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Abstract

Background Actigraphy is often used to measure sleep in pediatric populations, despite little confirmatory evidence
of the accuracy of existing sleep/wake algorithms. The aim of this study was to determine the performance of 11
sleep algorithms in relation to overnight polysomnography in children and adolescents.

Methods One hundred thirty-seven participants aged 8-16 years wore two Actigraph wGT3X-BT (wrist, waist)

and three Axivity AX3 (wrist, back, thigh) accelerometers over 24-h. Gold standard measures of sleep were obtained
using polysomnography (PSG; Embletta MPRPG, ST+ Proxy and TX Proxy) in the home environment, overnight. Epoch
by epoch comparisons of the Sadeh (two algorithms), Cole-Kripke (three algorithms), Tudor-Locke (four algorithms),
Count-Scaled (CS), and HDCZA algorithms were undertaken. Mean differences from PSG values were calculated

for various sleep outcomes.

Results Overall, sensitivities were high (mean +SD: 91.8%, +5.6%) and specificities moderate (63.8% + 13.8%),

with the HDCZA algorithm performing the best overall in terms of specificity (87.5% + 1.3%) and accuracy

(86.4% +0.9%). Sleep outcome measures were more accurately measured by devices worn at the wrist than the hip,
thigh or lower back, with the exception of sleep efficiency where the reverse was true. The CS algorithm provided
consistently accurate measures of sleep onset: the mean (95%Cl) difference at the wrist with Axivity was 2 min (-6;
-14,) and the offset was 10 min (5,-19). Several algorithms provided accurate measures of sleep quantity at the wrist,
showing differences with PSG of just 1-18 min a night for sleep period time and 5-22 min for total sleep time.
Accuracy was generally higher for sleep efficiency than for frequency of night wakings or wake after sleep onset. The
CS algorithm was more accurate at assessing sleep period time, with narrower 95% limits of agreement compared
to the HDCZA (CS:-165 to 172 min; HDCZA: -212 to 250 min).

Conclusion Although the performance of existing count-based sleep algorithms varies markedly, wrist-worn devices
provide more accurate measures of most sleep measures compared to other sites. Overall, the HDZCA algorithm
showed the greatest accuracy, although the most appropriate algorithm depends on the sleep measure of focus.
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Background

A large body of evidence has emerged implicating char-
acteristics of children’s sleep such as short quantity,
timing, poor quality, and high variability with a wide
range of adverse health outcomes [1]. However, the
majority of studies rely on retrospective self- or parent-
reports of sleep, which may be unreliable and sensitive
to recall bias [2, 3]. Although polysomnography (PSG)
is considered the gold-standard measure of sleep, it is
obtrusive and impractical for large-scale studies. Thus,
actigraphy is increasingly being used as a practical and
suitable method to objectively measure sleep, particu-
larly over longer time frames than is possible with PSG.
To estimate sleep outcomes, actigraphy data are ana-
lysed using algorithms to classify sleep and wake based
on the assumption that the presence of movement indi-
cates wakefulness and the absence of movement indi-
cates sleep. Typically, algorithms vary by the population
studied, device worn and the placement site they were
developed for (i.e. wrist, ankle, waist), but most work
in a similar fashion: to define each minute of recorded
activity as either sleep or wake.

However, there are several issues with these exist-
ing algorithms. First, although various algorithms have
been developed [4-9], few [7, 10] have been validated
against the gold standard PSG in paediatric popula-
tions, with the remainder using sleep diaries or visual
inspection. Second, choice of algorithm influences
sleep—wake time estimates suggesting that sleep vari-
ables derived from different algorithms might not be
comparable [11]. Third, although currently available
sleep algorithms provide reasonable estimates of sleep,
most require participants to record their sleep onset
and waking times, which are used to guide the algo-
rithm to detect nocturnal sustained bouts of inactivity.
However, sleep diaries are often inaccurate, add to par-
ticipant burden, and are time consuming for research-
ers in large scale studies [12]. To overcome these
limitations, fully automated algorithms that do not
require diaries have been developed for use in children
which automatically score sleep [5-9] but evidence of
their accuracy against PSQG is limited [10, 13].

