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Abstract 

Background  Actigraphy is often used to measure sleep in pediatric populations, despite little confirmatory evidence 
of the accuracy of existing sleep/wake algorithms. The aim of this study was to determine the performance of 11 
sleep algorithms in relation to overnight polysomnography in children and adolescents.

Methods  One hundred thirty-seven participants aged 8–16 years wore two Actigraph wGT3X-BT (wrist, waist) 
and three Axivity AX3 (wrist, back, thigh) accelerometers over 24-h. Gold standard measures of sleep were obtained 
using polysomnography (PSG; Embletta MPRPG, ST + Proxy and TX Proxy) in the home environment, overnight. Epoch 
by epoch comparisons of the Sadeh (two algorithms), Cole-Kripke (three algorithms), Tudor-Locke (four algorithms), 
Count-Scaled (CS), and HDCZA algorithms were undertaken. Mean differences from PSG values were calculated 
for various sleep outcomes.

Results  Overall, sensitivities were high (mean ± SD: 91.8%, ± 5.6%) and specificities moderate (63.8% ± 13.8%), 
with the HDCZA algorithm performing the best overall in terms of specificity (87.5% ± 1.3%) and accuracy 
(86.4% ± 0.9%). Sleep outcome measures were more accurately measured by devices worn at the wrist than the hip, 
thigh or lower back, with the exception of sleep efficiency where the reverse was true. The CS algorithm provided 
consistently accurate measures of sleep onset: the mean (95%CI) difference at the wrist with Axivity was 2 min (-6; 
-14,) and the offset was 10 min (5, -19). Several algorithms provided accurate measures of sleep quantity at the wrist, 
showing differences with PSG of just 1–18 min a night for sleep period time and 5–22 min for total sleep time. 
Accuracy was generally higher for sleep efficiency than for frequency of night wakings or wake after sleep onset. The 
CS algorithm was more accurate at assessing sleep period time, with narrower 95% limits of agreement compared 
to the HDCZA (CS:-165 to 172 min; HDCZA: -212 to 250 min).

Conclusion  Although the performance of existing count-based sleep algorithms varies markedly, wrist-worn devices 
provide more accurate measures of most sleep measures compared to other sites. Overall, the HDZCA algorithm 
showed the greatest accuracy, although the most appropriate algorithm depends on the sleep measure of focus.
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Background
A large body of evidence has emerged implicating char-
acteristics of children’s sleep such as short quantity, 
timing, poor quality, and high variability with a wide 
range of adverse health outcomes [1]. However, the 
majority of studies rely on retrospective self- or parent-
reports of sleep, which may be unreliable and sensitive 
to recall bias [2, 3]. Although polysomnography (PSG) 
is considered the gold-standard measure of sleep, it is 
obtrusive and impractical for large-scale studies. Thus, 
actigraphy is increasingly being used as a practical and 
suitable method to objectively measure sleep, particu-
larly over longer time frames than is possible with PSG. 
To estimate sleep outcomes, actigraphy data are ana-
lysed using algorithms to classify sleep and wake based 
on the assumption that the presence of movement indi-
cates wakefulness and the absence of movement indi-
cates sleep. Typically, algorithms vary by the population 
studied, device worn and the placement site they were 
developed for (i.e. wrist, ankle, waist), but most work 
in a similar fashion: to define each minute of recorded 
activity as either sleep or wake.

However, there are several issues with these exist-
ing algorithms. First, although various algorithms have 
been developed [4–9], few [7, 10] have been validated 
against the gold standard PSG in paediatric popula-
tions, with the remainder using sleep diaries or visual 
inspection. Second, choice of algorithm influences 
sleep–wake time estimates suggesting that sleep vari-
ables derived from different algorithms might not be 
comparable [11]. Third, although currently available 
sleep algorithms provide reasonable estimates of sleep, 
most require participants to record their sleep onset 
and waking times, which are used to guide the algo-
rithm to detect nocturnal sustained bouts of inactivity. 
However, sleep diaries are often inaccurate, add to par-
ticipant burden, and are time consuming for research-
ers in large scale studies [12]. To overcome these 
limitations, fully automated algorithms that do not 
require diaries have been developed for use in children 
which automatically score sleep [5–9] but evidence of 
their accuracy against PSG is limited [10, 13].

With the growing availability of accelerometry data 
from large studies, often without sleep diaries, it is 
necessary to establish whether sleep outcomes are 
comparable between brands and across various wear 
sites. It is also important to evaluate sleep outcome 
estimates between the most widely used sleep–wake 
algorithms, with and without the use of sleep diaries 
to guide the algorithm. Therefore, the aim of this study 
is to compare the accuracy of the most widely used 
sleep algorithms against overnight PSG in children and 
adolescents.

Methods
Participants
Children and adolescents were recruited via social media 
(i.e. Facebook), schools, and word of mouth. Children 
aged 8 to 16 years at the time of recruitment with no his-
tory of sleep disturbance (see below) were eligible for the 
study. Ethical approval was obtained from the University 
of Otago Human Ethics Committee (ref H18/073).

Data collection overview
During a visit to each participant’s home height and 
weight were measured and five accelerometers were 
attached to the child (two on the wrist, one around their 
waist, one on their lower back, and one on their upper 
thigh). These devices were worn for one 24-h period. Par-
ticipants were also fitted with a portable polysomnogra-
phy (PSG) machine one hour before bedtime to measure 
sleep during the overnight period in the home environ-
ment. Children were asked to complete a basic activity 
log the next day. The same computer was used to pro-
gram the accelerometers and the PSG recording device 
and times were synchronized.

Sleep Disturbances Scale for Children (SDSC)
Parents completed the SDSC consisting of 27 items 
assessing sleep behaviour and disturbances in children in 
the previous six months [14]. A total sleep problem score 
is derived from six sleep disturbance factors. A score 
greater than 39 is indicative of a clinical disturbance and 
those identified as having a sleep disorder, or those with 
any chronic medical condition or physical disability that 
impeded their ability to participate in physical activity, 
were excluded.

Demographic and anthropometric data
Information was collected on participant’s age, sex, date 
of birth, and ethnicity using New Zealand census ques-
tions [15]. Their address was used to determine area 
based socio-economic status using the New Zealand 
Deprivation Index (NZDep Index, 2018) [16]. Dupli-
cate measures of height (Model 213, Seca, Germany) 
and weight (Tanita HD-351) were obtained by trained 
research assistants. An additional measure was under-
taken if duplicate measures of height differed by more 
than 0.5 cm and if weight differed by more than 0.5 kg. 
Body mass index (BMI) was calculated as weight (kg) / 
height (m)2, with overweight and obesity defined as 
a BMI z-score ≥ 85th but < 95th and ≥ 95th percentiles, 
respectively, using the WHO growth reference [17].

Home‑based polysomnography
A home-based, PSG sleep study was conducted where 
overnight PSG data were recorded using a digital portable 
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monitor (Embletta MPRPG, ST + Proxy and TX Proxy, 
Natus, California, USA) within participant’s homes at a 
sampling rate of 500  Hz following American Academy 
of Sleep Medicine guidelines [18]. The researcher began 
the PSG set up approximately one hour before bedtime. 
The PSG included right and left electro-oculograms 
(EOG), four electroencephalograms (EEG) (C4/M1, C3/
M2, O2/M1, O1/M2), chin electromyogram, nasal air-
flow, snoring, thoracic and abdominal respiratory effort 
(Xact Trace Respiratory Effort Sensor) and ECG. Oxy-
gen saturation was measured with pulse oximetry. Data 
were downloaded and analysed using RemLogic software 
(Version 3.4, Embla Systems, Broomfield, CO, USA). Low 
frequency filters were set at 0.3  Hz and high frequency 
at 35 Hz for EEG signals. Sleep stages were scored visu-
ally by one trained sleep technician in 30 s epochs using 
the American Academy of Sleep Medicine (AASM) sleep 
staging criteria [18] for children. To allow for compari-
son to actigraphy, the PSG epoch lengths were collapsed 
into one-minute epochs. In doing so, if either 30-s epoch 
within the minute was scored as wake, then we consid-
ered that whole minute as wake. For PSG, sleep onset 
was the first epoch of sleep after lights out. Total sleep 
time (TST) was defined as the number of minutes from 
sleep onset to sleep offset minus the number of minutes 
awake. Wake after sleep onset (WASO) represented the 
duration of time spent awake after initially falling asleep, 
while sleep efficiency (SE) was defined as follows: 1) Sleep 
efficiencyTIB, a commonly referenced metric, calculated 
as the ratio of total sleep time (TST) to time spent in bed 
(TIB); and 2) Sleep efficiencySPT, determined by express-
ing total sleep time (from sleep onset to offset, minus 
any WASO) as a percentage of sleep period time (from 
sleep onset to offset, inclusive of any WASO). We chose 
to use the Sleep Period Time (SPT) in our definition of 
Sleep efficiencySPT alongside the more traditional defi-
nition which uses TIB because one of our aims was to 
compare the accuracy of algorithms that required sleep 
diaries versus those that did not. Furthermore, the defini-
tion of SE that uses TIB, by definition, includes non-sleep 
related activity (eg reading, texting, mobile phone use) 
both prior to initiating sleep and after the final awaken-
ing, which do not reflect the construct of SE where TST is 
compared to the amount of time spent attempting to ini-
tially fall asleep and sleep discontinuity. Number of awak-
enings was the number of overnight awakenings between 
sleep onset to offset. The PSG and actigraphy data were 
analysed independently by different researchers.

Actigraphy
Two types of accelerometers were worn: the Axiv-
ity AX3 (Axivity Ltd, Newcastle, UK), and the Acti-
graph wGT3X-BT (ActiGraph, Pensacola, FL, USA). 

