Neutrino-induced Shallow- and Deep-Inelastic Scattering

outline

- 1. Introduction
- 2. Inelastic processes
- 3. Quark-Hadron duality
- 4. DIS in the Nuclear Environment
- 5. Hadronization
- 6. Conclusion

Resources

NuSTEC nuSIS&DIS workshop, https://nustec.fnal.gov/nuSDIS18/
NuSTEC nuSIS&DIS workshop proceedings, https://arxiv.org/abs/1907.13252
Snowmass Lol on neutrino SIS&DIS, https://arxiv.org/abs/2009.04285
SIS physics review paper (Sajjad Athar and Morfín), https://arxiv.org/abs/2006.08603

CERN, Jan. 17, 2022 katori@fnal.gov

1. Summary

Shallow-Inelastic Scattering (SIS) is an extreme kinematic region. Delta resonance, higher resonances, non-resonant processes, and DIS co-exist and interfere.

SIS has a rich physics program and active topics to research; interference of resonant and non-resonant processes, quark-hadron duality from SIS to DIS in nuclear environment, etc.

So many unknowns; axial transition form factors for all higher resonances, quark-hadron duality with neutrinos, neutrino nuclear DIS, neutrino low-W hadronization processes, etc.

Naively, ~70% of events in DUNE is SIS, so it's better to pay attention them.

1. Beyond QE peak

Axial 2-body current in QE region may be a tip of the iceberg...

Lots of new results, new understanding

- T2K ND
- MINERvA
- MicroBooNE
- NINJA/WAGASCI, etc

Genuine CCQE

Inclusion of the multinucleon

1. Beyond QE peak

Axial 2-body current in QE region may be a tip of the iceberg... or maybe a tip of gozilla!

1. Shallow-Inelastic Scattering (SIS)

Shallow-Inelastic scattering region

- Inelastic = not elastic, W > 1.07 GeV (= m_p+m_π)
- Shallow = not deep, $Q^2 < 1 \text{ GeV}^2$ for W > 2 GeV

1. Shallow-Inelastic Scattering (SIS)

Shallow-Inelastic scattering region

- Inelastic = not elastic, W > 1.07 GeV (= m_p + m_π)
- Shallow = not deep, $Q^2 < 1 \text{ GeV}^2$ for W > 2 GeV

Fraction of SIS changes with energy, it is significant around 3 GeV.

Sajjad Athar (AMU)

1. Shallow-Inelastic Scattering (SIS)

Shallow-Inelastic scattering region

- Inelastic = not elastic, W > 1.07 GeV (= m_p+m_π)
- Shallow = not deep, Q² < 1 GeV² for W > 2 GeV

Significant fraction (~70%) of DUNE events are in SIS kinematic region

Prediction and measurement are both difficult in this region.

Physics of this region is not studied with neutrinos.

katori@fnal.gov

1. SIS in event generators

Invariant mass

NEUT

— NuWro
— GENIE

W>1.7 GeV

1. Introduction

- 2. Inelastic processes
- 3. Quark-Hadron duality
- 4. DIS in the Nuclear Environment
- 5. Hadronization
- 6. Conclusion

2. Inelastic processes

Neutrino higher baryonic resonance

- Single pion production from neutrino- Δ resonance is already problem, but other half has more problem (higher resonance is ~50% of all resonances in DUNE)

e.g.) DCC model

- Many resonances are dynamically coupled to predict final state hadrons.
- Sizable 2 pion production, heavy meson production, etc

2. Inelastic processes

Neutrino higher baryonic resonance

- Single pion production from neutrino-∆ resonance is already problem, but other half has more problem (higher resonance is ~50% of all resonances in DUNE)

e.g.) DCC model

- Many resonances are dynamically coupled to predict final state hadrons.
- Sizable 2 pion production, heavy meson production, etc

Q² dependence of form factors are obtained from external data

No information of axial form factors

Solution:

- Axial form factors can be provided by lattice QCD, and validated by neutrino H/D target experiments.

FIG. 8 (color online). Unpolarized differential cross sections, $d\sigma/d\Omega_{\pi}^{*}$ ($\mu b/sr$), for $\gamma n \to \pi^{-}p$. The data are from Refs. [55–78].

