	
	*+	2 + 3	+ ¥4+ 5	+ 6 +	7.
	TITLE				
	FLUKA Course Exerci	ise			
▼					
Fluka: ex_Biasing.flair	Current:2 Total:98				
	· · · · · · · · · · · · · · · · · · ·				

BEAM

Specify beam particle properties

- Particle type
- Momentum or kinetic energy
- Momentum distribution
- Angular distribution
- Shape in the X-Y plane

BEAMPOS

Define beam spot and direction

- Beam spot is defined with its x, y and z coordinates [cm]
 Default: Origin of the coordinate system
- Beam axis is defined via direction cosines with respect to the x and y axes.
- The third direction cosine (cosz) is automatically calculated by FLUKA, its sign to be provided via Type=POSITIVE/NEGATIVE

	input			
BEAMPOS	x: cosx:	y: cosy:	z: -0.1 Type: POSITIVE ▼	-
Geometry				
Title: Cylindrica	Accuracy: Geometry: ▼ I Target	Option: ▼ Out: ▼	Paren: Fmt: COMBNAME ▼	
Bodies				
Blackhole to inc	lude geometry	v: 0.0	7:00	
Void sphere	R: 10000.	y. 0.0	2. 0.0	
SPH VOID	x: 0.0 R: 1000.	y: 0.0	z: 0.0	
ZCC TARG planes cutting t	x: 0.0 he cylinder	y: 0.0	R: 5.	
L XYP ZTIOW	z: 0.0 z: 1.			1
L XYP T2seg	z: 2. 1 z: 10.	0.0	10	
	e x: 0.0 Hx: 0.0 R: 10.	y: 0.0 Hy: 0.0	z: -10. Hz: 40.	
C ZCC sh1 ZCC sh2	×: 0.0 ×: 0.0	y: 0.0 y: 0.0	R: 40. R: 80.	
C ZCC sh3	x: 0.0 x: 0.0	y: 0.0 y: 0.0	R: 120. R: 160.	
ZCC sh5	x: 0.0 x: 0.0	y: 0.0 y: 0.0	R: 240. R: 240.	
→ XYP pp150	z: 150. y: 0.0			
* END				
Dogione				
	 BEAMPOS Geometry GEOBEGIN Title: Cylindrica Blackhole to inc. SPH BLK Void sphere SPH VOID Infinite cylinder ZCC TARG planes cutting 1 XYP ZThory XYP T1seg XYP T2seg XYP ZThory XYP ZThigt RCC capsul ZCC sh1 ZCC sh2 ZCC sh3 ZCC sh4 ZCC sh5 ZCC sh6 XYP pm100 XYP pm100 XYP pm100 XYP pm100 XYP yo 	Geometry Geometry Geometry Geometry Title: Cylindrical Target Bodies Blackhole to include geometry SPH BLK x: 0.0 R: 10000. Void sphere SPH VOID x: 0.0 R: 10000. Void sphere SPH VOID x: 0.0 R: 1000. Infinite cylinder ZCC TARG x: 0.0 planes cutting the cylinder J: XYP T1seg z: 1. XYP T2seg z: 2. J: XYP T1seg z: 1. SYP T2seg z: 2. J: XYP T1seg z: 1. SYP T2seg z: 2. J: XYP T1seg z: 1. SYP T2seg z: 2. J: XYP T2seg z: 2. J: XYP T1seg z: 1. SYP T2seg z: 2. J: XYP T2seg z: 2. J: XYP T1seg z: 1. SYP T2seg z: 2. J: XYP T2seg z: 2. J: XYP T2seg z: 2. J: XYP T1seg z: 1. SYP T2seg z: 2. J: XYP T2seg z: 2. J: XYP T2seg z: 2. J: XYP T1seg z: 1. SYP T2seg z: 2. J: XYP T2seg z: 2. J: XYP T2seg z: 2. J: XYP T2seg z: 2. J: XYP T1seg z: 1. SYP T2seg z: 2. J: XYP Y T2seg z: 2. J: XYP Y T2seg z: 2. J: XYP Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		

GEOBEGIN

Start of input section that defines geometry

Body definitions

A body definition consists of:

- **3-letter code** indicating the **body type**
- unique body name (alphanumeric identifier, 8 character maximum, case sensitive)
- set of geometrical quantities defining the body, e.g. the body dimensions and the position in the coordinate system (all values in cm!)

