

Design Optimization, Kinematics & Dynamics

Hannes Gamper

CERN Academic Training: Robotics

Content

- 1. What is Robotics?
- 2. Dynamics
- 3. Kinematics
- 4. Design Optimization

5

Content

- 1. What is Robotics?
- 2. Dynamics
- 3. Kinematics
- 4. Design Optimization

Dynamics

• The equation of motion

RP measurements on old LHC TDE w/ CERNbot

14

Robot

7

Dynamics

Trajectory

Inverse Dynamics

= Robot ⁻¹

Dynamics

Example: Compliant Control

TIM Handling Radioactive Source for BLM Tests

Content

- 1. What is Robotics?
- 2. Dynamics
- 3. Kinematics
- 4. Design Optimization

Kinematics

Direct Kinematics

$$\mathbf{z} = \mathbf{f}(\mathbf{q})$$

$$\dot{\mathbf{z}} = \frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}} \frac{\partial \mathbf{q}}{\partial t} = \mathbf{J}(\mathbf{q}) \dot{\mathbf{q}}$$
 Jacobian

Inverse Kinematics

 $\dot{\mathbf{q}} = \mathbf{J}(\mathbf{q})^{-1} \dot{\mathbf{z}}$

Inverse Kinematics

Inverse Kinematics

Conventions

 $\mathbf{z} = \mathbf{f}(\mathbf{q})$

 $\dot{\mathbf{z}} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}$

 $\dot{\mathbf{q}} = \mathbf{J}(\mathbf{q})^{-1}\dot{\mathbf{z}}$

Solution for q

Solution for q

Def. of Error

Final Algorithm

2 Difficulties:

- 1. Rotations are not commutative!
- 2. Representation Singularities!

Conventions:

- Euler: z -> x -> z
- **Kardan**: z -> y -> x (yaw pitch roll)
- Axis-Angle: unit vector defines axis + angle
- Quaternions:

$\mathrm{i}^2=\mathrm{j}^2=\mathrm{k}^2=\mathrm{i}\mathrm{j}\mathrm{k}=-1$

Inverse Kinematics

Jacobian Matrix

 $\mathbf{z} = \mathbf{f}(\mathbf{q})$ $\dot{\mathbf{z}} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}$ $\dot{\mathbf{q}} = \mathbf{J}(\mathbf{q})^{-1} \dot{\mathbf{z}}$ Solution for q Solution for q Def. of Error **Final Algorithm**

Conventions

Inverse Kinematics

- Moore-Penrose pseudo
 inverse
- Minimizing velocities

Inverse Kinematics

Inverse Kinematics

Conventions $\mathbf{z} = \mathbf{f}(\mathbf{q})$ $\dot{\mathbf{z}} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}$ $\dot{\mathbf{q}} = \mathbf{J}(\mathbf{q})^{-1}\dot{\mathbf{z}}$ Solution for q 🛏 Solution for q Def. of Error **Final Algorithm**

Optimization Based 1st Order Redundancy Resolution

$$\begin{split} \min_{\dot{\mathbf{q}}} & \frac{1}{2} \dot{\mathbf{q}}^T \mathbf{W} \dot{\mathbf{q}} \\ \text{s.t.} & \mathbf{J}(\mathbf{q}) \dot{\mathbf{q}} - \dot{\mathbf{z}} &= 0 \\ & \mathbf{\downarrow} \\ \dot{\mathbf{q}} &= \mathbf{W}^{-1} \mathbf{J}^T \left(\mathbf{J} \mathbf{W}^{-1} \mathbf{J}^T \right)^{-1} \dot{\mathbf{z}} \end{split}$$

- · Minimizing joint velocities
- Yields feasible solutions
- Corresponds to Moore-Penrose
 pseudo-inverse

Artificial potential energy:

Inverse Kinematics

Conventions $\mathbf{z} = \mathbf{f}(\mathbf{q})$ $\dot{\mathbf{z}} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}$ $\dot{\mathbf{q}} = \mathbf{J}(\mathbf{q})^{-1}\dot{\mathbf{z}}$ Solution for q Solution for q Def. of Error **Final Algorithm**

Optimization Based 1st Order Redundancy Resolution

$$\min_{\dot{\mathbf{q}}} \quad \frac{1}{2} \dot{\mathbf{q}}^T \mathbf{W} \dot{\mathbf{q}} + \nabla h(\mathbf{q})^T \dot{\mathbf{q}}$$

s.t. $\mathbf{J}(\mathbf{q}) \dot{\mathbf{q}} - \dot{\mathbf{z}} = 0$

$$\frac{d}{dt}h(\mathbf{q}) = \frac{dh(\mathbf{q})}{d\mathbf{q}}\frac{d\mathbf{q}}{dt} = \nabla h(\mathbf{q})^T \dot{\mathbf{q}}$$

$$\dot{\mathbf{q}} = \mathbf{J}^{\dagger} \dot{\mathbf{z}} + \underbrace{(\mathbf{I} - \mathbf{J}^{\dagger} \mathbf{J})}_{\mathbf{N}} \mathbf{W}^{-1} \nabla h(\mathbf{q})$$

- Minimizing joint velocities
- Yields feasible solutions
- Possibility of Different Objectives

Inverse Kinematics

Conventions $\mathbf{z} = \mathbf{f}(\mathbf{q})$ $\dot{\mathbf{z}} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}$ $\dot{\mathbf{q}} = \mathbf{J}(\mathbf{q})^{-1}\dot{\mathbf{z}}$ Solution for \dot{q} -Solution for q Def. of Error **Final Algorithm**

Optimization Based 1st Order Redundancy Resolution

		Å
Objective	$h(\mathbf{q})$	$ abla h(\mathbf{q})$
Joint Limits Max	$-\mathbf{p}_L e^{c_L \left(q-q_{max} ight)}$	$-\mathbf{p}_L c_L e^{c_L \left(q-q_{max} ight)}$
Desired Joint Position	$-\tfrac{1}{2}\mathbf{c}_P\left(q-q_{des}\right)^2$	$\mathbf{c}_{p}\left(q_{des}-q\right)$
Distance from Singularity	$c_S \sqrt{\det\left\{\mathbf{J}(\mathbf{q})\mathbf{J}^T(\mathbf{q})\right\}}$	numerical
Collision Avoidance	$-e^{-c_C\left(dist(\mathbf{q})-d_{min} ight)}$	numerical
Torque Optimization	$oldsymbol{ au}^T \mathbf{T}oldsymbol{ au}$	numerical

 $\dot{\mathbf{q}} = \mathbf{J}^{\dagger} \dot{\mathbf{z}} + \underbrace{(\mathbf{I} - \mathbf{J}^{\dagger} \mathbf{J})}_{\mathbf{U}} \mathbf{W}^{-1} \nabla h(\mathbf{q})$

Inverse Kinematics

Conventions

$\mathbf{z} = \mathbf{f}(\mathbf{q})$ $\dot{\mathbf{z}} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}$ $\dot{\mathbf{q}} = \mathbf{J}(\mathbf{q})^{-1} \dot{\mathbf{z}}$ Solution for q Solution for $q \leftarrow$ Def. of Error **Final Algorithm**

Numeric Stabilization

 $\mathbf{q}(t) = \int_0^t \dot{\mathbf{q}}(\tau) \,\mathrm{d}\tau + \mathbf{q}(0)$