Both accelerometers are triaxial and were configured 
to record at a frequency of 100 Hz and initialised using 
the same personal computer as the PSG. The compact 
size (32.5 × 23 × 8.9  mm), lightweight design (11  g), and 
waterproof feature of the Axivity AX3s contribute to 
higher compliance among children, while the inclu-
sion of a temperature sensor assists in non-wear detec-
tion. The Actigraph wGT3X-BT is currently the most 
widely used research-grade device and is larger (46 × 33 x 
15 mm, 19 g) than the Axivity AX3 and lacks a tempera-
ture sensor. The three Axivity accelerometers were fitted 
to the right side of the lower back (waist-level), middle 
of the right thigh, and non-dominant wrist using cus-
tom designed hypoallergenic tape. Two Actigraph accel-
erometers were fitted to participants at two main sites: 
the non-dominant wrist using an elastic wrist strap and 
over the right hip using custom designed hypoallergenic 
tape. Axivity devices were set up and data downloaded 
with OmGui software version 1.0.0.30 (Open Movement, 
Newcastle, UK). ActiGraph wGT3X-BT devices were ini-
tialised and downloaded using ActiLife version 6.13.3, 
saved in raw format as.gt3x, then converted for data pro-
cessing. Raw acceleration data from the Actigraph and 
Axivity were processed and calibrated using the open-
access Pampro package v0.5 [19] and converted into 
hdf5 file formats for processing. All algorithms except 
the HDCZA were written in the Python programming 
language (Python Software Foundation, https://​www.​
python.​org/) and outputs were computed using this same 
software system, rather than proprietary device software. 
Data analysed using the HDCZA algorithm were pro-
cessed and analysed with R-package GGIR version 1.2–0 
(http://​cran.r-​proje​ct.​org) [20].

Algorithms
The selection of algorithms featured in this manuscript 
was informed by a comprehensive review of pertinent 
literature pertaining to prevalent methodologies uti-
lized for estimating sleep patterns in pediatric popula-
tions employing count-based actigraphy. Additionally, 
consideration was given to algorithms integrated within 
the proprietary software accompanying the Actigraph 
GT3X + devices. Details of how each algorithm scores 
sleep and wake and calculates each sleep outcome are 
given in Table  1. Briefly, we included three versions of 
the Cole-Kripke algorithm [5], two versions of the Sadeh 
algorithm [13], four versions of the Tudor-Locke algo-
rithm [4, 8], the count-scaled (CS) algorithm [6], and 
the HDCZA algorithm [9]. In general, the versions of 
each algorithm differed mostly by whether they required 
the use of diaries to estimate sleep onset and offset and 
whether they included variations to account for changes 
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in sensitivity between older and newer accelerometer 
models.

Statistical analyses
Epoch‑by epoch comparison
One-minute epochs from the Axivity thigh, wrist, and 
lower back and Actigraph waist and wrist were aligned 
with corresponding PSG epochs. Agreement between 
the Axivity and Actigraph at each site placement (wrist, 
thigh, lower back, waist) and PSG (as the gold standard) 
were examined by calculating overall agreement (%), 
sensitivity (% sleep agreement), and specificity (% wake 
agreement).

Sleep outcomes were organised into three catego-
ries: sleep timing (sleep onset and offset), sleep quantity 
(sleep period time and total sleep time), and sleep quality 
(WASO, sleep efficiency, and number of night wakings). 
These were described with means and standard devia-
tions and compared to PSG by calculating the mean dif-
ference and 95% confidence interval. Only participants 
with data for all outcomes were included for each device 
and placement.

Bland Altman plots were used to explore agreement 
against PSG for the “overall best performing” algorithm, 
regardless of placement site or device (by % accuracy) and 
for the “best performing algorithm” (by mean difference 
from PSG) for the site placement and device deemed to 
be the best performing for SPT (a measure dependent 
on sleep onset and sleep offset and not dependent on 
WASO) and WASO. Mean differences and 95% limits of 

agreement were calculated. Stata 17.0 (StataCorp, Texas) 
was used for all analyses.

Results
Study participants
In total, 384 children completed the screening question-
naire. Of these, 202 were ineligible, due to age (n = 4), 
lived outside the Dunedin area (n = 12) or had a sleep 
disturbance score greater than 39 (n = 186). A total of 
182 participants were eligible to participate and of these 
151 expressed further interest in the study. PSG was con-
ducted in 138 participants with early termination of PSG 
for one participant due to technical failure, leaving 137 
participants included in the final analyses (Supplementary 
Table 1 for details on missing data). The characteristics of 
the participants are shown in Table 2. The majority of par-
ticipants were of New Zealand European ethnicity, slightly 
more boys participated than girls, and 37% of the sample 
were overweight or obese.

Epoch by epoch analyses
Placement and device
Actigraph vs Axivity at the wrist vs waist, lower back, thigh
Table  3 demonstrates that in general, overall accuracy 
tended to be higher for both devices placed at the wrist 
(mostly greater than 80%) than when placed close to the 
centre of mass (waist, thigh, and lower back, where accu-
racy was generally less than 80%). However, different 
patterns were observed for sensitivity and specificity. Sen-
sitivity, or the ability to detect episodes of sleep was gen-
erally higher when placed closer to the centre of mass for 

Table 2  Characteristics of the study population

Data presented as mean (SD) except where noted
a Uses the New Zealand Index of Deprivation 2013, which reflects the extent of material and social deprivation and is used to construct deciles from 1 (least deprived) 
to 10 (most deprived) [16]
b Categories based on the WHO BMI z-score cut-offs [17]

Males Females Total

n 70 67 137

Age (years) 11.6 (2.1) 10.8 (2.3) 11.2 (2.3)

Ethnicity, n (%) New Zealand European & 
Others

59 (84%) 49 (73%) 108 (79%)

Māori 9 (13%) 13 (19%) 22 (16%)

Pacific 2 (3%) 5 (8%) 7 (5%)

Household deprivationa, n (%) Low 35 (50%) 29 (43%) 64 (47%)

Medium 23 (33%) 23 (34%) 46 (34%)

High 12 (17%) 15 (22%) 27 (20%)

Height (cm) 153.0 (14.2) 148.0 (14.2) 150.5 (14.4)

Weight (kg) 46.4 (13.7) 45.8 (18.0) 46.1 (15.8)

Body mass index (BMI, kg/m2) 19.4 (3.2) 20.2 (4.9) 19.8 (4.1)

Weight statusb, n (%) Normal weight 48 (69%) 39 (58%) 87 (64%)

Overweight 22 (31%) 28 (42%) 50 (37%)
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Table 3  Sensitivity, specificity, and accuracy of epoch-by-epoch comparisons with PSG for sleep

Device Placement Algorithm Mean accuracy % (95% CI) Mean sensitivity % 
(95% CI)

Mean 
specificity % 
(95% CI)

Actigraph GT3x Hip Count-scaled 77.6 (75.7, 79.5) 95.3 (94.0, 96.6) 56.8 (53.8, 59.7)

Sadeh 1 78.6 (76.6, 80.6) 97.7 (96.4, 99.0) 55.9 (52.7, 59.1)

Sadeh 2 79.0 (76.9, 81.0) 97.6 (96.3, 99.0) 56.5 (53.3, 59.7)

Cole-Kripke 1 82.0 (79.9, 84.1) 94.3 (92.6, 96.0) 67.8 (64.4, 71.1)

Cole-Kripke 2 73.1 (71.3, 75.0) 98.8 (97.7, 99.8) 42.4 (39.7, 45.1)

Cole-Kripke 3 73.5 (71.6, 75.4) 98.7 (97.6, 99.8) 43.2 (40.4, 46.0)

Tudor-Locke 1 73.7 (71.8, 75.6) 98.8 (97.6, 99.9) 43.1 (40.3, 45.8)

Tudor-Locke 2 72.9 (71.0, 74.8) 98.8 (97.7, 99.9) 42.0 (39.2, 44.7)

Tudor-Locke 3 78.4 (76.4, 80.4) 98.0 (96.7, 99.3) 54.8 (51.5, 58.0)

Tudor-Locke 4 78.6 (76.7, 80.6) 98.0 (96.7, 99.3) 54.9 (51.7, 58.1)

HDCZA 85.4 (83.3, 87.6) 85.8 (82.9, 88.6) 85.9 (83.7, 88.0)

Wrist Count-scaled 82.3 (80.3, 84.2) 93.2 (91.5, 94.8) 69.7 (66.6, 72.9)

Sadeh 1 84.1 (82.1, 86.1) 90.9 (89.0, 92.7) 76.4 (73.2, 79.6)

Sadeh 2 84.4 (82.4, 86.4) 90.9 (89.1, 92.8) 76.9 (73.8, 80.1)

Cole-Kripke 1 79.8 (77.9, 81.7) 77.9 (75.7, 80.1) 82.8 (79.8, 85.9)

Cole-Kripke 2 83.7 (81.7, 85.8) 94.4 (92.7, 96.1) 71.3 (68.0, 74.7)

Cole-Kripke 3 84.4 (82.5, 86.3) 94.9 (93.6, 96.2) 72.1 (68.8, 75.4)

Tudor-Locke 1 83.5 (81.4, 85.5) 95.1 (93.4, 96.8) 69.7 (66.4, 73.1)

Tudor-Locke 2 84.0 (82.1, 85.9) 95.0 (93.3, 96.7) 70.4 (67.2, 73.6)

Tudor-Locke 3 83.9 (81.9, 85.9) 92.4 (90.6, 94.2) 74.1 (70.9, 77.3)

Tudor-Locke 4 84.1 (82.1, 86.1) 92.4 (90.6, 94.2) 74.4 (71.2, 77.5)

HDCZA 86.1 (84.2, 88.1) 85.6 (83.2, 88.0) 87.5 (85.4, 89.7)

Axivity Back Count-scaled 74.3 (72.1, 76.4) 92.3 (90.6, 93.9) 52.8 (49.4, 56.2)