- 1. Introduction
- 2. Inelastic processes
- 3. Quark-Hadron duality
- 4. DIS in the Nuclear Environment
- 5. Hadronization
- 6. Conclusion

3. Quark-Hadron duality

Nachtmann variable

$$\xi = \frac{2x}{\left(1 + \sqrt{1 + \frac{4x^2M^2}{Q^2}}\right)}$$

Hadron scattering → quark scattering

- Not Bjorken limit (Q² is low), but DIS-like
- Scaling law in ξ (Nachtmann variable)

DIS is realized by average of resonance channels. Many confirmation from various structure functions

Not tested with neutrino data

3. Quark-Hadron duality

$$\xi = \frac{2x}{\left(1 + \sqrt{1 + \frac{4x^2M^2}{Q^2}}\right)}$$

Hadron scattering → quark scattering

- Not Bjorken limit (Q² is low), but DIS-like
- Scaling law in ξ (Nachtmann variable)

DIS is realized by average of resonance channels. Many confirmation from various structure functions

Not tested with neutrino data

GRV98 LO PDF + Bodek-Yang correction

- GRV98 for low Q² DIS
- Bodek-Yang correction for QH-duality

Solution:

We need to test neutrino QH-duality model with neutrino data. Correct model is important to assign correct systematic errors.

Proton F2 function GRV98-BY correction vs. data

- 1. Introduction
- 2. Inelastic processes
- 3. Quark-Hadron duality
- 4. DIS in the Nuclear Environment
- 5. Hadronization
- 6. Conclusion

HKN,PRC76(2007)065207, EPS,JHEP04(2009)065, FSSZ,PRD85(2012)074028

nCTEQ, PRD80(2009)094004

4. DIS in the Nuclear Environment

Nuclear PDF

- Shadowing, anti-shadowing, EMC effect
- Various models describe charged lepton data

EMC effect can be modeled from the amount of correlated pairs in nuclei (CLAS in JLab).

4. DIS in the Nuclear Environment

Nuclear PDF

- Shadowing, anti-shadowing, EMC effect
- Various models describe charged lepton data

Charged lepton nPDF cannot describe neutrino data well

Solution: we need more DIS experiments with nuclear target to develop nPDF for neutrinos

HKN07 (N

4. DIS in the Nuclear Environment

Nuclear PDF

- Shadowing, anti-shadowing, EMC effect
- Various models describe charged lepton data

Charged lepton nPDF cannot describe neutrino data well

Solution: we need more DIS experiments with nuclear target to develop nPDF for neutrinos

MINERVA DIS cross-section ratio

- Most recent data on this topic
- Data suggest shadowing

- 1. Introduction
- 2. Inelastic processes
- 3. Quark-Hadron duality
- 4. DIS in the Nuclear Environment
- 5. Hadronization
- 6. Conclusion

5. Neutrino induced hadron final state measurements

Next generation detectors focus on hadron final state measurements - LArTPC (liquid argon time projection chamber) - ECC (emulsion cloud chamber) - Gd-loaded water Cherenkov - HPgTPC (high-pressure gas TPC), etc π^{-} SK-Gd μBooNE NINJA Neutron Anti-electron neutrino Proton Gadolinium Positron Gamma ray Cherenkov light Cherenkov light Run 5192 Event 1218, February 28th, 2016 354.6 µm 5×10¹⁹ POT MicroBooNE MC EM only 50 Data $\chi^2/DOF = 10/13$ Data NEUT 5.4.0 LFG, $\chi^2/ndf = 0.72$ Fitted model Fitted CR bkgd NEUT 5.4.0 SF, $\chi^2/ndf = 0.80$ Events GENIE 3.0.6, $\chi^2/ndf = 0.55$ Number of charged particle tracks

5. Neutrino cross section ≠ Hadron final states

Neutrino cross-section only predict lepton kinematics

- lepton kinematics → cross-section model
- hadron multiplicity and kinematics → not cross-section model

Cross-section model

- Many development in past years, providing full power to move toward the future!