END

Ends the body definition

https://fluka.cern - Academic Training lecture

Region definitions

A region definition consists of:

- Unique region name (alphanumeric identifier, 8 character maximum, case sensitive, must start with an alphabetical character)
- Estimate of the number of neighboring zones
- A single **Boolean zone expression** or a **series of Boolean zone expressions** combined via the **union operator**

END

Ends the region definition

GEOEND

End of input section that defines geometry

🕐 📔 🗮 Flair 🛛 💕 Ge	eometry 🛛 🖓 Input 🛛 🎝	Run 🛄 Plot			🛅 C	alculator 🔻
🖁 Cut 🔠 🗋 New 🕶 🥝	Fluka 🔻 📴 🌐 Prepro	essor 🔻 🗙 Delete	Angle Show -	Move Up *a	all*	▼
🔠 🚰 Load 🖇	Import 🔻 🤚 🎱 Materia	l 🔻 📀 Change 🔻	Comment -	Goto 🗙 S	earch	X 🗖
🔒 Copy 🔐 🔚 Save 🔻 🔌	Export • Add • Add	🗴 🕂 Clone	State 🕶 🥜 Edit Card	Move Down R	eplace	× E
board Inpu	t	Card	Edit		Filter	•
		Inpu	10		1	
put -	• ◆ END ⁺	-	±		±	-
Primary	🔯 GEOEND	: 🔻				
Geometry						
Media	Materials definition	l i i i i i i i i i i i i i i i i i i i				
Physics						
Transport	MATERIAL C	02	#:		ρ: 0.001965	
Biasing	Z:	Am:	A:	dE/d	ix: ▼	
Scoring		CO2 V	Mix: Ato	m V Element	ts: 13 ▼	
Flair	f1: 1.0	M1: CAR	BON v f2: 2.0	м	2: OXYGEN 🔻	
Preprocessor	f3:	M3: ▼				
	MATERIAL P	OTASSIU	#:		ρ: 0.862	
	Z: 19.	Am:	A:	dE/d	lx: ▼	
	Concrete portland		and the second second second			
	Concrete has a wid	le variation in de	ensity and compos	sition.	2.2	
		ORILAND	#:	1	ρ: 2.3	
		Am:	A:	dE/d	IX: ▼	
		PORTLAND V	Mix: Ma	SS ▼ Element	ts: 1012 V	
	f1: 0.01	M1: HYD	ROGEN ▼ f2: 0.0	01 M	2: CARBON V	
	f3: 0.5291	07 M3: OXY	GEN▼ 14:0.0	16 M	4: SODIUM ▼	
	f7: 0.002	21 M7. SILI	SINESIU▼ 10:0.0	12 M		′ I
	fo: 0.044		CILIM ¥ 10:0.0	14 M1		
	f11:	M11: ▼	f12:	M1	2: ▼	
	Assign materials					
	SASSIGNMA	Mat: BLC	KHOLE 🔻 Reg: BLI	KHOLE V to Re	eg: ▼	
		Mat(Decay): 🔻	Step:	Fiel	ld: 🔻	
	SASSIGNMA	Mat: WAT	ER 🔻 Reg: TA	RGS1 🔻 to Re	:g: ▼	
		Mat(Decay): 🔻	Step:	Fiel	ld: 🔻	
	SASSIGNMA	Mat: ALU	MINUM V Reg: TA	RGS2 v to Re	ig: ▼	
		Mat(Decay): 🔻	Step:	Fiel	ld: 🔻	
	SASSIGNMA	Mat: LEAI	D▼ Reg: TA	RGS3 🔻 to Re	eg: ▼	
		Mat(Decay): 🔻	Step:	Fiel	ld: ▼	
	SASSIGNMA	Mat: CO2	 Reg: INC 	CO2 v to Re	ig: ▼	
		Mat(Decay): 🔻	Step:	Fiel	ld: 🔻 📐	
	SASSIGNMA	Mat: AIR	Reg: Out	side 🔻 🛛 to Re	eg: ▼	
		Mat(Decay): 🔻	Step:	Fiel	ld: 🔻	
	SASSIGNMA	Mat: POR	TLAND V Reg: sho	apsp1 v to Re	eg: ▼	
		Mat(Decay): 🔻	Step:	Fiel	ld: 🔻	
	SASSIGNMA	Mat: POR	TLAND V Reg: sho	aps 🔻 to Re	a: 🔺	
		Mat(Decay): 🔻	Step:	Fiel	ld: ▼	
	ASSIGNMA	Mat: POR	TLAND V Reg: shi	eld6 🔻 to Re	a: 🔻	
		Mat(Decay): V	Step:	Fiel	ld: ▼	
	ASSIGNMA	Mat: POR	TLAND V Reg: shi	eld5 v to Re	a: T	
	<u> </u>	<u> </u>	2 - 1	-		-
	*+1+	+	.3+ ▼ 4	+5	.+6+	*••••/•••
	AZP YU	0.0				
•						
E E	4					