Sadeh 1 75.4 (73.2, 77.7) 95.4 (93.7, 97.1) 51.8 (48.4, 55.3)

Sadeh 2 76.5 (74.3, 78.7) 95.8 (94.3, 97.3) 53.6 (50.2, 56.9)

Cole-Kripke 1 78.7 (76.4, 81.0) 92.7 (90.8, 94.5) 62.6 (58.9, 66.2)

Cole-Kripke 2 71.6 (69.5, 73.6) 97.0 (95.5, 98.4) 41.2 (38.2, 44.1)

Cole-Kripke 3 72.4 (70.3, 74.4) 97.3 (96.0, 98.6) 42.5 (39.6, 45.5)

Tudor-Locke 1 72.3 (70.2, 74.3) 97.3 (96.0, 98.6) 42.2 (39.2, 45.2)

Tudor-Locke 2 72.1 (70.1, 74.1) 97.5 (96.3, 98.7) 41.7 (38.7, 44.7)

Tudor-Locke 3 76.0 (73.7, 78.3) 95.3 (93.5, 97.0) 53.2 (49.8, 56.5)

Tudor-Locke 4 76.2 (74.0, 78.4) 95.9 (95.5, 97.4) 53.1 (49.7, 56.5)

HDCZA 85.8 (83.6, 88.0) 87.7 (85.5, 90.0) 87.1 (85.1, 89.1)

Thigh Count-scaled 71.9 (69.7, 74.1) 88.1 (86.1, 90.1) 52.8 (49.8, 55.7)

Sadeh 1 77.6 (75.2, 80.1) 90.6 (88.1, 93.1) 62.3 (58.7, 65.8)

Sadeh 2 77.9 (75.5, 80.4) 91.0 (88.6, 93.4) 62.5 (59.0, 66.1)
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both the Actigraph and Axivity compared to the wrist. By 
contrast, specificity (% wake agreement) was considerably 
better for both devices at the wrist than at the waist.

Algorithms vs placement
Site of placement did not appear to affect the over-
all accuracy or sensitivity for each algorithm to a great 
extent as most algorithms appeared to perform similarly 
when placed close to the centre of mass (thigh, lower 
back, waist) or at the wrist, varying by less than 10% 
(Table  3). However, site of placement had a large effect 
on specificity for most algorithms with only the HDCZA 
algorithm varying by less than 10% between placements. 
Regardless of placement, we report similar total accuracy 
across the HDCZA, CS, Sadeh 1, Sadeh 2, Cole-Kripke 
1, Tudor-Locke 3, and Tudor-Locke 4 algorithms, but 
lower accuracy for the Cole-Kripke 2, Cole-Kripke 3, 
Tudor-Locke 1, and Tudor-Locke 2 algorithms. Given the 
difficulty of actigraphy to detect periods of wakefulness 
during sleep, the considerably higher level of specificity 

for the HDCZA algorithm (ranging from 85.9% to 89.6%), 
compared to all others which showed specificities as low 
as 41.2%, with many less than 60%, should be noted.

A sensitivity analysis (Supplementary Table  2) was 
undertaken to determine the effect of the post-processing 
merge of PSG epochs into 60-s. In the original analyses if 
either 30-s epoch within the minute was scored as wake, 
we considered that whole minute as wake, whereas in the 
sensitivity analyses if either 30-s epoch within the min-
ute was scored as sleep, we considered that whole minute 
as sleep. For most algorithms (apart from a few placed at 
the wrist) this resulted in marginal increases in accuracy 
(< 2%) as a result of increases in specificity (the ability to 
detect wake-time) at the expense of decreases in sensitiv-
ity (the ability to detect sleep time).

Sleep outcomes
Tables  4 (Actigraph) and 5 (Axivity) report differences 
between each algorithm and PSG for relevant sleep out-
comes of interest in three broad categories: sleep timing 

Table 3  (continued)

Device Placement Algorithm Mean accuracy % (95% CI) Mean sensitivity % 
(95% CI)

Mean 
specificity % 
(95% CI)

Cole-Kripke 1 78.4 (75.9, 80.9) 84.4 (81.7, 87.1) 71.3 (67.6, 74.9)

Cole-Kripke 2 75.0 (72.6, 77.3) 94.0 (91.8, 96.2) 52.4 (49.2, 55.6)

Cole-Kripke 3 75.7 (73.3, 78.0) 94.3 (92.1, 96.4) 53.8 (50.6, 56.9)

Tudor-Locke 1 75.1 (72.7, 77.5) 94.0 (91.8, 96.2) 52.8 (49.7, 56.0)

Tudor-Locke 2 76.2 (74.0, 78.3) 95.5 (94.1, 96.9) 53.5 (50.3, 56.7)

Tudor-Locke 3 77.6 (75.1, 80.1) 90.5 (88.0, 93.1) 62.2 (58.7, 65.8)

Tudor-Locke 4 78.7 (76.4, 81.0) 91.6 (89.6, 93.7) 63.3 (59.8, 66.7)

HDCZA 87.3 (85.5, 89.0) 88.5 (87.0, 90.0) 87.2 (85.1, 89.3)

Wrist Count-scaled 77.4 (75.1, 79.7) 86.0 (83.6, 88.3) 67.3 (63.9, 70.7)

Sadeh 1 79.8 (77.4, 82.2) 83.9 (81.4, 86.5) 75.6 (72.2, 78.9)

Sadeh 2 80.3 (78.0, 82.6) 84.5 (82.1, 86.9) 76.0 (72.6, 65.8)

Cole-Kripke 1 76.0 (73.8, 78.2) 72.6 (70.3, 74.9) 81.0 (77.8, 84.2)

Cole-Kripke 2 80.0 (77.5, 82.4) 87.7 (85.0, 90.4) 70.8 (67.2, 74.3)

Cole-Kripke 3 80.1 (77.7, 82.5) 87.6 (85.0, 90.3) 71.1 (67.5, 74.6)

Tudor-Locke 1 80.0 (77.5, 82.4) 87.7 (85.0, 90.4) 70.8 (67.2, 74.3)

Tudor-Locke 2 80.5 (78.2, 82.8) 88.9 (86.7, 91.0) 70.7 (67.1, 74.3)

Tudor-Locke 3 80.3 (78.0, 82.6) 84.5 (82.1, 86.9) 76.0 (72.6, 79.3)

Tudor-Locke 4 80.1 (77.7, 82.4) 84.5 (82.2, 86.8) 75.5 (72.1, 78.9)

HDCZA 87.5 (85.7, 89.4) 87.5 (85.9, 89.0) 89.6 (87.8, 91.3)
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Table 4  Comparison of PSG and Actigraph GT3x measured sleep outcomes using different algorithms and at each site

Sleep variable Device Placement Algorithm Mean (SD mins) Mean difference 
(95% CI) from 
PSGa

Sleep onset (hh:mm) PSG n = 114 21:38 (58) Reference

Actigraph GT3x Hip (n = 114) Count-scaled 21:26 (61) -12 (-20, -4)

Sadeh 1 21:23 (54) -15 (-20, -10)

Sadeh 2 20:39 (112) -59 (-79, -39)

Cole-Kripke 1 21:31 (53) -7 (-12, -2)

Cole-Kripke 2 21:20 (51) -18 (-23, -14)

Cole-Kripke 3 19:10 (153) -149 (-179, -119)

Tudor-Locke 1 19:49 (127) -109 (-132, -87)

Tudor-Locke 2 19:47 (49) -112 (-124, -100)

Tudor-Locke 3 20:48 (97) -50 (-67, -34)

Tudor-Locke 4 20:24 (64) -74 (-85, -63)

HDCZA 21:33 (75) -6 (-15, 4)
PSG n = 119 21:37 (57) Reference

Actigraph GT3x Wrist (n = 119) Count-scaled 21:39 (57) 2 (-3, 7)
Sadeh 1 21:33 (54) -4 (-8, 1)
Sadeh 2 21:22 (120) -15 (-37, 6)
Cole-Kripke 1 21:46 (60) 8 (3, 13)

Cole-Kripke 2 21:31 (53) -6 (-12, -1)

Cole-Kripke 3 21:05 (114) -32 (-52, -11)

Tudor-Locke 1 21:01 (112) -37 (-57, -16)

Tudor-Locke 2 21:07 (57) -30 (-38, -22)

Tudor-Locke 3 21:37 (121) -20 (-42, 2)
Tudor-Locke 4 21:24 (58) -13 (-18, -8)

HDCZA 21:33 (58) -4 (-8, -1)

Sleep offset (hh:mm) PSG n = 114 6:44 (90) Reference

Actigraph GT3x Hip (n = 114) Count-scaled 7:00 (63) 16 (1, 31)

Sadeh 1 6:58 (57) 14 (1, 28)

Sadeh 2 7:36 (86) 53 (34, 71)

Cole-Kripke 1 6:57 (56) 13 (0, 27)

Cole-Kripke 2 6:59 (56) 15 (1, 29)

Cole-Kripke 3 8:17 (92) 93 (73, 114)

Tudor-Locke 1 8:03 (88) 79 (60, 98)

Tudor-Locke 2 7:58 (83) 74 (56, 93)

Tudor-Locke 3 7:34 (83) 51 (33, 68)

Tudor-Locke 4 7:29 (76) 46 (29, 62)

HDCZA 6:33 (141) -11 (-40, 18)
PSG n = 119 6:43 (91) Reference

Actigraph GT3x Wrist (n = 119) Count-scaled 6:53 (62) 9 (-5, 24)
Sadeh 1 6:52 (61) 9 (-4, 22)
Sadeh 2 6:37 (93) -6 (-26, 14)
Cole-Kripke 1 6:53 (60) 10 (-4, 23)
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Table 4  (continued)