With the growing availability of accelerometry data
from large studies, often without sleep diaries, it is
necessary to establish whether sleep outcomes are
comparable between brands and across various wear
sites. It is also important to evaluate sleep outcome
estimates between the most widely used sleep—wake
algorithms, with and without the use of sleep diaries
to guide the algorithm. Therefore, the aim of this study
is to compare the accuracy of the most widely used
sleep algorithms against overnight PSG in children and
adolescents.
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Methods

Participants

Children and adolescents were recruited via social media
(i.e. Facebook), schools, and word of mouth. Children
aged 8 to 16 years at the time of recruitment with no his-
tory of sleep disturbance (see below) were eligible for the
study. Ethical approval was obtained from the University
of Otago Human Ethics Committee (ref H18/073).

Data collection overview

During a visit to each participant’s home height and
weight were measured and five accelerometers were
attached to the child (two on the wrist, one around their
waist, one on their lower back, and one on their upper
thigh). These devices were worn for one 24-h period. Par-
ticipants were also fitted with a portable polysomnogra-
phy (PSG) machine one hour before bedtime to measure
sleep during the overnight period in the home environ-
ment. Children were asked to complete a basic activity
log the next day. The same computer was used to pro-
gram the accelerometers and the PSG recording device
and times were synchronized.

Sleep Disturbances Scale for Children (SDSC)

Parents completed the SDSC consisting of 27 items
assessing sleep behaviour and disturbances in children in
the previous six months [14]. A total sleep problem score
is derived from six sleep disturbance factors. A score
greater than 39 is indicative of a clinical disturbance and
those identified as having a sleep disorder, or those with
any chronic medical condition or physical disability that
impeded their ability to participate in physical activity,
were excluded.

Demographic and anthropometric data

Information was collected on participant’s age, sex, date
of birth, and ethnicity using New Zealand census ques-
tions [15]. Their address was used to determine area
based socio-economic status using the New Zealand
Deprivation Index (NZDep Index, 2018) [16]. Dupli-
cate measures of height (Model 213, Seca, Germany)
and weight (Tanita HD-351) were obtained by trained
research assistants. An additional measure was under-
taken if duplicate measures of height differed by more
than 0.5 cm and if weight differed by more than 0.5 kg.
Body mass index (BMI) was calculated as weight (kg) /
height (m)? with overweight and obesity defined as
a BMI z-score>85" but<95™ and>95" percentiles,
respectively, using the WHO growth reference [17].

Home-based polysomnography
A home-based, PSG sleep study was conducted where
overnight PSG data were recorded using a digital portable
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monitor (Embletta MPRPG, ST +Proxy and TX Proxy,
Natus, California, USA) within participant’s homes at a
sampling rate of 500 Hz following American Academy
of Sleep Medicine guidelines [18]. The researcher began
the PSG set up approximately one hour before bedtime.
The PSG included right and left electro-oculograms
(EOQ), four electroencephalograms (EEG) (C4/M1, C3/
M2, 02/M1, O1/M2), chin electromyogram, nasal air-
flow, snoring, thoracic and abdominal respiratory effort
(Xact Trace Respiratory Effort Sensor) and ECG. Oxy-
gen saturation was measured with pulse oximetry. Data
were downloaded and analysed using RemLogic software
(Version 3.4, Embla Systems, Broomfield, CO, USA). Low
frequency filters were set at 0.3 Hz and high frequency
at 35 Hz for EEG signals. Sleep stages were scored visu-
ally by one trained sleep technician in 30 s epochs using
the American Academy of Sleep Medicine (AASM) sleep
staging criteria [18] for children. To allow for compari-
son to actigraphy, the PSG epoch lengths were collapsed
into one-minute epochs. In doing so, if either 30-s epoch
within the minute was scored as wake, then we consid-
ered that whole minute as wake. For PSG, sleep onset
was the first epoch of sleep after lights out. Total sleep
time (TST) was defined as the number of minutes from
sleep onset to sleep offset minus the number of minutes
awake. Wake after sleep onset (WASO) represented the
duration of time spent awake after initially falling asleep,
while sleep efficiency (SE) was defined as follows: 1) Sleep
efficiencypz, a commonly referenced metric, calculated
as the ratio of total sleep time (TST) to time spent in bed
(TIB); and 2) Sleep efficiencygpr, determined by express-
ing total sleep time (from sleep onset to offset, minus
any WASO) as a percentage of sleep period time (from
sleep onset to offset, inclusive of any WASO). We chose
to use the Sleep Period Time (SPT) in our definition of
Sleep efficiencygpr alongside the more traditional defi-
nition which uses TIB because one of our aims was to
compare the accuracy of algorithms that required sleep
diaries versus those that did not. Furthermore, the defini-
tion of SE that uses TIB, by definition, includes non-sleep
related activity (eg reading, texting, mobile phone use)
both prior to initiating sleep and after the final awaken-
ing, which do not reflect the construct of SE where TST is
compared to the amount of time spent attempting to ini-
tially fall asleep and sleep discontinuity. Number of awak-
enings was the number of overnight awakenings between
sleep onset to offset. The PSG and actigraphy data were
analysed independently by different researchers.