MATERIAL

Definition of a non-predefined single element

- Each material must have a unique name
- Definition of charge, mass number and density in g/cm³

MATERIAL/COMPOUND

Definition of composite materials

- Each composite material must have a unique name
- Definition of components and their abundances in terms of either atom content, mass fraction or volume fraction
- Definition of density in g/cm³

ASSIGNMA

Assignment of material to a region

Pre-defined materials

- A number of common materials (23 elements and 12 compounds) are predefined in FLUKA and can be assigned to a region without the corresponding material declaration.
- 2 special materials are also included:
 - **VACUUM:** obvious definition. Static electrical fields can be defined only in vacuum.
 - BLCKHOLE: Ideal absorber, must be assigned to the "black body" region surrounding your geometry but can also be used elsewhere in the geometry, e.g. for perfect shielding/collimation, to reduce CPU-time by killing tracking in certain regions etc.
- In addition, Flair comes with an extensive library of materials (elemental and compounds) that can be imported into the input

5.2.1. List of pre-defined single-element FLUKA materials

luka name	Fluka number	Common name	А	Z	Density [g/cm^3]	
	1	Dischals on Eutomal Versure		0		
	1	Blackhole or External Vacuum	n 0			
NDROCEN	2	Vacuum or incernal vacuum	5.2	2.2. L1St	of pre-defined ICRO compounds	
TITUM	3	Hydrogen				
	4	Herrum Demullium				
ERYLLIU	5	Beryllium		Fluka name	Common name	Density
ARBON	6	Carbon	1			[g/cm^3]
LIROGEN	/	Nitrogen	1			
CYGEN	8	Oxygen	1	WATER	Water	1.0
AGNESIU	9	Magnesium	2	POLYSTYR	Polystyrene	1.06
_UMINUM	10	Aluminium	2	PLASCINT	Plastic scintillator	1.032
ton .	11	Iron	5	PMMA	Polymethyl methacrylate, Plexiglas, Lucite, Perspe	(1.19
OPPER	12	Copper	6	BONECOMP	Compact bone	1.85
LVER	13	Silver	10	BONECORT	Cortical bone	1.85
LICON	14	Silicon	2	MUSCLESK	Skeletal muscle	1.04
LD	15	Gold	19	MUSCLEST	Striated muscle	1.04
RCURY	16	Mercury	20	ADTICUL	Adipasa tissua	1.04
AD	17	Lead	28	ADTISSUE	Adipose cissue	0.92
	18	Tantalum	18	KAPTON	Kapton polyimide film	1.42
	10	Sodium	2	POLYETHY	Polyethylene	0.94
CON	20	Angon	2	AIR	Dry air at NTP conditions	0.0012047
GON	20	Argon	3	10 00		
		T 1-	440 74	10 F0	7. 340	
Clipboard Search:	put import @Ed Materials	R Ok Cancel Edit		Materials	A	×
Group		Material List				
Biological	12	Mate	erial		Density Stoichiometry	
Elements		Epoxy (molded)			1.85 H-19, C-18, O-3	
ICRU		Polypyromellitimide Polyimide, Kapton			1.43 H-10, C-22, N-2, O-5	
Implantation		Polychloro-p-xylylene Paralene-C			1.289 H-7, C-8, CI-1	
Metal Alloys		760 Formvar PMMA Bakelite			1.31 H-8, C-5, O-2 1.45 H-9, C-9, O-1	
Plastics / Polyn	ners	Epoxy (cast)			1.18 H-19, C-18, O-3	
Targets User		Polyvinylchloride Rigid PVC			1.68 H-3, C-2, Cl-1	-
	7	Polypropylene			0.9 H-6, C-3	
Material Proper	rties					
Title: Polypyron	nellitimide P	Polyimide, Kapton				
Notes Stoi	chiometry 2	Properties			News	
Chemical	0 = 0	H-C C = 0			Names: Polvimid	- apo
Formula -	···· N	// \ / \ H-C - C-H H-C - \C C \ // \\ // N - C C - O - C /C C / / \ // \\ / \ / H-C = C-H H-C =	- C-H \\ C / = C-H			
22 10 2 5	0 = C	H-C $C = 0$				