Sleep variable Device Placement Algorithm Mean (SD mins) Mean difference 
(95% CI) from 
PSGa

Cole-Kripke 2 6:55 (61) 12 (-1, 26)
Cole-Kripke 3 6:56 (92) 12 (-8, 33)
Tudor-Locke 1 7:00 (89) 16 (-4, 36)
Tudor-Locke 2 7:04 (62) 21 (6, 36)

Tudor-Locke 3 6:55 (79) 12 (-6, 29)
Tudor-Locke 4 6:56 (63) 12 (-4, 28)
HDCZA 7:00 (95) 16 (-2, 35)

Sleep period time (min) PSG n = 114 545 (92) Reference

Actigraph GT3x Hip (n = 114) Count-scaled 573 (75) 28 (13, 43)

Sadeh 1 575 (61) 29 (15, 44)

Sadeh 2 658 (142) 113 (84, 142)

Cole-Kripke 1 566 (59) 20 (6, 35)

Cole-Kripke 2 579 (60) 34 (20, 47)

Cole-Kripke 3 788 (201) 243 (203, 283)

Tudor-Locke 1 734 (174) 189 (156, 222)

Tudor-Locke 2 732 (90) 187 (167, 207)

Tudor-Locke 3 647 (121) 102 (78, 126)

Tudor-Locke 4 666 (87) 121 (102, 140)

HDCZA 553 (104) 8 (-15, 31)

PSG n = 119 546 (93) Reference

Actigraph GT3x Wrist (n = 119) Count-scaled 553 (66) 7 (-7, 21)

Sadeh 1 559 (66) 13 (-1, 26)

Sadeh 2 556 (151) 10 (-22, 42)

Cole-Kripke 1 548 (60) 1 (-12, 15)

Cole-Kripke 2 565 (66) 19 (6, 31)

Cole-Kripke 3 591 (137) 45 (17, 73)

Tudor-Locke 1 600 (136) 54 (27, 81)

Tudor-Locke 2 598 (67) 52 (36, 68)

Tudor-Locke 3 579 (145) 33 (2, 63)

Tudor-Locke 4 572 (66) 26 (10, 43)

HDCZA 567 (92) 21 (2, 40)

Total sleep time (min) PSG n = 114 518 (89) Reference

Actigraph GT3x Hip (n = 114) Count-scaled 532 (73) 14 (-1, 29)

Sadeh 1 557 (59) 39 (25, 54)

Sadeh 2 623 (118) 105 (80, 130)

Cole-Kripke 1 527 (60) 9 (-6, 24)

Cole-Kripke 2 571 (59) 53 (39, 67)

Cole-Kripke 3 734 (158) 216 (183, 248)

Tudor-Locke 1 701 (148) 183 (154, 212)
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Table 4  (continued)

Sleep variable Device Placement Algorithm Mean (SD mins) Mean difference 
(95% CI) from 
PSGa

Tudor-Locke 2 695 (86) 177 (157, 196)

Tudor-Locke 3 619 (109) 101 (78, 123)

Tudor-Locke 4 628 (81) 110 (92, 128)

HDCZA 495 (102) -23 (-45, -2)

PSG n = 119 519 (89) Reference

Actigraph GT3x Wrist (n = 119) Count-scaled 502 (61) -16 (-30, -2)

Sadeh 1 496 (58) -22 (-36, -9)

Sadeh 2 490 (105) -29 (-53, -4)

Cole-Kripke 1 418 (55) -101 (-117, -84)

Cole-Kripke 2 523 (61) 5 (-8, 18)

Cole-Kripke 3 540 (97) 21 (-1, 43)

Tudor-Locke 1 550 (96) 32 (11, 53)

Tudor-Locke 2 549 (60) 31 (15, 46)

Tudor-Locke 3 514 (102) -5 (-28, 19)

Tudor-Locke 4 514 (60) -5 (-20, 11)

HDCZA 486 (91) -33 (-51, -15)

WASO (min) PSG n = 114 74 (126) Reference

Actigraph GT3x Hip (n = 114) Count-scaled 41 (18) -33 (-56, -9)

Sadeh 1 17 (17) -56 (-79, -34)

Sadeh 2 35 (37) -39 (-63, -15)

Cole-Kripke 1 39 (29) -35 (-58, -13)

Cole-Kripke 2 8 (8) -66 (-89, -43)

Cole-Kripke 3 55 (56) -19 (-45, 7)

Tudor-Locke 1 34 (34) -40 (-64, -16)

Tudor-Locke 2 37 (18) -36 (-60, -13)

Tudor-Locke 3 29 (24) -45 (-69, -22)

Tudor-Locke 4 38 (21) -36 (-59, -13)

HDCZA 58 (47) -16 (-42, 10)

PSG n = 119 71 (120) Reference

Actigraph GT3x Wrist (n = 119) Count-scaled 51 (20) -20 (-42, 2)

Sadeh 1 63 (31) -8 (-30, 13)

Sadeh 2 66 (65) -5 (-30, 20)

Cole-Kripke 1 130 (50) 58 (36, 81)

Cole-Kripke 2 42 (25) -30 (-51, -8)

Cole-Kripke 3 51 (55) -20 (-44, 4)

Tudor-Locke 1 50 (53) -22 (-45, 2)

Tudor-Locke 2 49 (28) -22 (-44, -1)
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Table 4  (continued)

Sleep variable Device Placement Algorithm Mean (SD mins) Mean difference 
(95% CI) from 
PSGa

Tudor-Locke 3 65 (59) -6 (-31, 18)

Tudor-Locke 4 58 (24) -13 (-34, 8)

HDCZA 81 (60) 10 (-14, 35)

Sleep efficiencySPT (%) PSG n = 114 95.0 (4.1) Reference

Actigraph GT3x Hip (n = 114) Count-scaled 92.8 (3.1) -2.2 (-3.1, -1.4)

Sadeh 1 97.0 (2.8) 2.0 (1.2, 2.7)

Sadeh 2 95.1 (3.5) 0.0 (-0.8, 0.9)

Cole-Kripke 1 93.2 (5.0) -1.8 (-2.8, -0.8)

Cole-Kripke 2 98.6 (1.4) 3.6 (2.9, 4.3)

Cole-Kripke 3 93.9 (4.6) -1.1 (-2.2, -0.1)

Tudor-Locke 1 95.9 (2.6) 0.8 (0.0, 1.7)

Tudor-Locke 2 94.9 (2.4) -0.1 (-1.0, 0.8)

Tudor-Locke 3 95.8 (2.8) 0.7 (-0.1, 1.6)

Tudor-Locke 4 94.4 (3.0) -0.6 (-1.5, 0.3)

HDCZA 89.5 (8.6) -5.5 (-7.2, -3.7)

PSG n = 119 94.9 (4.1) Reference

Actigraph GT3x Wrist (n = 119) Count-scaled 90.8 (3.3) -4.2 (-5.0, -3.4)

Sadeh 1 88.9 (5.1) -6.0 (-7.0, -5.1)

Sadeh 2 88.8 (5.9) -6.1 (-7.2, -5.0)

Cole-Kripke 1 76.6 (8.3) -18.4 (-19.9, -16.8)

Cole-Kripke 2 92.7 (4.0) -2.2 (-3.1, -1.3)

Cole-Kripke 3 92.0 (5.1) -2.9 (-3.9, -1.9)

Tudor-Locke 1 92.4 (4.8) -2.5 (-3.5, -1.6)

Tudor-Locke 2 91.9 (4.1) -3.0 (-3.8, -2.1)

Tudor-Locke 3 89.6 (5.4) -5.4 (-6.3, -4.4)

Tudor-Locke 4 89.9 (3.9) -5.1 (-5.9, -4.3)

HDCZA 85.9 (10.3) -9.1 (-11.1, -7.1)

Sleep efficiencyTIB (%) PSG n = 114 89.1 (12.5) Reference

Actigraph GT3x Hip (n = 114) Count-scaled 91.6 (9.8) 2.5 (-0.1, 5.0)

Sadeh 1 95.9 (4.6) 6.8 (4.4, 9.2)

Sadeh 2 95.1 (3.5) 5.9 (3.6, 9.3)

Cole-Kripke 1 90.7 (6.4) 1.6 (-0.9, 4.1)

Cole-Kripke 2 98.2 (3.0) 9.1 (6.7, 11.4)

Cole-Kripke 3 93.9 (4.6) 4.8 (2.3, 7.2)

Tudor-Locke 1 95.9 (2.6) 6.7 (4.3, 9.2)

Tudor-Locke 2 94.9 (2.4) 5.8 (3.4, 8.2)

Tudor-Locke 3 95.8 (2.8) 6.6 (4.3, 9.0)



Page 14 of 27Meredith‑Jones et al. Int J Behav Nutr Phys Act  (2024) 21:40

Table 4  (continued)

Sleep variable Device Placement Algorithm Mean (SD mins) Mean difference 
(95% CI) from 
PSGa

Tudor-Locke 4 94.4 (3.0) 5.3 (2.9, 7.7)

HDCZA NA NA

PSG n = 119 89.2 (12.5)

Actigraph GT3x Wrist (n = 119) Count-scaled 86.5 (7.8) -2.8 (-5.1, -0.4)

Sadeh 1 85.5 (7.4) -3.7 (-6.0, -1.5)

Sadeh 2 88.8 (5.9) -0.4 (-2.8, 2.0)

Cole-Kripke 1 72.2 (9.3) -17.0 (-19.7, -14.3)

Cole-Kripke 2 90.0 (6.6) 0.8 (-1.3, 2.9)

Cole-Kripke 3 92.0 (5.1) 2.8 (0.4, 5.1)

Tudor-Locke 1 92.4 (4.8) 3.2 (0.8, 5.5)

Tudor-Locke 2 91.9 (4.1) 2.7 (0.4, 5.1)