 $\dot{\mathbf{e}} = \dot{\mathbf{z}}_d - \mathbf{J}\dot{\mathbf{q}}$

Integration Methods, e.g. Euler will drift

Define an Error

$$\dot{\mathbf{q}} = \mathbf{J}^{\dagger}(\dot{\mathbf{z}}_d + \mathbf{K}\mathbf{e}) + (\mathbf{I} - \mathbf{J}^{\dagger}\mathbf{J})\nabla h(\mathbf{q})$$
 $\mathbf{J}\dot{\mathbf{q}} = \dot{\mathbf{z}}_d + \mathbf{K}\mathbf{e} + \underbrace{\mathbf{J}(\mathbf{I} - \mathbf{J}^{\dagger}\mathbf{J})}_{\mathbf{0}}\nabla h(\mathbf{q})$
 $\mathbf{0} = \dot{\mathbf{e}} + \mathbf{K}\mathbf{e}.$

Deriving the differential Equation for e

Diff. Equation asymptotically stable iff K > 0!

Leads to Closed Loop Inverse Kinematics - CLIK

Conventions

 $\mathbf{z} = \mathbf{f}(\mathbf{q})$

 $\dot{\mathbf{z}} = \mathbf{J}(\mathbf{q})\dot{\mathbf{q}}$

 $\dot{\mathbf{q}} = \mathbf{J}(\mathbf{q})^{-1}\dot{\mathbf{z}}$

Solution for q

Solution for q

Def. of Error

Final Algorithm

Inverse Kinematics

Definition of an Error

Position

 $\mathbf{e}_p = \mathbf{r}_{Ed} - \mathbf{r}_E(\mathbf{q})$

Orientation

 $\Delta \mathbf{R} = \mathbf{R}_{IE,d} \mathbf{R}_{EI}(\mathbf{q})$

$$\mathbf{e}_o = rac{1}{2} \left[\widetilde{\mathbf{n}}(\mathbf{q}) \mathbf{n}_d + \widetilde{\mathbf{s}}(\mathbf{q}) \mathbf{s}_d + \widetilde{\mathbf{a}}(\mathbf{q}) \mathbf{a}_d
ight] \qquad ext{with} \qquad \mathbf{R} = \left[\mathbf{n} \ \mathbf{s} \ \mathbf{a}
ight]$$

- Orientation Error derived from Axis/Angle representation
- Using this error directly in feedback-loop is a simplification, but stability can be easily proven with Ljapunov

BEAMS

Hannes Gamper

Inverse Kinematics

Robotic Manipulator for FCC

Kinematics Library in C++ (IK for highly redundant systems):

- Redundancy resolution for higher dexterity
- Null space projections for task priority assignment

