

Development of robust, low-cost, sensors and adjustment systems for micrometric alignment

Mateusz Sosin, BE-GM-HPA

Outline

- High-Luminosity LHC (HL-LHC) and Full Remote Alignment System
 - Need of simple, robust and maintenance free systems
- Multi Target Frequency Scanning Interferometry (MT-FSI)
- Wire Positioning System capacitive sensors
- Position adjustment systems and precise electro-mechanics

HL-LHC Full Remote Alignment System (FRAS)

P1 (ATLAS) & P5 (CMS) Long Straight Sections

Requirements:

- Alignment of components \rightarrow < 0.1 mm (150 m); < 0.5 mm (420 m);
- Vertical levelling of components (w.r.t. water surface)
- Radial alignment (stretched wire)
- Roll angle monitoring (inclinometers)
- Magnets longitudinal position monitoring
- Position monitoring of cold (nominal 2 .. 4 K) objects inside cryostats
- Remote alignment of collimators, masks, magnets

FRAS – Scale of the system

FRAS – Sub-components of the system

FRAS – Controls / data acq.

FRAS – Optimization

Simple, robust and maintenance free systems needed !!!

Frequency Sweeping Interferometry as position monitoring "workhorse"

- Absolute measurements, uncertainty (per ch) better than 10 μm / 10 μrad required
- EM immunity, cheap sensors and fibres, robust

Capacitive Wire Position Sensors – streatched wire (radial alignment)

- Only technology allowing for X-Y micrometric alignment w.r.t. stretched wire
- Sensitive to dust and EM noise (short cables required)

Remote adjustment

Standardization of motorized jacks and Universal Adjustment Platforms

Electronics and controls located in non radiation or low-radiation areas

Multi-target Frequency Scanning Interferometry (FSI) Instrumentation

MT-FSI introduction

Retroreflective targets

Triplet and crab cavity internal monitoring

Sensors

- Interferometric iHLS sensor
- Inclinometers for magnets, masks and collimators
- Short/Long distance sensors

Multi-target FSI

DETECTION AND

MEASUREMENT

$$I(t,\tau) = A_1 \cdot \cos[2\pi(\alpha \tau_1 t + f_0 \tau_1)] +$$

$$A_2 \cdot \cos[2\pi(\alpha \tau_2 t + f_0 \tau_2)] +$$

$$A_3 \cdot \cos[2\pi(\alpha \tau_3 t + f_0 \tau_3)]...$$

SWEEPING

REFLECTED

$$D_n = c \frac{f_{beat[m]}}{2 \frac{dv}{dt} n}$$

SOURCE

 α – is a sweep rate of the laser ($\alpha = \frac{dv}{dt}$ - laser frequency change in time); c – speed of light; n – refractive index of light transmission medium; τ – time of flight of laser to the target

Multi-target FSI – laser radar

- Very robust measurement method almost insensitive to the light intensity (high and very small power reflections visible over the noise background
 - Possible to use cheap glass balls as a reflectors
 - Possible to measure reflection from various surfaces
- Measurement uncertainty <5 μm (single laser configuration, no vibrations)
- Measurements of distance to multiple targets within single laser scan
- Collimated and divergent beams compatible
- Simple beam delivery optics
- Optical system allows easy increase of channel number

Multi-target FSI - optical systems applications

Multiple reflection applications

Multi-reflection sensors

Multi-sensor solutions (serial connection of sensors)

Internal monitoring of cold objects inside cryostats

MT-FSI Instrumentation – vacuum heads & reflectors

Simple vacuum FSI head for HL-LHC internal monitoring

- No moving parts, cheap, single steel body design
- Wide patrol field big lateral reflector movement range
- Low cost (bare fibre ferrule beam launch)

MT-FSI instrumentation - cryo-compatible reflector supports

"Passive", SIMPLE design to suppress cryo-condensation effect

- 3D printed targets to provide complex insulator shape
- · Graphite coated, heat interception plate
- · MLI film to minimize heat radiation towards cold mass of magnet

F. Micolon

MT-FSI Instrumentation – interferometric Hydrostatic Levelling Sensor (iHLS)

Cost optimized, divergent beam FSI HLS sensor for HL-LHC

- Single metal body chassis, no movable parts, minimum amount of optical components
- Measurement uncertainty < 5μm, precision ~1 μm
- Multiple level iHLS sensor under design
- Long term measurements coherent with cHLS

MT-FSI Instrumentation – optical inclinometer

3-rd (final) prototype (1-axis)

1-st prototype (1-axis)