Tudor-Locke 3 89.6 (5.4) 0.4 (-2.0, 2.7)

Tudor-Locke 4 89.9 (3.9) 0.6 (-1.6, 2.9)

HDCZA NA NA

Night wakings (frequency) PSG n = 114 25.8 (8.3) Reference

Actigraph GT3x Hip (n = 114) Count-scaled 0.4 (0.6) -25.4 (-27.0, -23.9)

Sadeh 1 0.2 (0.5) -25.6 (-27.2, -24.1)

Sadeh 2 10.4 (6.7) -15.5 (-17.2, -13.7)

Cole-Kripke 1 13.5 (7.8) -12.3 (-14.0, -10.5)

Cole-Kripke 2 0.0 (0.2) -25.8 (-27.3, -24.2)

Cole-Kripke 3 13.2 (8.1) -12.6 (-14.7, -10.6)

Tudor-Locke 1 10.9 (7.0) -14.9 (-16.7, -13.1)

Tudor-Locke 2 11.0 (4.5) -14.8 (-16.4, -13.2)

Tudor-Locke 3 11.4 (7.7) -14.4 (-16.1, -12.6)

Tudor-Locke 4 12.6 (7.0) -13.2 (-14.9, -11.4)

HDCZA 17.1 (5.7) -8.7 (-10.2, -7.2)

PSG n = 119 26.3 (8.4) Reference

Actigraph GT3x Wrist (n = 119) Count-scaled 0.7 (0.8) -25.6 (-27.1, -24.1)

Sadeh 1 1.0 (1.1) -25.3 (-26.7, -23.8)

Sadeh 2 20.4 (7.5) -5.9 (-7.4, -4.3)

Cole-Kripke 1 25.1 (7.2) -1.2 (-2.8, 0.4)

Cole-Kripke 2 0.3 (0.6) -26.0 (-27.5, -24.5)

Cole-Kripke 3 17.9 (8.5) -8.4 (-10.1, -6.7)

Tudor-Locke 1 19.2 (9.3) -7.1 (-8.9, -5.4)

Tudor-Locke 2 20.1 (8.6) -6.2 (-7.8, -4.6)

Tudor-Locke 3 24.7 (10.0) -1.6 (-3.5, -0.2)

Tudor-Locke 4 25.1 (9.0) -1.2 (-2.8, 0.4)

HDCZA 20.6 (6.2) -5.7 (-7.1, -4.2)

NA not available
a Bolded differences refer to those whether actigraphy was not significantly different (P > 0.05) to PSG, and thus provide a good estimate for that sleep measure
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Table 5  Comparison of PSG and Axivity measured sleep outcomes using different algorithms and at each site

Sleep variable Device Placement Algorithm Mean (SD) Mean difference 
(95% CI) from 
PSGa

Sleep onset (hh:mm) PSG (n = 116) 21:41 (58) Reference

Axivity Thigh (n = 116) Count-scaled 21:28 (63) -14 (-22, -5)

Sadeh 1 21:34 (62) -8 (-14, -1)

Sadeh 2 20:57 (102) -44 (-62, -27)

Cole-Kripke 1 21:31 (52) -10 (-15, -5)

Cole-Kripke 2 21:23 (54) -18 (-22, -14)

Cole-Kripke 3 20:17 (115) -84 (-104, -64)

Tudor-Locke 1 20:40 (100) -61 (-78, -45)

Tudor-Locke 2 20:15 (59) -86 (-99, -73)

Tudor-Locke 3 21:07 (100) -34 (-51, -17)

Tudor-Locke 4 20:50 (62) -52 (-62, -42)

HDCZA 21:09 (101) -33 (-48, -18)

PSG n = 115 21:43 (58) Reference

Axivity Back (n = 115) Count-scaled 21:22 (54) -20 (-28, -13)

Sadeh 1 21:28 (58) -15 (-20, -9)

Sadeh 2 20:29 (104) -73 (-92, -55)

Cole-Kripke 1 21:28 (52) -15 (-19, -10)

Cole-Kripke 2 21:25 (56) -18 (-22, -13)

Cole-Kripke 3 19:19 (142) -144 (-172, -116)

Tudor-Locke 1 19:51 (136) -112 (-137, -86)

Tudor-Locke 2 19:52 (59) -111 (-125, -97)

Tudor-Locke 3 20:45 (102) -57 (-75, -40)

Tudor-Locke 4 20:21 (67) -79 (-91, -67)

HDCZA 21:26 (101) -21 (-37, -5)

PSG n = 125 21:39 (57) Reference

Axivity Wrist (n = 125) Count-scaled 21:32 (63) -6 (-14, 2)
Sadeh 1 21:40 (65) 2 (-6, 10)
Sadeh 2 21:13 (96) -25 (-39, -10)

Cole-Kripke 1 21:39 (61) 1 (-5, 7)
Cole-Kripke 2 21:30 (56) -9 (-14, -3)

Cole-Kripke 3 20:56 (94) -43 (-57, -28)

Tudor-Locke 1 21:05 (95) -34 (-48, -20)

Tudor-Locke 2 20:54 (60) -44 (-53, -35)

Tudor-Locke 3 21:30 (100) -9 (-24, 6)
Tudor-Locke 4 21:12 (66) -27 (-34, -20)

HDCZA 21:01 (113) -38 (-54, -21)
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Table 5  (continued)

Sleep variable Device Placement Algorithm Mean (SD) Mean difference 
(95% CI) from 
PSGa

Sleep offset (hh:mm) PSG n = 116 6:40 (92) Reference

Axivity Thigh (n = 116) Count-scaled 6:42 (65) 2 (-12, 17)

Sadeh 1 6:44 (59) 5 (-9, 18)

Sadeh 2 6:58 (98) 18 (-4, 40)

Cole-Kripke 1 6:40 (65) 0 (-14, 14)

Cole-Kripke 2 6:49 (57) 9 (-4, 23)

Cole-Kripke 3 7:26 (98) 47 (23, 70)

Tudor-Locke 1 7:14 (99) 35 (12, 57)

Tudor-Locke 2 7:12 (87) 32 (11, 53)

Tudor-Locke 3 6:54 (98) 14 (-8, 36)

Tudor-Locke 4 6:45 (73) 6 (-13, 24)

HDCZA 6:35 (120) -4 (-29, 21)

PSG n = 115 6:42 (95) Reference

Axivity Back (n = 115) Count-scaled 6:47 (69) 5 (-10, 20)

Sadeh 1 6:49 (61) 7 (-7, 21)

Sadeh 2 7:34 (107) 52 (28, 76)

Cole-Kripke 1 6:49 (62) 8 (-6, 22)

Cole-Kripke 2 6:55 (61) 14 (0, 27)

Cole-Kripke 3 8:01 (128) 79 (51, 106)

Tudor-Locke 1 7:57 (106) 75 (51, 99)

Tudor-Locke 2 7:41 (93) 59 (38, 80)

Tudor-Locke 3 7:22 (107) 41 (17, 64)

Tudor-Locke 4 7:11 (88) 29 (9, 49)

HDCZA 6:34 (108) -8 (-32, 17)

PSG n = 125 6:40 (92) Reference

Axivity Wrist (n = 125) Count-scaled 6:35 (70) -5 (-19, 10)

Sadeh 1 6:39 (62) -1 (-15, 12)

Sadeh 2 6:22 (103) -18 (-39, 4)

Cole-Kripke 1 6:31 (73) -9 (-23, 6)

Cole-Kripke 2 6:41 (61) 1 (-12, 15)

Cole-Kripke 3 6:47 (97) 7 (-14, 28)

Tudor-Locke 1 6:40 (96) 0 (-21, 21)

Tudor-Locke 2 6:31 (71) -9 (-24, 7)

Tudor-Locke 3 6:07 (116) -33 (-57, -9)

Tudor-Locke 4 6:19 (73) -21 (-39, -4)

HDCZA 6:21 (143) -19 (-47, 8)



Page 17 of 27Meredith‑Jones et al. Int J Behav Nutr Phys Act  (2024) 21:40	

Table 5  (continued)

Sleep variable Device Placement Algorithm Mean (SD) Mean difference 
(95% CI) from 
PSGa

Sleep period time (min) PSG n = 116 538 (95) Reference

Axivity Thigh (n = 116) Count-scaled 555 (78) 16 (-1, 33)

Sadeh 1 550 (69) 12 (-2, 26)

Sadeh 2 602 (130) 64 (34, 93)

Cole-Kripke 1 549 (69) 10 (-4, 25)

Cole-Kripke 2 566 (63) 27 (13, 41)

Cole-Kripke 3 670 (139) 132 (100, 163)

Tudor-Locke 1 657 (115) 97 (70, 124)

Tudor-Locke 2 658 (107) 119 (95, 144)

Tudor-Locke 3 588 (128) 49 (20, 78)

Tudor-Locke 4 597 (88) 58 (37, 79)

HDCZA 567 (86) 28 (8, 49)

PSG n = 115 539 (97) Reference

Axivity Back (n = 115) Count-scaled 564 (77) 25 (10, 41)

Sadeh 1 561 (68) 22 (7, 37)

Sadeh 2 665 (153) 126 (93, 160)

Cole-Kripke 1 562 (67) 23 (8, 37)

Cole-Kripke 2 570 (63) 31 (18, 45)

Cole-Kripke 3 763 (187) 224 (185, 263)

Tudor-Locke 1 727 (172) 188 (150, 225)

Tudor-Locke 2 710 (117) 171 (146, 196)

Tudor-Locke 3 638 (146) 99 (67, 131)

Tudor-Locke 4 648 (109) 109 (87, 132)

HDCZA 553 (90) 14 (-8, 35)

PSG n = 125 541 (95) Reference

Axivity Wrist (n = 125) Count-scaled 543 (81) 1 (-13, 16)