17

🔜 🧟 🗸 险 📔 🏧 Flair 🛛 🔂 G	ieometry 🕅 Input Run	Plot			1	Calcula	tor 🔻	
The View Bill New -	SFluka ▼	X Delete	A Show -	🔒 Move Up	*all*	in culculu	V. V	R
Load A	🛛 Import 🗸 🔽 🥥 Material 🗸	🔞 Change 🔻	💟 🔵 Comment 🚽	Goto	Search			0
Paste 🗅 Copy 💀 📕 Save 🗸	Export V Add Add	Clone s	tate 🗸 🧷 Edit Card	Move Down	Replace		×г	ab
Clipboard Inp	ut Card	_	Edit		1 .	Filter		
6		Inpu	t					×
- Minnut					m1 0.20		<u> </u>	
- General	Opt: ▼	Reg: shield	2 ▼ to Reg: ▼		Step:			
		Type: Low n	eutrons v RR:		Imp: 0.125			
- Geometry	Opt: 🔻	Reg: shield	3▼ to Reg: ▼		Step:			
🕀 🗀 Media	SIASING 🗠	Type: Low n	eutrons 🔻 RR:		Imp: 0.0625			
	Opt: 🔻	Reg: shield	4 ▼ to Reg: ▼	1	Step:			
+- Transport	SIASING SIASING	Type: Low n	eutrons 🔻 RR:		Imp: 0.03125			
	Opt: 🔻	Reg: shield	5 ▼ to Reg: ▼		Step:			
H Flair	SIASING	Type: Low n	eutrons 🔻 RR:		Imp: 0.01562	5		
+- Preprocessor	Opt: 🔻	Reg: shield	6 ▼ to Reg: ▼		Step:			
	SIASING	Type: Hadro	ons & Muons 🔻 RR	t:	Imp: 2.			
	Opt: 🔻	Reg: shcap	spl ▼ to Reg: ▼		Step:			
	S BIASING	Type: Hadro	ons & Muons ▼ RR	t:	Imp: 4.			
		Reg: Shield	p∠ ▼ to keg: ▼		Step:			
	- DIASING	Registricid	nis ∝ muons ▼ RR	u .	Imp: o.			
		Type: Hadro	psv to keg:v		Jmp. 16			
	Opt	Reg: shiold			Sten:			
		Type: Hadro	ns & Muons y PR		Jmp: 32			X
	Opt: V	Reg: shield	D5 ▼ to Reg: ▼		Step:		1	
		Type: Hadro	ons & Muons V RR	te	Imp: 64.			
	Opt: V	Reg: shield	p6 ▼ to Reg: ▼		Step:			
		Type: Hadro	ns & Muons 🔻 RR		Imp: 0.5			
	Opt: V	Reg: shcap	IS▼ to Reg: ▼		Step:			
	< BIASING	Type: Hadro	ons & Muons 🔻 RR	t:	Imp: 0.25			
	Opt: 🔻	Reg: shield	2 ▼ to Reg: ▼		Step:			
	SIASING <	Type: Hadro	ons & Muons 🔻 RR	t:	Imp: 0.125			
	Opt: 🔻	Reg: shield	3▼ to Reg: ▼		Step:			
	SIASING	Type: Hadro	ons & Muons 🔻 RR	t:	Imp: 0.0625			
	Opt: 🔻	Reg: shield	4 ▼ to Reg: ▼	1	Step:			
	SIASING	Type: Hadro	ons & Muons 🔻 RR	t:	Imp: 0.03125			
	Opt: 🔻	Reg: shield	5 ▼ to Reg: ▼		Ster:			
	SIASING	Type: Hadro	ons & Muons 🔻 RR	t:	hp: 0.01562	5		
	Opt: ▼	Reg: shield	b▼ to Reg: ▼		Step:			
		0.0	Unit: 35		ame: det			
	Type: R-Φ-∠ ▼	Kmin: 0.0	Rmax: 240		NR: 50.			
		7. Zmin: -100	7max: 150		NZ 20			
			2004. 150	/				
	RANDOMIZ	Unit: 01 🔻	Seed:					
	T START	No.: 5000	Core:					
		Time:	Report: def	ault 🔻				
	STOP		_					
	1							-
	*+2	+	3+▼4	+5.	+6.	+	7	
	STOP							
Fluka: ex Biasing,flair	Current:98 Total:98							1
								-11 (2)

RANDOMIZ

Initialization of random number sequence ("seed")

- Allows using different random sequences as needed when several simulations are run on several CPU in parallel
- Flair takes care of the using different "random seeds" when spawning runs

START

Definition of number of primary particles

- Starts the simulation
- Results returned as average over the cascades induced by the given number of primary particles

STOP

Stop the execution of the program

- Not really mandatory (program stops at the end of the input)
- Can become handy for debugging purposes

Combinatorial Geometry

Principle of combinatorial geometry

 Basic objects called bodies (such as cylinders, spheres, parallelepipeds, etc.) are combined to form more complex objects called regions