Actigraphy

Two types of accelerometers were worn: the Axiv-
ity AX3 (Axivity Ltd, Newcastle, UK), and the Acti-
graph wGT3X-BT (ActiGraph, Pensacola, FL, USA).
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Both accelerometers are triaxial and were configured
to record at a frequency of 100 Hz and initialised using
the same personal computer as the PSG. The compact
size (32.5%23%x8.9 mm), lightweight design (11 g), and
waterproof feature of the Axivity AX3s contribute to
higher compliance among children, while the inclu-
sion of a temperature sensor assists in non-wear detec-
tion. The Actigraph wGT3X-BT is currently the most
widely used research-grade device and is larger (46 X33 x
15 mm, 19 g) than the Axivity AX3 and lacks a tempera-
ture sensor. The three Axivity accelerometers were fitted
to the right side of the lower back (waist-level), middle
of the right thigh, and non-dominant wrist using cus-
tom designed hypoallergenic tape. Two Actigraph accel-
erometers were fitted to participants at two main sites:
the non-dominant wrist using an elastic wrist strap and
over the right hip using custom designed hypoallergenic
tape. Axivity devices were set up and data downloaded
with OmGui software version 1.0.0.30 (Open Movement,
Newcastle, UK). ActiGraph wGT3X-BT devices were ini-
tialised and downloaded using ActiLife version 6.13.3,
saved in raw format as.gt3x, then converted for data pro-
cessing. Raw acceleration data from the Actigraph and
Axivity were processed and calibrated using the open-
access Pampro package v0.5 [19] and converted into
hdf5 file formats for processing. All algorithms except
the HDCZA were written in the Python programming
language (Python Software Foundation, https://www.
python.org/) and outputs were computed using this same
software system, rather than proprietary device software.
Data analysed using the HDCZA algorithm were pro-
cessed and analysed with R-package GGIR version 1.2-0
(http://cran.r-project.org) [20].

Algorithms

The selection of algorithms featured in this manuscript
was informed by a comprehensive review of pertinent
literature pertaining to prevalent methodologies uti-
lized for estimating sleep patterns in pediatric popula-
tions employing count-based actigraphy. Additionally,
consideration was given to algorithms integrated within
the proprietary software accompanying the Actigraph
GT3X+devices. Details of how each algorithm scores
sleep and wake and calculates each sleep outcome are
given in Table 1. Briefly, we included three versions of
the Cole-Kripke algorithm [5], two versions of the Sadeh
algorithm [13], four versions of the Tudor-Locke algo-
rithm [4, 8], the count-scaled (CS) algorithm [6], and
the HDCZA algorithm [9]. In general, the versions of
each algorithm differed mostly by whether they required
the use of diaries to estimate sleep onset and offset and
whether they included variations to account for changes
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in sensitivity between older and newer accelerometer
models.

Statistical analyses

Epoch-by epoch comparison

One-minute epochs from the Axivity thigh, wrist, and
lower back and Actigraph waist and wrist were aligned
with corresponding PSG epochs. Agreement between
the Axivity and Actigraph at each site placement (wrist,
thigh, lower back, waist) and PSG (as the gold standard)
were examined by calculating overall agreement (%),
sensitivity (% sleep agreement), and specificity (% wake
agreement).

Sleep outcomes were organised into three catego-
ries: sleep timing (sleep onset and offset), sleep quantity
(sleep period time and total sleep time), and sleep quality
(WASO, sleep efficiency, and number of night wakings).
These were described with means and standard devia-
tions and compared to PSG by calculating the mean dif-
ference and 95% confidence interval. Only participants
with data for all outcomes were included for each device
and placement.