Sadeh 1 538 (78) -3 (-18, 12)

Sadeh 2 549 (113) 8 (-16, 32)

Cole-Kripke 1 532 (72) -10 (-24, 5)

Cole-Kripke 2 551 (71) 10 (-3, 23)

Cole-Kripke 3 592 (109) 51 (27, 74)

Tudor-Locke 1 576 (104) 35 (12, 58)

Tudor-Locke 2 578 (74) 37 (20, 53)

Tudor-Locke 3 519 (122) -23 (-49, 4)

Tudor-Locke 4 548 (72) 7 (-10, 24)

HDCZA 560 (95) 18 (-2, 39)
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Table 5  (continued)

Sleep variable Device Placement Algorithm Mean (SD) Mean difference 
(95% CI) from 
PSGa

Total sleep time (mins) PSG n = 116 511 (93) Reference

Axivity Thigh (n = 116) Count-scaled 507 (76) -4 (-21, 13)

Sadeh 1 518 (72) 7 (-9, 23)

Sadeh 2 564 (105) 53 (28, 78)

Cole-Kripke 1 480 (71) -31 (-48, -14)

Cole-Kripke 2 545 (65) 36 (21, 51)

Cole-Kripke 3 633 (116) 122 (95, 149)

Tudor-Locke 1 610 (103) 99 (75, 124)

Tudor-Locke 2 619 (100) 109 (86, 132)

Tudor-Locke 3 554 (104) 43 (18, 68)

Tudor-Locke 4 556 (83) 45 (25, 66)

HDCZA 498 (72) -12 (-30, 6)

PSG n = 115 511 (94) Reference

Axivity Back (n = 115) Count-scaled 533 (76) 22 (6, 37)

Sadeh 1 546 (69) 35 (20, 50)

Sadeh 2 634 (129) 123 (94, 151)

Cole-Kripke 1 529 (68) 18 (2, 33)

Cole-Kripke 2 560 (64) 49 (35, 63)

Cole-Kripke 3 716 (160) 205 (171, 239)

Tudor-Locke 1 693 (149) 182 (149, 215)

Tudor-Locke 2 675 (112) 164 (140, 189)

Tudor-Locke 3 614 (126) 103 (75, 132)

Tudor-Locke 4 618 (101) 107 (85, 129)

HDCZA 498 (80) -13 (-31, 6)

PSG n = 125 514 (92) Reference

Axivity Wrist (n = 125) Count-scaled 491 (80) -22 (-38, -6)

Sadeh 1 472 (77) -41 (-58, -25)

Sadeh 2 491 (100) -22 (-44, 0)

Cole-Kripke 1 404 (66) -110 (-127, -92)

Cole-Kripke 2 506 (73) -8 (-23, 7)

Cole-Kripke 3 547 (97) 33 (11, 55)

Tudor-Locke 1 535 (93) 21 (0, 43)

Tudor-Locke 2 531 (72) 17 (1, 33)

Tudor-Locke 3 691 (111) -45 (-70, -20)

Tudor-Locke 4 489 (70) -24 (-41, -7)

HDCZA 492 (78) -22 (-39, -5)
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Table 5  (continued)

Sleep variable Device Placement Algorithm Mean (SD) Mean difference 
(95% CI) from 
PSGa

WASO (min) PSG n = 116 74 (125) Reference

Axivity Thigh (n = 116) Count-scaled 48 (22) -26 (-49, -3)

Sadeh 1 33 (29) -41 (-65, -18)

Sadeh 2 38 (40) -36 (-59, -13)

Cole-Kripke 1 69 (46) -6 (-29, 18)

Cole-Kripke 2 19 (22) -55 (-78, -32)

Cole-Kripke 3 37 (37) -37 (-60, -13)

Tudor-Locke 1 26 (22) -49 (-71, -26)

Tudor-Locke 2 38 (21) -36 (-59, -13)

Tudor-Locke 3 34 (40) -40 (-64, -17)

Tudor-Locke 4 41 (25) -33 (-56, -11)

HDCZA 69 (37) -5 (-29, 18)

PSG n = 115 76 (126) Reference

Axivity Back (n = 115) Count-scaled 32 (16) -45 (-68, -21)

Sadeh 1 15 (18) -62 (-84, -39)

Sadeh 2 32 (41) -44 (-69, -20)

Cole-Kripke 1 33 (32) -44 (-67, -21)

Cole-Kripke 2 10 (13) -66 (-90, -43)

Cole-Kripke 3 47 (48) -30 (-55, -4)

Tudor-Locke 1 33 (38) -43 (-68, -18)

Tudor-Locke 2 35 (20) -42 (-65, -18)

Tudor-Locke 3 24 (31) -31 (-76, -30)

Tudor-Locke 4 30 (20) -46 (-70, -23)

HDCZA 54 (27) -22 (-46, 2)

PSG n = 125 71 (119) Reference

Axivity Wrist (n = 125) Count-scaled 51 (28) -19 (-41, 2)

Sadeh 1 66 (43) -5 (-26, 17)

Sadeh 2 58 (29) -13 (-34, 9)

Cole-Kripke 1 128 (48) 57 (36, 79)

Cole-Kripke 2 46 (39) -25 (-46, -3)

Cole-Kripke 3 45 (26) -25 (-46, -4)

Tudor-Locke 1 42 (26) -29 (-50, -8)

Tudor-Locke 2 47 (24) -23 (-44, -3)

Tudor-Locke 3 50 (24) -20 (-42, 1)

Tudor-Locke 4 59 (25) -12 (-32, 8)

HDCZA 68 (39) -3 (-24, 19)
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Table 5  (continued)

Sleep variable Device Placement Algorithm Mean (SD) Mean difference 
(95% CI) from 
PSGa

Sleep efficiencySPT (%) PSG n = 116 94.8 (4.3) Reference

Axivity Thigh (n = 116) Count-scaled 91.3 (3.8) -3.5 (-4.4, -2.6)

Sadeh 1 94.0 (5.6) -0.8 (-2.0, 0.5)

Sadeh 2 94.0 (4.1) -0.8 (-1.8, 0.2)

Cole-Kripke 1 87.6 (7.8) -7.2 (-8.7, -5.7)

Cole-Kripke 2 96.7 (3.9) 1.9 (0.9, 2.9)

Cole-Kripke 3 94.8 (4.0) 0.0 (-1.0, 1.0)

Tudor-Locke 1 96.2 (2.7) 1.4 (0.5, 2.3)

Tudor-Locke 2 94.3 (3.1) -0.6 (-1.4, 0.3)

Tudor-Locke 3 94.6 (4.1) -0.2 (-1.2, 0.7)

Tudor-Locke 4 93.2 (4.1) -1.6 (-2.5, -0.6)

HDCZA 88.2 (5.1) -6.6 (-7.7, -5.6)

PSG n = 115 94.8 (4.3) Reference

Axivity Back (n = 115) Count-scaled 94.3 (2.9) -0.5 (-1.3, 0.4)

Sadeh 1 97.3 (3.2) 2.6 (1.7, 3.4)

Sadeh 2 95.6 (4.2) 0.9 (-0.1, 1.8)

Cole-Kripke 1 94.3 (5.5) -0.5 (-1.7, 0.6)

Cole-Kripke 2 98.2 (2.2) 3.5 (2.6, 4.3)

Cole-Kripke 3 94.4 (4.6) -0.4 (-1.4, 0.6)

Tudor-Locke 1 95.8 (3.7) 1.1 (0.1, 2.0)

Tudor-Locke 2 95.1 (2.7) 0.3 (-0.5, 1.2)

Tudor-Locke 3 96.6 (3.1) 1.9 (1.0, 2.7)

Tudor-Locke 4 95.5 (2.9) 0.7 (-0.2, 1.5)

HDCZA 90.3 (4.3) -4.5 (-5.5, -3.5)

PSG n = 125 94.8 (4.2) Reference

Axivity Wrist (n = 125) Count-scaled 90.5 (5.5) -4.3 (-5.4, -3.2)

Sadeh 1 87.8 (8.0) -7.0 (-8.5, -5.5)

Sadeh 2 89.5 (4.3) -5.3 (-6.2, -4.4)

Cole-Kripke 1 76.1 (8.3) -18.8 (-20.3, -17.2)

Cole-Kripke 2 91.8 (7.3) -3.1 (-4.5, -1.6)

Cole-Kripke 3 92.5 (3.6) -2.4 (-3.2, -1.5)

Tudor-Locke 1 92.9 (3.6) -1.9 (-2.7, -1.0)

Tudor-Locke 2 91.8 (4.0) -3.0 (-3.9, -2.1)

Tudor-Locke 3 90.3 (3.9) -4.5 (-5.3, -3.7)

Tudor-Locke 4 89.3 (4.5) -5.6 (-6.5, -4.6)

HDCZA 88.1 (5.2) -6.7 (-7.7, -5.7)
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Table 5  (continued)

Sleep variable Device Placement Algorithm Mean (SD) Mean difference 
(95% CI) from 
PSGa

Sleep efficiencyTIB (%) PSG n = 116 88.8 (9.6)

Axivity Thigh (n = 116) Count-scaled 88.2 (9.6) -0.5 (-3.4, 2.3)

Sadeh 1 90.1 (8.7) 1.4 (-1.3, 4.0)

Sadeh 2 94.0 (4.1) 5.3 (2.9, 7.6)

Cole-Kripke 1 83.6 (9.3) -5.2 (-8.0, -2.4)

Cole-Kripke 2 95.1 (5.2) 6.4 (3.9, 8.9)

Cole-Kripke 3 94.8 (4.0) 6.1 (3.7, 8.4)

Tudor-Locke 1 96.2 (2.7) 7.4 (5.1, 9.8)

Tudor-Locke 2 94.3 (3.1) 5.5 (3.1, 7.9)