Alejandro Diaz Rosales, Laura Rodrigo Perez

Content

- 1. What is Robotics?
- 2. Dynamics
- 3. Kinematics
- 4. Design Optimization

Design Process

	Task								
		Name	Description					Derived Requirements	
	Nr		0	When	-	How	Why	Description	Detelled
	1	Measuring Radiation	yes	yes	wks - mts	Industrial Radiation Sensor measures radiation at beam level. Sensor is carried by extendable arm of TIM.	To know the risk of sending people to the tunnel or use this information as indication for other problems.	Reach Beam level in front and behind pipe; Position accuracy for repeatable measurements;	WSP: 3.2x3.6m
- - -	2	Take Pictures	yes	yes	wks - mts	Cameras and 3D Cameras mounted on mobile platforms are taking pictures and mapping the tunnel. 3D Cameras check the geometry of the tunnel and RNN detect optical changes at the tunnel walls (e.g. new cracks,)	To monitor health of the tunnel; Many new cracks could indicate other problems	Stable movement; carry a camera array	
	3	Test BLM Sensors	yes	yes	wks - mts	Rough map of sensors exists, go to rough sensor position and find exact position with RNN, scan environment with depth camera to find allowed operating space, plan path with these restrictions (random points constrained by ellipse, RRT or PRM), plan smooth trajectory, bring radioactive probe to sensor, precise distance from BLM measured with additional sensor, thus approaching sensor slowly and precision of robot is not a problem	Test if Sensors are working normal, sensors are measuring radiation, higher radiation indicates beam loss which implies bigger problems and force a shutdown, should be done by robot because of radioactive sample	Reach BLM Sensors in front and behind pipe; texture of robot must allow nullspace movement to provide collision avoidance while maintaining probe position	WSP: 3.2x3.6m (1,5x1,5m -> every orientation)
	4	Measure Oxygen	yes	yes	wks - mts	Industrial Oxygen measurement sensor; measured throughout the whole tunnel;	Make sure its save for people to work down there	Reach different hights to maesure oxygen	WSP: 3.2x3.6m
	5	Measure Alignment	yes	yes	wks - mts	Strings are placed by STI on fixed mounted sockets in tunnel, TIM goes to strings as reference and measures some indicators on the Collimators & Dipoles, same distance => align! New method will automatically place the strings: outter robots hold the string and inner robots does the alignment measurement, same procedure for horizontal distance, for vertical distance new ultrasonic sensor is used	With non-align tubes, beam would get lost.	Version1 : (manually placed string) reach string with existing technology; stable movement; Version2: (automotively placed string) need of two outter robots and one inner robot with existing technology	
	6	Audio Inspection	yes	yes	wks - mts	Microphone is carried through whole tunnel, detect unusual noise (e.g. frequency domain -> 100Hz peak	To detect unusual noise which can indicate other problems (e.g.		

Design Process

Importance: - 100% 80% Rating 60% 4 very positive for solution 3 positiv for solution 2 negativ for solution 1 very negativ for solution

Restrictions - Tasks General

•

•

٠

Design Process

_ ● • III

5.5

Design Process

Requirements:

• Space:

- Reach points I-IV (workspace of 3.35x5.50x10^5m)
- Pack up in limited space (2.9x0.55m) while moving along tunnel axis
- Avoid Obstacles

Gamper, H.; Gattringer, H.; Müller, A. and Di Castro, M. (2021). Design Optimization of a Manipulator for CERN's Future Circular Collider (FCC). In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics, ISBN 978-989-758-522-7

ĪV

0.8

- Min. payload (~15kg)
- Max. robot weight (~300kg)

29

Design Process

Optimization Goals:

- Min. the Degree of Freedom (DoF)
- Min. the Robot Link Lengths
- Min. kinematic and dynamic perf. criteria

30

Example: FCC Robot

Figure 10: Optimization results FCC-ee (collision objects)

Figure 11: Optimization results FCC-hh (collision objects)

Design Process

Optimal Solution:

- Optimal Geometric Parameters (link lengths)
- Optimal Topology (11 DoF, Joint Configuration)

Gamper, H.; Gattringer, H.; Müller, A. and Di Castro, M. (2021). Design Optimization of a Manipulator for CERN's Future Circular Collider (FCC). In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics, ISBN 978-989-758-522-7

Figure 13: Prototype in FCC-ee - folded configuration

Figure 14: Prototype in FCC-ee cross-section

Figure 15: Prototype in FCC-hh cross-section

Design Process

Example: Cavity Design Optimization

- Visual inspection of inner surface after assembly
- Small allowed robot space
- Big workspace for inspection
- No restrictions on robot design (topology, geometry)

Gamper, H.; Luthi, A.; Gattringer, H.; Müller, A. and Di Castro, M.; Design Optimization of Quality Inspection Robots for Particle Accelerator Components, In Proceedings of the ECCOMAS Multibody Dynamics Conference, 2021

Initial Study

Requirements

Restrictions

Integration & Logistics

Design Optimization

Design Process

Example: Cavity Design Optimization

Gamper, H.; Luthi, A.; Gattringer, H.; Müller, A. and Di Castro, M.; Design Optimization of Quality Inspection Robots for Particle Accelerator Components, In Proceedings of the ECCOMAS Multibody Dynamics Conference, 2021

Controls Electronics & Mechatronics

Thank you for your attention!