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Background

The upcoming HL-LHC upgrades at CERN will require enormous computing resources [1]

. Projected LHC peﬁormance through —_— ® Peak luminosity —Integrat‘ed luminosity oo
2038 where the amount of data will e
increase at least 10x. More luminosity 5.06434 - . 0
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[1] Burkhard Schmidt 2016 J. Phys.: Conf. Ser. 706 022002.
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[1] Burkhard Schmidt 2016 J. Phys.: Conf. Ser. 706 022002.
[2] Apostolakis, J., et al. arxiv:1803.04165
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Background

The upcoming HL-LHC upgrades at CERN will require enormous computing resources [1]
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models such as Generative

Adversarial Networks present as

solution [1] Burkhard Schmidt 2016 J. Phys.: Conf. Ser. 706 022002.
[2] Apostolakis, J., et al. arxiv:1803.04165
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Goals & Related Works

The main project objectives and some related researches

* Explore the Generative Adversarial Networks
and set a relatively good benchmark
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Goals & Related Works

The main project objectives and some related researches

* Explore the Generative Adversarial Networks
and set a relatively good benchmark

* Explore the field of Quantum machine learning
and particularly the different Quantum
Generative Adversarial Networks (QGANSs)
models performance on high-energy physics
data simulation
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Goals & Related Works

The main project objectives and some related researches

* Explore the Generative Adversarial Networks
and set a relatively good benchmark

* Explore the field of Quantum machine learning
and particularly the different Quantum
Generative Adversarial Networks (QGANSs)
models performance on high-energy physics
data simulation

e Compare the classical and quantum model
performances
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Goals & Related Works

The main project objectives and some related researches

* Explore the Generative Adversarial Networks % Classical GAN to simulate LHC QCD Dijet events has
and set a relatively good benchmark been explored [3]

* Explore the field of Quantum machine learning % Quantum Classifiers had been explored to classify
and particularly the different Quantum the tEH(bF) dataset, with performance
Generative Adversarial Networks (QGANSs)

comparable to the classical counterparts (SVM,
models performance on high-energy physics Random Forest, AdaBoost) [4]
data simulation

J/
0’0

Quantum Generative Adversarial Networks in a

* Compare the classical and quantum model Continuous-Variable Architecture to Simulate High

performances Energy Physics Detectors [5]
[3] Di Sipio, R., et al. J. High Energ. Phys. 2019 +* Dual-Parameterized Quantum Circuit GAN Model
[4] Belis, V., et al. arXiv:2104.07692 in High Energy Physics [6]

[5] Chang, Su Yeon, et al. arXiv:2101.11132
[6] Chang, Su Yeon, et al. arXiv:2103.15470
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Dataset Introduction

Feynman diagram of the signal process in red and the dominant background process in green

* Higgs Boson is produced in association with tf via
gluon fusion and it decays to bb

* We focused only on the simulation of two b-jets
from the Higgs

* We also focused on simulating the Higgs event
only, and not the background (gluon)
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A Closer look into the Dataset

The presented dataset is from numerical Monte Carlo simulations

« We limit the problemtoonly4 == - " .
features for each b-jet (from8) ™ - - s
* Normalized into either [-1, 1] or .. - :: e
[0, 1] range a0 o -

o
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* The features that we select are: o

= Pt: Transverse momentum -

= 1: Pseudo-rapidity -
= ¢: Azimuthal angle -
= [E:Energy e
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Generative Adversarial Networks

GANSs consists of two networks, a Generator and a Discriminator competing with each other

 The generative model G captures K Lok
the data distribution, and the
discriminative model D estimates
the probability that a sample came -
from the training data rather than G Random
Input Fake Data
1 ‘ e Predicted
Generator Discriminator Labels
J { abels
T : |
T Wine Tune Traming
-l
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Generative Adversarial Networks

GANSs consists of two networks, a Generator and a Discriminator competing with each other

* The generative model G captures K Lok
the data distribution, and the
discriminative model D estimates
the probability that a sample came

from the training data rather than G Random
Input Fake Data
* The training procedure for G is to W ‘ —
maximize the probability of D Generator J {Dlscnmmamr Labels
making a mistake. This framework ; _ i !

corresponds to a minimax two- T e Tame Toaming
player game [7]

[7] 1. ). Goodfellow, et al., “Generative adversarial nets”
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Generative Adversarial Networks