Bodies and regions

Following *bodies* are available in FLUKA:

• Planes

- XYP, XZP, YZP: Infinite half space delimited by a coordinate plane
- PLA: Generic infinite half-space, delimited by a PLAne
- Boxes
 - RPP: Rectangular ParallelePiped
- Sphere and spheroid
 - SPH: SPHere
 - ELL: ELLipsoid of revolution
- Cylinders and cones
 - XCC, YCC, ZCC: Infinite Circular Cylinder, parallel to coordinate axis
 - RCC: Right Circular Cylinder
 - XEC, YEC, ZEC: Infinite Elliptical Cylinder, parallel to coordinate axis
 - REC: Right Elliptical Cylinder
 - TRC: Truncated Right angle Cone
- Other
 - QUA: QUAdric

Regions are defined by combining FLUKA bodies using Boolean operations:

- Regions are obtained by the union of sub-regions (called zones); in the simplest case a region consists of a single zone
- Zones are defined by intersections and/or subtractions of bodies (Boolean zone expressions)

- Zones / regions must be finite
- Each point in space must belong to one (and only one) region
- Regions are of homogeneous material composition (i.e. only one material can be assigned to a region)

Inside and outside a body

- Each body splits the space into two domains: inside and outside
 - This concept will be later used when defining zones and regions
 - +body refers to the volume inside of the body
 - -body refers to the volume outside of the body
 - The concept of inside and outside is applied to all bodies including infinite planes

The outer "black hole" confinement

- FLUKA defines a special material called BLCKHOLE:
 - BLCKHOLE is an **all-absorbing material**
 - Particles vanish when entering a region filled with BLCKHOLE
- The entire geometry must be embedded in a region filled with BLCKHOLE
 - This avoids tracking particles to infinity
 - The outer surface of this BLCKHOLE region must be a single closed body (e.g. a sphere)

Outside of the BLCKHOLE enclosure, the region can remain undefined!

Geometry input in Flair

🔜 🛷 👻 📔 🌉 Flair 🛛 😭	Geometry 👩 Input	🊴 Run 🔝 Plot		🔳 Ca	lculator 🔻 😭 -
🕋 🔏 Cut 🔠 🗋 New 🕶	🙈 Fluka 🔹 📴 🗰 Prep	rocessor 🔻 🗙 Delete	A Show -	Move Up *all*	🔻 瀺 🔇
Load	ᡷ Import 🔻 🍟 🥥 Mate	erial 🔻 (🧿 Change 🔻	Comment -	Goto x Search	<u> </u>
Paste Copy 🔐 🖬 Save 🗸	♣ Export ▼ Add ▼ Add	🔀 🔐 Clone	State 🕶 🥜 Edit Card	Move Down Replace	🛛 🗆 🐴 💪
Clipboard In	put	Card	Edit	Filter	×
0		Ιηρι	IT		
🗆 🚺 Input	BEAMPOS	x.		<u>-</u> 7 [.] -0 1	
General General		COSX:	cosy:	Type: POSITIVE V	
🖃 🛄 Media	Geometry				
- Physics		Accuracy	Ontion:	Paren-	
+- Transport	GLOBEON	Geometry: V	Out: V	Fmt: COMBNAME V	
⊕- <u></u> Scoring	Title: Cylin	drical Target			
🕂 🔁 Flair	Dedies				
Preprocessor	Bodies				
	Blackhole	to include geometr	У		
	SPH 🛛	LK x: 0.0	y: 0.0	z: 0.0	
	Void spher	R: 1000	0.		
	SPH V	OID x: 0.0	v: 0.0	7: 0.0	
		R: 1000).		
	Infinite cyl	inder			
		ARG x: 0.0	y: 0.0	R: 5.	
	planes cu	Ting the cylinder			
		1 sog 7: 1			
		2 2 1. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
		Thigh z: 10			
		apsule x: 0.0	v: 0.0	z: -10.	
		нх: 0.0	Ну: 0.0	Hz: 40 .	
		R: 10.			
		h1 x: 0.0	y: 0.0	R: 40.	
		nz x: 0.0	y: 0.0	R: 80.	
		n 3 x: 0.0	y: 0.0	R: 120.	
		h X: U.U	y: 0.0	K: 100.	
		h6 x: 0.0	y: 0.0	R: 200.	
		m100 z· -100	y: 0.0	π: 240.	
		p150 z: 150			
	A XZP	0 v: 0.0			
	+ END	,			
	Regions				
	<u>ا</u>				▼
	*+1	.+2+	.3+ 🔻 4	.+	7 🥒 🗎
	TITLE	Tuonoi co			
	FLUKA Course I	Exercise			
					×
Fluka: ex_Biasing.flair	Current:2 Tot	al:98			a %