Hadronization model

- Not much effort

Neutrino experimentalist

- Driving a car with beautiful front wheels, no back wheels

5. Neutrino hadronization

Low W multiplicity → empirical model High W multiplicity → PYTHIA

Low W multiplicity dispersion → KNO scaling High W multiplicity dispersion → PYTHIA

Averaged multiplicity has a large error to accommodate data tensions

<n_{ch}>P(n_{ch})

10⁻¹

10⁻²

Dispersion of PYTHIA at low W is not compatible $_{10}$ with KNO scaling

Data 15' νD₂

1<W<3GeV

3<W<5GeV 5<W<7GeV 7<W<10GeV

10<W<15GeV

n_{ch}/<n_{ch}>

KNO scaling

νp

3

fnal.gov

5. Neutrino hadronization

Hadrons in neutrino interaction

- 1. Kinematics reconstruction
- Hadron energy measurement can specify energy transfer v, then others: Ev, y, Q², W, x, |q|
- 2. Interaction process identification
- number of hadrons can be used for process ID: $\bar{\nu}/\nu$, 2p-2h, resonance, DIS
- 3. Rare process search
- BSM physics for rare hadron topology

We need a good event-by-event prediction of hadron final states

- 1. Introduction
- 2. Inelastic processes
- 3. Quark-Hadron duality
- 4. DIS in the Nuclear Environment
- 5. Hadronization
- 6. Conclusion

6. Path forward: SIS physics

Path forward: Inelastic scattering

Axial form factors can be provided by lattice QCD, and validated by neutrino hydrogen/deuterium target experiment

Path forward: Quark-Hadron duality

Develop neutrino QH-duality model and test with neutrino data

Path forward: DIS in Nuclear environment

Neutrino nuclear target DIS experiments to develop nPDF for neutrinos

Path forward: hadronization

Neutrino hadron production experiments to measure hadron final states to validate neutrino

hadronization model

Conclusion

Shallow-Inelastic Scattering (SIS) is an extreme kinematic region. Delta resonance, higher resonances, non-resonant processes, and DIS co-exist and interfere.

SIS has a rich physics program and active topics to research; interference of resonant and non-resonant processes, quark-hadron duality from SIS to DIS with nuclear effects, etc.

So many unknowns; axial transition form factors for all higher resonances, quark-hadron duality with neutrinos, neutrino nuclear DIS, neutrino low-W hadronization processes, etc.

Naively, ~70% of events in DUNE is SIS, so it's better to pay attention them.

NuSTEC nuSIS&DIS workshop, https://nustec.fnal.gov/nuSDIS18/ NuSTEC nuSIS&DIS workshop proceedings, https://arxiv.org/abs/1907.13252 Snowmass LoI on neutrino SIS&DIS, https://arxiv.org/abs/2009.04285 SIS physics review paper (Sajjad Athar and Morfín), https://arxiv.org/abs/2006.08603

Thank you for your attention!

5. Hadronization

Hadron multiplicity tuning for low W DIS event

- Fix averaged charged hadron multiplicity from external data $\langle n_{ch} \rangle = a_{ch} + b_{ch} \cdot \ln(W^2)$
- Use isospin symmetry to obtain averaged neutral pion multiplicity
- Use KNO scaling to derive dispersion of hadron multiplicity from external data
- MC simulation for event-by-event prediction

$$\langle n \rangle \cdot P(n) = \frac{2e^{-c}c^{cn/\langle n \rangle + 1}}{\Gamma(cn/\langle n \rangle + 1)}$$

5. Hadronization

Neutrino kinematic reconstruction

lepton energy E_l , lepton scattering angle $cos\theta_l$, hadron energy $E_{had} = \sum_i T_{nucl}^i + \sum_j E_{meson}^j$

$$\begin{split} v &= E_{had} \\ E_{\nu} &= E_{\mu} + E_{had} \\ y &= \nu / E_{\nu} \\ Q^2 &= m_l^2 - 2E_{\nu} (E_{\mu} - P_{\mu} cos\theta_l) \\ W^2 &= M^2 + 2M\nu - Q^2 \\ x &= Q^2 / 2M\nu \\ |q| &= \sqrt{\nu^2 + Q^2} \end{split}$$

5. Topological cross section