The Discriminator: A classifier with has two classes, real and fake. Given an input x, the
discriminator calculates the probabilities p(y=real|x) and p(y=fake|x) and classify x
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Image Credit: Google ML
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Generative Adversarial Networks

The Generator: Using the feedback from the Discriminator, it tries to find all the features
that represent the original input, p(x|y), which is much harder task than discrimination

First
attempt

s
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Generative Adversarial Networks

The Generator: Using the feedback from the Discriminator, it tries to find all the features
that represent the original input, p(x|y), which is much harder task than discrimination

First Many attempts
attempt later
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Generative Adversarial Networks

The Generator: Using the feedback from the Discriminator, it tries to find all the features
that represent the original input, p(x|y), which is much harder task than discrimination

First Many attempts Even more
attempt later attempts later
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Classical benchmark

(Modified) DijetGAN: A GAN based on convolutional neural networks used to simulate the
production of pairs of jets at the LHC [3]

BatchNormalization

LeakyRelLU | Convolutional
Layer Activation Layer Layers

- Generator Network - Upsample (8x8x64), BatchNorm, LeakyRelU ..........

Input Noise Reshape Upsample Upsample Flatten Tanh

i (128) (8x8x2) (8x8x32) {8x8x16) (1024) (8)
m“mm .............................................................................................................
=Xt uza)m @ @

i Input  Reshape Conv2D Conv2D Conv2D Flatten  Sigmoid

L T TR, T . SOOI s D .ocoic SO I

- [3] Di Sipio, R., et al. J. High Energ. Phys. 2019.
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Classical benchmark

The original signals

en 1
= — 160000
140000
100000 12000
120000
#0000 20 100000
6000 6000 8009
60000
40000 4000
40000
20000 2000
20000
0 0 0 [
00 02 04 1 ) -1.00 -0.75 -0.50 -0.25 000 025 050 075 100 -1.00 -0.75 ~0.50 ~0.25 000 025 050 075 100 02 04 06 08 10
pt_2 eta 2 phi_2 en 2
12000 -
-_—
signal
§0000 1ooco 80000
50000 8000
60000
40000
6000
30000 40000
4000
20000
20000
2000
10000
° —— ° 0 0 . : : :
00 01 02 03 04 05 06 07 08 -1.00 -0.75 -0.50 0.25 000 025 050 075 100 -1.00 -0.75 -0.50 -0.25 000 025 050 075 100 0z 04 06 08

1. CERN
openlab

19



Classical benchmark

The generated signals: Best result (so far)

. . p_{t1} \eta_{1} o \phi_{1} E {1}

* Filtersize for Conv2D = - .
and Upsample: 3x3, - 0
with stride 1x1 . = =

e Cross-entropy loss w0 . “

P Adam With 0.0 01 C;;i{‘z} D‘S 0.‘4 -1.00 -0.75 -0.50 —0.2;&-0:2}025 050 075 100 -1.00 -0.75 -0.50 —O.!ip'?lfrz}ﬂ.zs 050 075 100 000 005 010 015 020 DéS DSO (73.35 040
lT'=1OA(—5), - W GAN trained _signal
B_1=0.5, f_2=0.9 . -

* Wasserstein - -
distance: 0.0271705 - -
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CV Quantum Layer

Quantum Circuit [8]

—i S(r1) D(ay) — ®(A1) —
— S(rz) D(az) 1 ®(A2) |—
UL (01, ¢1) . Us (02, ¢2)
S(rn) D(an) — P(An)
) Lay;r £L s

[8] 10.1103/PhysRevResearch.1.033063
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Continuous-Variable QGAN

Continuous-Variable Gates
Squeezing gate o S(r): (;) = (e(;r 2) (;)

Displacement gate o p@:(;)= [xiﬁfeia;]
p ma

No Measurement

Fully Quantum model : 0y®N-1 - f y ' f Discard

|
Quantum Generator & Generator | Discriminator

. . | S1gMot

Quantum Discriminator [5] |z ~ N(0,1)), — , | (zy) 2Emod,

|

[5] Chang, Su Yeon, et al. arXiv:2101.11132
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Thank you!
Any Questions?

togan.tlimakhov@cern.ch
andrei-voicu.tomut@cern.ch
eraraya.ricardo.muten@cern.ch
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