🕐 📔 🙀 Flair 🛛 💕 Ge	ometry 🔞 Input 👃 Run 🛄 Plot	🔄 🛅 Calculator 🔻
🖁 Cut 🔡 🗋 New 🔻 🙈	Fluka 🔻 👝 🍘 Preprocessor 🔻 🗙 Delete 🛛 🚓 🖬 Show 👻 🔹 Move Up 🛛 *all*	▼ ໓
🔡 🚰 Load 👌	mport 🕈 🍟 🎱 Material 🔻 📀 Change 🕈 🤎 🍚 Comment 🗸 Goto 🛛 🗴 Search	∠ □ ↓
🗅 Copy 🔐 🔚 Save 🔻 🌭	Export 🔻 Add 🔻 Add 🛛 🗴 🚉 Clone 🛛 State 🕶 🥜 Edit Card 🛛 🦆 Move Down Replace	× 🗆 a
iboard Input	Card Edit	Filter
	Input	▲ >
put		<u> </u>
General	* END	
Primary		
Geometry	Regions	
Media		
Physics		
Transport	Blackhole	
Biasing	REGION BLKHOLE Neigh: 5	
Scoring	expr: +BLK -VOID	
Flair		
Preprocessor	Target segment 1	
	REGION TARGS1 Neigh: 5	
	expr: +TARG -ZTIow +T1seg	
	Target segment 2	
	REGION TARGS2 Neigh: 5	
	expr: +TARG -T1seg +T2seg	
	Target segment 3	
	REGION TARGS3 Neigh: 5	
	expr. +TAPC -T2seg +7Thigh	
	PECION autoida	
	expr: +VOID -Sn6 +VOID +pm100 +VOID -pp150	
	Air around target	
	REGION INCO2 Neigh: 5	
	expr: +capsule - TARG	
	+capsule +ZTiow	
	T Capsule -2 migh	
	Shield around cansule	
	BEGION shcansn1 Naigh 5	
	REGION Shcapspi Neigh: 5	
	expr: +sn1-capsule-pm100 +pp150 -y0	
	Shield around capsule	
	BEGION shcaps Neigh: 5	
	even +sh1 capsulo pm100 +pp150 +v0	
	A DECION abiatel	
	expr: +yu+sno-sno -pm100 +pp150	
	REGION shield5 Neigh: 5	
	expr: +y0+sh5-sh4 -pm100 +pp150	
	REGION shield4 Neigh: 5	
	expr: +y0+sh4-sh3 -pm100 +pp150	
	REGION shield3 Neigh: 5	
	expr: +y0+sh3-sh2 -pm100 +pp150	
	* END	
	* + 1 + 2 + 3 + 74 + 5 + 6	+ 7 4
	ΥΖΡ ΥΔ Δ.Δ	
• •		

https://fluka.cern - Academic Training lecture

Flair geometry editor

Allows creating geometries at a (few) mouse click(s)...

Scoring of physical quantities

FLUKA scoring

- It is said that Monte Carlo (MC) is a "mathematical experiment"; the MC equivalent of the result of a real experiment (*i.e.*, of a measurement) is called an estimator
- Just as a real measurement, an estimator is obtained by sampling from a statistical distribution and has a statistical error (and in general also a systematic one)
- There are often several different techniques to measure the same physical quantity: in the same way, the same quantity can also be calculated using different kinds of estimators
- FLUKA offers numerous different estimators, *i.e.* scoring for various quantities of interest can be requested directly from the input file

FLUKA scoring

What?

Energy deposition and derivatives (dose), fluence or current versus energy, angle or other kinematic variables, time, DPA, residual activity...

Where? In regions, across boundaries, on region-independent grids

When? At the end of each cycle or at each event

Output?

Saved in [inputname]nnn_fort.## files, where nnn is the cycle number & ## is the logical unit number chosen by the user

Results?

Post-processing utilities merge cycles, calculate average and rms, provide data files for plotting. Available via Flair

Results normalised per primary

User code needed for processing of custom scoring!