Tudor-Locke 3 94.6 (4.1) 5.8 (3.5, 8.2)

Tudor-Locke 4 93.2 (4.1) 4.5 (2.1, 6.8)

HDCZA NA NA

PSG n = 115 88.8 (12.7)

Axivity Back (n = 115) Count-scaled 92.7 (9.1) 3.9 (1.3, 6.5)

Sadeh 1 95.0 (6.5) 6.2 (3.5, 8.8)

Sadeh 2 95.6 (4.2) 6.9 (4.5, 9.2)

Cole-Kripke 1 92.0 (6.5) 3.2 (0.6, 5.8)

Cole-Kripke 2 97.5 (4.2) 8.7 (6.3, 11.1)

Cole-Kripke 3 94.3 (4.6) 5.6 (3.1, 8.1)

Tudor-Locke 1 95.8 (3.7) 7.1 (4.7, 9.4)

Tudor-Locke 2 95.1 (2.7) 6.3 (3.9, 8.8)

Tudor-Locke 3 96.6 (3.1) 7.9 (5.5, 10.2)

Tudor-Locke 4 95.5 (2.9) 6.7 (4.3, 9.1)

HDCZA NA NA

PSG n = 125 88.8 (12.4)

Axivity Wrist (n = 125) Count-scaled 85.0 (10.2) -3.9 (-6.5, -1.2)

Sadeh 1 81.7 (10.5) -7.1 (-9.9, -4.3)

Sadeh 2 89.5 (4.3) 0.7 (-1.6, 2.9)

Cole-Kripke 1 70.1 (10.4) -18.7 (-21.5, -15.9)

Cole-Kripke 2 87.5 (9.1) -1.3 (-3.9, 1.3)

Cole-Kripke 3 92.5 (3.6) 3.6 (1.4, 5.9)

Tudor-Locke 1 92.9 (3.6) 4.1 (1.9, 6.3)

Tudor-Locke 2 91.8 (4.0) 3.0 (0.8, 5.2)

Tudor-Locke 3 90.3 (3.9) 1.5 (-0.7, 3.7)

Tudor-Locke 4 89.3 (4.5) 0.4 (-1.8, 2.7)

HDCZA NA NA
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Table 5  (continued)

Sleep variable Device Placement Algorithm Mean (SD) Mean difference 
(95% CI) from 
PSGa

Night wakings (frequency) PSG n = 116 26.0 (8.3) Reference

Axivity Thigh (n = 116) Count-scaled 0.6 (0.9) -25.4 (-26.9, -23.9)

Sadeh 1 0.3 (0.6) -25.7 (-27.2, -24.2)

Sadeh 2 14.0 (7.9) -12.0 (-13.9, -10.1)

Cole-Kripke 1 20.0 (8.1) -6.0 (-7.8, -4.2)

Cole-Kripke 2 0.2 (0.5) -25.9 (-27.4, -24.4)

Cole-Kripke 3 11.1 (7.6) -15.0 (-16.9, -13.0)

Tudor-Locke 1 9.3 (6.4) -16.7 (-18.5, -14.9)

Tudor-Locke 2 10.9 (6.1) -15.1 (-16.8, -13.4)

Tudor-Locke 3 13.3 (7.8) -12.7 (-14.6, -10.8)

Tudor-Locke 4 14.3 (7.4) -11.7 (-13.4, -10.0)

HDCZA 19.1 (4.9) -6.9 (-8.4, -5.5)

PSG n = 115 26.1 (8.4) Reference

Axivity Back (n = 115) Count-scaled 0.2 (0.5) -25.9 (-27.4, -24.3)

Sadeh 1 0.1 (0.3) -26.0 (-27.6, 24.5)

Sadeh 2 8.4 (5.6) -17.7 (-19.3, -16.1)

Cole-Kripke 1 10.6 (6.5) -15.5 (-17.1, -14.0)

Cole-Kripke 2 0.1 (0.3) -26.1 (-27.6, -24.5)

Cole-Kripke 3 10.6 (6.5) -15.5 (-17.6, -13.4)

Tudor-Locke 1 8.8 (5.7) -17.3 (-19.3, -15.3)

Tudor-Locke 2 8.8 (4.2) -17.3 (-19.0, -15.6)

Tudor-Locke 3 7.4 (5.2) -18.7 (-20.4, -17.1)

Tudor-Locke 4 8.4 (5.0) -17.7 (-19.3, -16.2)

HDCZA 17.5 (4.8) -8.7 (-10.2, -7.2)

PSG n = 125 26.0 (8.1) Reference

Axivity Wrist (n = 125) Count-scaled 0.6 (0.8) -25.4 (-26.8, -24.0)

Sadeh 1 0.9 (0.9) -25.1 (-26.5, -23.7)

Sadeh 2 20.4 (6.9) -5.6 (-7.1, -4.1)

Cole-Kripke 1 24.8 (7.2) -1.2 (-2.8, 0.5)

Cole-Kripke 2 0.3 (0.6) -25.7 (-27.1, -24.3)

Cole-Kripke 3 17.7 (7.1) -8.3 (-9.8, -6.8)

Tudor-Locke 1 17.0 (7.2) -9.0 (-10.5, -7.5)

Tudor-Locke 2 18.1 (7.4) -7.9 (-9.4, -6.4)

Tudor-Locke 3 18.7 (6.5) -7.3 (-8.8, -5.7)

Tudor-Locke 4 20.8 (6.9) -5.3 (-6.7, -3.8)

HDCZA 19.8 (5.5) -6.2 (-7.6, -4.9)

a Bolded differences refer to those whether actigraphy was not significantly different (P > 0.05) to PSG, and thus provide a good estimate for that sleep measure
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(sleep onset and offset), sleep quantity (sleep period time 
and total sleep time), and sleep quality (sleep efficiency, 
WASO, and number of night wakings).

Sleep timing
For sleep onset, almost all algorithms detected a sleep 
onset significantly earlier than the PSG gold standard, 
with differences ranging from just 2  min to as much as 
149 min for the Actigraph and 1 min to 144 min for the 
Axivity. Overall, differences in sleep onset were generally 
smaller for either device when placed at the wrist, with 
several algorithms providing valid estimates of sleep onset 
with differences of just 1–15 min compared to PSG (Acti-
graph hip HDCZA, Actigraph wrist CS, Sadeh 1, Sadeh 2, 
Tudor-Locke 3, Axivity wrist CS, Sadeh 1, Cole-Krikpe 1, 
Tudor-Locke 3). In terms of sleep offset, differences were 
smaller for Actigraphs placed at the wrist than those at the 
hip, with all algorithms except for Tudor-Locke 2 showing 
small differences compared with PSG. In general, differ-
ences for the Axivity placed at the wrist were smaller than 
those placed at the thigh or back. However, overall, it can 
be seen that the Axivity placed on the thigh and to a lesser 
extent on the back, perform better than Actigraph at the 
hip, with 8 and 4 of 11 algorithms respectively reporting 
only small, non-significant differences compared to PSG, 
whereas just one algorithm (HDCZA) produced small dif-
ferences with the Actigraph placed at the hip.

Sleep quantity
Tables 4 and 5 demonstrate that many of the algorithms 
show large differences compared with PSG, in some 
cases overestimating sleep by more than two hours 
whether measured as sleep period time or total sleep 
time. However, there was a clear pattern of wrist place-
ment providing substantially more accurate estimates 
of sleep quantity, for both devices. For example, differ-
ences (95% CI) for the Actigraph at the wrist ranged from 
1 (-12, 15) to 54 (27, 81) minutes for sleep period time, 
whereas the corresponding values for hip placement were 
up to 243 (203, 283) minutes different. A similar pattern 
is shown for the Axivity (Table  5). While several algo-
rithms performed well only a few (Sadeh 1, Cole-Kripke 
1, HDCZA), consistently performed well for both devices 
and placement sites and only the count-scaled algorithm 
showed a difference with PSG of less than 30  min for 
all eight measures examined (total sleep time and sleep 
period time at both wrist and hip for both devices).

Sleep quality
In terms of WASO, examination of Tables 4 and 5 dem-
onstrate that actigraphy produces lower values for 

WASO compared with PSG for almost all sites, devices 
and algorithms tested. However, in general, estimates 
more closely matched PSG values when the device was 
placed at the wrist, particularly for the Actigraph, with 
7 of the 11 algorithms showing small differences (differ-
ences ranging from just 5 to 22 min for these algorithms). 
On the other hand, better estimates of sleep efficiency 
were obtained from devices placed on the hip (Acti-
graph), thigh or back (Axivity). Regardless of device or 
placement, the algorithms tested resulted in small dif-
ferences in sleep efficiency compared to PSG. Overall, 
sleep efficiency defined using TIB was lower than sleep 
efficiency defined using SPT and resulted in larger differ-
ences compared to PSG. Lastly, estimates of the number 
of night wakings differed considerably from PSG meas-
ures for most of the algorithms examined. Only 1 of the 
20 Actigraph (Cole-Kripke 1 at the wrist) and 2 of the 
30 Axivity (Sadeh 1 at the back and Cole-Kripke 1 at the 
wrist) algorithms tested did not produce large differences 
in waking frequency (Tables 4 and 5).

Bland–Altman
Figure 1 shows the Bland–Altman plots for agreement in 
SPT (a metric for sleep duration) and WASO (a metric 
for sleep quality) for the ‘overall best performing algo-
rithm’ (HDCZA with the Axivity at the wrist), and the 
CS algorithm (which was the ‘best performing’ for the 
Axivity at the wrist for SPT). These plots illustrate that 
the CS algorithm performs better than the HDCZA for 
accurate assessment of SPT, with narrower 95% limits 
of agreement (LOA) (-165 to 172 min compared to -212 
to 250 min for HDCZA). Both algorithms demonstrated 
similar performance for assessing WASO, with slightly 
lower 95% LOA for HDCZA (CS: -279 to 260  min; and 
HDCZA: -251 to 245 min) but both showed considerable 
inaccuracy in determining WASO at higher levels.