Optical inclinometer for HL-LHC

- Resolution <10 µrad
- Differential pendulum measurement to anticipate thermal expansion effects
- Two generations of prototypes tested, allowed for final approach selection
- 3-rd final generation of inclinometer under tests

Multi-Target FSI – Long/Short distance measurement sensors

Distance measurement for UPS vs. Tunnel radial reference transmission

- ~15 m distance
- Standardized collimated optics to be used
- Expected measurement uncertainty < 40μm
- Precision ~5 μm
- Under development

Short distance measurement sensor (range ±5 .. 10mm)

- To replace current capacitive sensor
- Design with thin wall bellow protection against the dust

Expected measurement uncertainty < 5µm

Precision ~1 µm

Maximally simplified (bare-ferrule + glass ball reflector) to increase reliability

Low cost WPS sensor and RAD-TOL electronics

Wire Positioning System - Capacitive measurements

WPS sensor

- X-Y measurement w.r.t. stretched conductive wire
- Accuracy < 5μm, Resolution < 1μm
- Limited cable length (max. 30 .. 50 m)
 - Conditioning electronics need to be RAD-TOL

R&D on electronics and WPS sensors

- Previous solution
 - "BLACK BOX" solution
 - Delivered in sets (sensor + conditioner + cable)
 - No remote diagnostic possibility
 - Expensive (~4k EUR SET)

- CERN P-WPS + universal capacitive sensor conditioner
 - Simple and cheap (2x cost reduction)
 - Compatible with current supports
 - Adopted to vacuum wire replacement system (round aperture) – <u>Broken wire</u> replacement function
 - Radiation tolerant
 - Provides remote diagnostics of electronics, sensor performance
 - Provides remote parameters tuning

6 x 6 x 10 cm

CERN conditioning electronics – standardized modules

- Standardized capacitive sensors signal conditioner
 - Deep' diagnostics of signals and sensing chain
 - RAD-TOL (200Gy)

Capacitive WPS design - Conclusions

- WPS is example of technology, which is difficult to implement in harsh environement due to technology limitations
- All fragile components of the WPS are evacuated from harsh environement
- Nevertheless ... appropriate approach of sensor and electronics design, makes it possible to create cheap, simple and robust sensors

Adjustment systems optimization

Universal Adjustment Platform (UAP)

Modular motorized adapters for jacks and platforms

Universal Adjustment Platform

Definition of set of design rules and development of standardized and modular components to:

- increase safety of surveyors
- unify small (<2T) accelerator components adjustment systems
- decrease price of implementation of adjustment systems

Universal Adjustment Platform

Allows for various operation use cases

Universal adjustment platform – manual operation concept

Universal adjustment solution - permanent motors version concept. Platform equipped with WPS sensors

Universal adjustment solution – concept of use plug-in motors:

- a) Platform measurement from distance using a laser tracker;
- b) Installation of plug-in motors in less than one minute;
- c) Remote adjustment from distance.

Plug-in motorized version - principle

UAP as a design FRAMEWORK

Engineers implements their own UAPs according to specific requirements, considering design guidelines and using standardized components ("LEGO" blocks approah)

OPTIMIZATION OF:

- Design time and resources
- Material cost (standardization)

Step 2: Arrange jigs pattern within Bottom plate volume (top); Step 3: Adjust thickness of the plate and position of radial jigs (bottom)

Step 4: Prepare the space for the UAP functional sub-components

dimensions

Step 5: Prepare the Top plate initial model and adjust the joints length

Step 6: Prepare the Top plate initial model and adjust the joints length

Step 7: Integrate all user specific features and vertical jig assembly plates

Universal Adjustment Platforms

Two sizes of UAP assumed:

- SMALL UAP for smaller components with max. weight of 300 kg
- BIG UAP for bigger components, max. weight < 2 t

SMALL and BIG UAP design methodology is the same Each platform will need different family of joints/adjustment jigs

Motorized adapters for jacks and platforms

- 320 motorized axes operating in high radiation (1MGy TID), to be used for FRAS optimization of motorized adapters cost is essential
 - Standarization and modular approach is the best solution to decrease overall costs
 - Three main designs considered: UAP motorized adapter; HL-IHC jacks vertical and radial adapters

Conclusions and perspectives for future machines

- Current development on FSI technology demonstrates its utility for robust, cost optimized and immune solution for future accelerators and harsh environements. There is still big field for FSI applications and R&D
- Capacitive technology is example of fragile system, nevertheless appropriate approach
 of sensor and electronics design allows for integration of precise sensing networks in
 accelerator sector
- Uniform and modular approach to adjustement systems design, with use of standardized sub-components, provides best way for cost optimization of large-scale installations