The FLUKA estimator zoo

A scoring example

👻 🖗 📔 🎬 Flair 🛛 💕	Geometry 🚺 Input 🚴 F	tun 🔝 Plot		🕅 C	alculator 🔻 🍯
X Cut 🔠 🗋 New 🗸	Fluka • / // # Preproces	sor 🔻 🗙 Delete 🛛 👝	🔄 Show 👻 🔹 🕯	Nove Up *all*	▼ &
😳 Cut	🖇 Import 🔻 🔽 🥥 Material 🔻	📀 Change 🔻 🌄	🖊 🤛 Comment 🕶 🗔	o x Search	R 🗆 🔍
🗅 Copy 🔐 🔚 Save 🕶	Export 🔻 Add 🕶 Add	🛛 🕂 Clone 🛛 State	e🕶 🥜 Edit Card 🛛 🤞 N	Nove Down Replace	🛛 🗆 🖾
lipboard In	put Car	d	Edit	Fite	•
)		Input			🔺 🔺
nput		TYFT LOW HED		III 1 0.2J	
General	Opt: 🔻	Reg: shield2	to Reg: ▼	Step:	
Primary	< BIASING	Type: Low neu	itrons 🔻 RR:	Imp: 0.125	
Geometry	Opt: V	Reg: shield3	to Reg: 🔻	Step:	
_ Media	BIASING	Type: Low neu	trons V RR:	Imp: 0.0625	
Transport		Reg: Snielu4	to Reg:	step:	
Biasing	Ont	Reg: shield5		Step:	
Scoring		Type: Low per		Imp: 0.015625	
Flair	Opt: V	Reg: shield6	to Reg: V	Step:	
Preprocessor		Type: Hadrons	& Muons ▼ RR:	Imp: 2.	
	Opt: V	Reg: shcapsp	1 ▼ to Reg: ▼	Step:	
	BIASING	Type: Hadrons	s & Muons ▼ RR:	Imp: 4.	
	Opt: 🔻	Reg: shieldp2	▼ to Reg: ▼	Step:	
	SIASING	Type: Hadrons	& Muons ▼ RR:	Imp: 8.	
	Opt: 🔻	Reg: shieldp3	▼ to Reg: ▼	Step:	
	SIASING	Type: Hadrons	s & Muons ▼ RR:	Imp: 16.	
	Opt: 🔻	Reg: shieldp4	▼ to Reg: ▼	Step:	
	< BIASING	Type: Hadrons	s & Muons ▼ RR:	Imp: 32.	
		Reg: shieldp5	▼ to Reg: ▼	Step:	
	S BIASING	Type: Hadrons	& Muons ▼ RR:	Imp: 64.	
		Reg: Snielupo	• to Reg: •	step:	
	Ont	Reg: shcaps		Imp: 0.5	
		Type: Hadrons	δ Muons ▼ RR·	Imp: 0.25	
	Opt: V	Reg: shield2	to Reg: V	Step:	
		Type: Hadrons	& Muons ▼ RR:	Imp: 0.125	
	Opt: V	Reg: shield3	to Reg: V	Step:	
		Type: Hadrons	& Muons v RR:	Imp: 0.0625	
	Opt: 🔻	Reg: shield4	to Reg: 🔻	Step:	
	SIASING 📽	Type: Hadrons	s & Muons ▼ RR:	Imp: 0.03125	
	Opt: 🔻	Reg: shield5	to Reg: 🔻	Step:	
	SIASING	Type: Hadrons	s & Muons ▼ RR:	Imp: 0.015625	
	Opt: 🔻	Reg: shield6	to Reg: 🔻	Step:	
	# #endit				/
		0.0	Unit: 35 BIN	I▼ Name: det	
	Type: R-Ψ-Ζ ▼ Part: NEUTRO		Rmax: 240.	NR: 50.	
		Zmin: -100.	Zmax: 150.	NZ: 50.	
	RANDOMIZ	Unit: 01 🔻	Seed:		
	T START	No.: 5000.	Core: 🔻		
		Time:	Report: defaul	t 🕶	
	STOP				
	* + 1 +	2 + 2	+ ▼4 +	5 + 6	7 4
	STOP			·	////////////////////////////////

USRBIN

Scores distributions of one of several quantities in a regular spatial structure (mesh) independent from the geometry or on a region basis.

Here: neutron fluence in a cylindrical mesh around beam axis

- R: 0 240cm in 50 bins
- z: -100cm to 150cm in 50 bins
- Phi: 120 bins

Results in units of 1/cm² per primary particle

Path length L [cm] inside the bin divided by the bin volume V [cm³] \rightarrow cm / cm³ = 1/cm²

https://fluka.cern - Academic Training lecture

Visualization with Flair

and the final results (examples)

... of the scoring mesh

10

Biasing techniques

Introduction to biasing

- Statistical bias: tendency causing a result to differ from the underlying fact
- In the context of FLUKA
 - Deliberately altering simulation parameters to improve variance or CPU time
 - This bias is countered by changing weights of particles

- Goodness of simulations : Figure of Merit = $\frac{1}{\sigma^2 t}$
 - The larger the better