Discussion
Our study demonstrates that current count-based sleep 
algorithms show higher total accuracy and specificity 
when devices were placed at the wrist compared with 
other sites of wear, regardless of actigraphy brand or 
algorithm tested. Overall, the HDCZA algorithm demon-
strated high levels of sensitivity, specificity and thus accu-
racy regardless of device brand or placement. In terms of 
the range of sleep outcomes studied, results were more 
variable and differed across outcomes of interest, algo-
rithm and site of wear. Thus, researchers may choose a 
certain algorithm over another depending on their pri-
mary sleep outcome of interest; for example, studies of 
sleep timing may prefer the CS algorithm placed at the 
wrist, whereas studies more focussed on sleep quality 
may prefer the HDCZA algorithm. Poorer detection of 
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wakefulness (poor specificity) by many of the algorithms 
and sites of wear continues to plague actigraphy esti-
mates of both sleep and wake in paediatric studies [21] 
but specificity values are not always reported [22] despite 
the potential to influence data interpretation. This is also 
an issue in the adult field [23].

Several studies have assessed the agreement between 
research grade devices and PSG in healthy children, but 
many have been in small samples and utilised single sites 
of wear, devices or algorithms to detect sleep and wake 
states and derive sleep estimates [10, 20, 22]. Most of 
the sleep detection algorithms used in the present study 
have been previously developed and validated against 
PSG in healthy adults [5, 9, 13], and only a few have been 
validated against PSG in children [7, 10] albeit in small 
samples (n < 40). The findings from this much larger and 
more comprehensive study are broadly consistent with 
the original validation studies and a review of previous 
validation studies in children, which show that accuracy 
(0.84–0.92) and sensitivity (0.82–0.96) are generally good, 
whereas specificity (0.20–0.65) is considerably lower [24].

However it is clear from both previous research and the 
current study that the specificity (54–77%) [24] or abil-
ity to detect periods of wakefulness in the sleep period 
window, of most algorithms was better when the device 
was worn at the wrist, with estimates ranging from 67 
to 90%. These figures are considerably higher than those 
observed in adult studies, which have reported specifi-
cities of 34–46% for the HDCZA, Sadeh and Cole algo-
rithms when validated in adult samples [9, 11, 25]. These 
discrepancies may arise because of differences in sleep 
characteristics between children and adults. In our study, 
most children had long periods of sleep without wake-
fulness during the night. Although immobility generally 
infers sleep in accelerometery-based assessment, immo-
bility is possible during periods of wakefulness and as 
such can be mistakenly identified as sleep by actigraphy; 
it is likely this occurs more in adults because they have 
more periods of conscious nocturnal awakenings than 
children [11, 26]. Our Bland–Altman plots also revealed 
some bias between actigraphy-measured sleep period 
time and PSG, where larger differences were apparent 

Fig. 1  Bland–Altman plots for sleep period time (SPT) and wake after sleep onset (WASO) for the HDCZA and CS algorithms using the Axivity 
at the wrist compared to PSG. Red dashed lines indicate 95% limits of agreement
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as sleep period time decreased. More wakefulness and 
the shorter sleep times of adults likely contributes to the 
greater misclassification of WASO and thus poorer speci-
ficity overall compared with children.

The wrist placement was also superior to the thigh, 
lower back and hip for estimates of sleep onset, off-
set, quantity (TST and SPT) and WASO for most 
algorithms. Prior research has also indicated that hip-
worn accelerometers tend to overestimate total sleep 
time and sleep efficiency while underestimating wake 
after sleep onset (WASO), resulting in lower speci-
ficity compared to wrist-worn devices [25, 27]. This 
reduced specificity for hip-worn devices can be attrib-
uted to the algorithms predominantly designed for 
wrist-specific acceleration features, which are more 
attuned to nocturnal movements indicative of wake-
fulness. Devices positioned closer to the body’s center 
of mass, such as the waist or lower back, are likely to 
register less movement during the night, potentially 
leading to overlooked periods of wakefulness. Differ-
ing feature selection (y-axis acceleration, inclinometer 
data, rolling-window size, changes in z-angle, etc.) 
may also explain why different algorithms outper-
formed others when devices were worn at the same 
site. Although we previously reported better esti-
mates of sleep onset using the count-scaled algorithm 
when devices were worn at the hip [10], this was a 
much smaller study in younger children, and the very 
small differences observed (-3  min versus 2  min) may 
reflect device specific differences or alternatively age-
related differences in sleep settling habits. Only sleep 
efficiency (both definitions) was consistently superior 
when devices were worn at the hip. Because most algo-
rithms overestimated sleep offset when worn at the hip 
(i.e. result in later waking), and underestimated WASO, 
sleep efficiency was thus higher. When determining the 
most optimal placement, device and algorithm to use, 
systematic variation should be an important aspect 
to consider. Systematic variation is more tractable 
than random variation because the direction of bias is 
known. In this study, the HDCZA, Sadeh 1, CS, and 
Cole-Kripke 1 algorithms performed well for estimates 
of sleep onset, offset, total sleep time and sleep period 
time, and importantly these estimates did not randomly 
vary when different devices or placements were used. 
Knowing that an algorithm, regardless of site placement 
or device type, always identifies sleep onset before PSG 
means that actigraphy identifies earlier sleep onset and 
thus overestimates total sleep time, and in turn, sleep 
efficiency.

Many current algorithms are disadvantaged by requir-
ing sleep onset and offset times from diaries, which 
pose both respondent and analysis burden. Therefore, 

we specifically compared sleep estimates from three dif-
ferent algorithms (Sadeh 1, Cole-Kripke 2, Tudor-Locke 
1) with PSG using diary recorded sleep onset and offset 
timings to guide the algorithm. Overall, the use of a sleep 
diary did not improve the level of agreement of sleep esti-
mates between accelerometers and PSG. Although the 
children were asked about their sleep onset and waking 
times not long after awakening, it appears that estimating 
these timings by self-report is challenging, particularly 
estimating timing of sleep onset, and especially when 
more than one day of data are collected. These findings 
lend further support for using automated algorithms for 
detecting sleep and wake states, especially in large sam-
ple sizes.

Limitations of our study include that the accuracy 
in clinical populations or in children with any signifi-
cant sleep disturbance is unknown, and it is not known 
whether these results would be similar in other age 
groups or those with irregular sleep patterns. Although 
we did not include a direct measure of sleep latency (an 
important sleep metric), “in-bed” time remained the 
same across site placement, device and algorithm, which 
suggests later sleep onsets would result in longer sleep 
latency.

The strengths of this study include the simultaneous 
comparison of two research-grade accelerometers worn 
at several sites (wrist, hip, thigh, lower back) with PSG, 
the rigorous reporting of actigraphy data according to 
recommendations for children [22], and the larger num-
ber of children included in this validation study than 
most previous studies [22]. Importantly, sleep data were 
generated using 11 different automated sleep detec-
tion algorithms commonly reported in the literature, 
but not previously compared to PSG in a large sample 
of children and adolescents. While the comparison of 
accelerometers to the “gold-standard” PSG is a strength, 
it must be acknowledged that these two techniques 
do measure very different signals and actigraphy sleep 
scoring rules, particularly for WASO, are not entirely 
comparable to PSG. This likely explains the discrep-
ancies, alongside the fact that actigraphy can wrongly 
infer sleep when children are lying awake and relatively 
motionless. This is particularly relevant as children set-
tle to sleep but are still awake, and likely explains the 
earlier sleep onset detected by actigraphy. PSG detects 
sleep using changes in brain wave signals which can 
occur within a 30  s epoch. This rapid change may also 
explain the high frequencies of wakings detected by 
PSG, but not by actigraphy.

The differences between PSG and actigraphy method-
ology may also explain the large discrepancies between 
algorithms for estimates such as WASO and number of 
awakenings. Many of the algorithms define WASO as any 
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transition between sleep and wake after sleep onset and 
before sleep offset, similar to PSG scoring. However, the 
CS algorithm aims to minimise artefactual movements 
detected during sleep by actigraphy and defines WASO 
as movements that occur over 5 continuous minutes of 
awake. This method of defining WASO means disagree-
ments between PSG and actigraphy are considerably 
greater, but it is not clear if estimates of sleep used to 
demonstrate relationships with various aspects of health 
are affected by differences in how WASO is defined. To 
our knowledge, this has not been examined in the litera-
ture. Researchers may need to consider whether using a 
different gold standard measure of sleep, such as vide-
osomnography, that measures similar constructs of sleep 
as actigraphy in future validation studies. Accurately dis-
criminating between “awake” time and movement during 
sleep is important if the true relationships between sleep 
and health are of interest. Future studies where relation-
ships between sleep estimates derived using different 
sleep algorithms and health should also be evaluated. 
Likewise, understanding what brand of accelerometer 
and site placement is best for accurate assessment of 
sleep may not necessarily align with the best choice for 
assessing other movement behaviours in the day (such as 
physical activity and sedentary behaviour). Researchers 
investigating 24 h movement behaviours will have to con-
sider these results in the context of their objectives.

Conclusion
In conclusion, our study suggests that automated sleep 
detection algorithms applied to Actigraph and Axivity 
accelerometers, worn either at the lower back, hip or 
thigh, provide moderately comparable measures with 
PSG, but estimates of sleep outcomes including sleep 
quantity, sleep onset, sleep offset and WASO improve 
markedly when accelerometers are worn at the wrist. 
Accelerometry should be used cautiously in studies 
where estimates of sleep quality such as sleep efficiency 
and number of awakenings during sleep period are 
important or in samples of participants who experience 
frequent periods of wake after sleep onset.
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