Non-biased Monte Carlo simulations

Characteristics

Samples from

actual phase-space distributions

- Preserves correlations
- Reproduces fluctuations

Drawbacks

- Converges slowly
- Rare events are... "rare"

Non-biased Monte Carlo simulations

200000 primaries

Characteristics

- Samples uniformly from the phase-space distribution
- Preserves correlations
- Reproduces fluctuations

Drawbacks

- Converges slowly
- Rare events are... "rare"

Biased Monte Carlo simulations

200000 primaries

Characteristics

- Samples from distorted distributions
- Converges "quickly"

Drawbacks

- Cannot reproduce fluctuations and correlations
- Requires active reasoning and experience
- Requires user's time to be implemented

Biasing techniques in FLUKA

- Region Importance Biasing (BIASING)
- Mean Free Path Biasing (LAM-BIAS)
- Leading Particle Biasing (EMF-BIAS)
- Multiplicity Tuning (BIASING)
- Lifetime / Decay-length Biasing (LAM-BIAS)
- Weight Windows (WW-FACTO, WW-THRES, WW-PROFI)
- Low-energy neutrons non-analogue absorption (LOW-BIAS)
- Low-energy neutrons downscattering (LOW-DOWN)
- User defined biasing (usbset.f, usimbs.f)

During this lessons we will only look at these 2 types

Medical applications

(...a short "teaser")

Voxel geometries

- A geometry can be described in terms of voxels, tiny parallelepipeds of equal size forming a 3-dimensional grid
- Voxel geometries are especially useful for importing CT scans, e.g. for dosimetric calculations of radiotherapy treatments
- Flair can process CT scans in the DICOM(*) format using the pydicom module and convert them to FLUKA voxel geometries or USRBIN-compatible files

(*) DICOM (Digital Imaging and Communications in Medicine) is a medical standard for distributing any kind of medical image.

Defining organs

- DICOM files can be browsed, visualised and edited (e.g. anonymised)
- Voxels can be grouped into "organs"
- ROIs (Regions Of Interest) can be defined
- The voxel geometry is contained in an RPP and can be placed within a larger combinatorial FLUKA geometry

Calculating dose to organs

- Correction factors for the density and dE/dx can be specified
- The RTPLAN can be converted to a FLUKA input
- RTDOSE: the calculated data can be compared to the planned dose
- Automatic generation of DVH (Dose Volume Histogram)
- Relevant cards: VOXELS, CORRFACT, RAD-BIOL, TPSSCORE

https://fluka.cern - Academic Training lecture

Some examples

Accelerator geometries

From DETAILED MODELS OF ACCELERATOR COMPONENTS WITH ASSOCIATED SCORING and the ELEMENT SEQUENCE AND RESPECTIVE MAGNETIC STRENGTHS, as given IN THE MACHINE OPTICS (TWISS) FILES,

the AUTOMATIC CONSTRUCTION OF COMPLEX BEAM LINES, including collimator settings and element displacement (BLMs), is achievable, profiting from rototranslation directives and replication (lattice) capabilities.

LINE BUILDER

[A. Mereghetti et al., IPAC2012, WEPPD071, 2687]

Beam loss description at the LHC

[A. Lechner et al., Phys. Rev. AB 22 (2019) 071003]

Activation benchmarking

@ CERN SHIELDING BENCHMARK FACILITY (24 GeV/c p)

[E. Iliopoulou and R. Froeschl]

Situated laterally above the CHARM target

for deep shielding penetration studies (Detector calibration, Detector inter-comparison, Activation)

360cm of concrete and barite concrete

plus 80cm of cast iron

Height

R2E

11 Bismuth and Aluminum samples at different heights in CSBF and also inside CHARM (@ -80cm)

@ CHARM (CERN High energy AcceleRator Mixed field facility,

to study radiation effects on electronic components)

5 x 10¹¹ protons/pulse, 350ms pulse length, max. average beam intensity 6.6 x 10¹⁰ p/s three 50cm long 8cm diameter targets: Copper, Aluminum, Aluminum with holes

https://fluka.cern - Academic Training lecture

Medical physics: radiotherapy

Bragg peak in a water phantom 400 MeV/A C beam: The importance of fragmentation

[Exp. Data (points) from Haettner et al, Rad. Prot. Dos. 2006 Simulation: A. Mairani PhD Thesis, 2007, Nuovo Cimento C, 31, 2008]

https://fluka.cern - Academic Training lecture

Dosimetry and cosmic rays

S. Roesler et al.,

- Complete simulation of cosmic rays interactions in the atmosphere, by means of a dedicated CR package available to users
- Model of airplane geometry
- **Response of dosimeters**