Bland Altman plots were used to explore agreement
against PSG for the “overall best performing” algorithm,
regardless of placement site or device (by % accuracy) and
for the “best performing algorithm” (by mean difference
from PSG) for the site placement and device deemed to
be the best performing for SPT (a measure dependent
on sleep onset and sleep offset and not dependent on
WASO) and WASO. Mean differences and 95% limits of

Table 2 Characteristics of the study population
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agreement were calculated. Stata 17.0 (StataCorp, Texas)
was used for all analyses.

Results

Study participants

In total, 384 children completed the screening question-
naire. Of these, 202 were ineligible, due to age (n=4),
lived outside the Dunedin area (n=12) or had a sleep
disturbance score greater than 39 (n=186). A total of
182 participants were eligible to participate and of these
151 expressed further interest in the study. PSG was con-
ducted in 138 participants with early termination of PSG
for one participant due to technical failure, leaving 137
participants included in the final analyses (Supplementary
Table 1 for details on missing data). The characteristics of
the participants are shown in Table 2. The majority of par-
ticipants were of New Zealand European ethnicity, slightly
more boys participated than girls, and 37% of the sample
were overweight or obese.

Epoch by epoch analyses

Placement and device

Actigraph vs Axivity at the wrist vs waist, lower back, thigh
Table 3 demonstrates that in general, overall accuracy
tended to be higher for both devices placed at the wrist
(mostly greater than 80%) than when placed close to the
centre of mass (waist, thigh, and lower back, where accu-
racy was generally less than 80%). However, different
patterns were observed for sensitivity and specificity. Sen-
sitivity, or the ability to detect episodes of sleep was gen-
erally higher when placed closer to the centre of mass for

Males Females Total
n 70 67 137
Age (years) 11.6(2.1) 10.8 (2.3) 11.2(2.3)
Ethnicity, n (%) New Zealand European & 59 (84%) 49 (73%) 108 (79%)
Others
Maori 9 (13%) 13 (19%) 22 (16%)
Pacific 2 (3%) 5 (8%) 7 (5%)
Household deprivation?, n (%) Low 35 (50%) 29 (43%) 64 (47%)
Medium 23 (33%) 23 (34%) 46 (34%)
High 12 (17%) 15 (22%) 27 (20%)
Height (cm) 153.0 (14.2) 148.0 (14.2) 150.5 (14.4)
Weight (kg) 464 (13.7) 45.8(18.0) 46.1(15.8)
Body mass index (BMI, kg/m?) 194 (3.2) 202 (4.9) 19.8 (4.1)
Weight status®, n (%) Normal weight 48 (69%) 39 (58%) 87 (64%)
Overweight 22 (31%) 28 (42%) 50 (37%)

Data presented as mean (SD) except where noted

@ Uses the New Zealand Index of Deprivation 2013, which reflects the extent of material and social deprivation and is used to construct deciles from 1 (least deprived)

to 10 (most deprived) [16]
b Categories based on the WHO BMI z-score cut-offs [17]
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Table 3 Sensitivity, specificity, and accuracy of epoch-by-epoch comparisons with PSG for sleep

Device Placement Algorithm Mean accuracy % (95% Cl) Mean sensitivity % Mean
(95% CI) specificity %
(95% ClI)

Actigraph GT3x Hip Count-scaled 77.6(75.7,79.5) 95.3(94.0, 96.6) 56.8 (53.8,59.7)
Sadeh 1 78.6 (76.6,80.6) 97.7 (96.4,99.0) 55.9(52.7,59.1)
Sadeh 2 79.0 (76.9,81.0) 97.6 (96.3,99.0) 56.5(53.3,59.7)
Cole-Kripke 1 82.0(79.9,84.1) 94.3(92.6,96.0) 67.8 (644,71.1)
Cole-Kripke 2 1(713,75.0) 98.8(97.7,99.8) 424 (39.7,45.1)
Cole-Kripke 3 73.5(716,754) 98.7 (97.6,99.8) 432 (404,46.0)
Tudor-Locke 1 73.7(71.8,75.6) 98.8 (97.6,99.9) 43.1(40.3,45.8)
Tudor-Locke 2 729(71.0,74.8) 98.8(97.7,99.9) 420(39.2,44.7)
Tudor-Locke 3 784 (76.4,80.4) 98.0(96.7,99.3) 54.8(51.5,58.0)
Tudor-Locke 4 786 (76.7,80.6) 98.0(96.7,99.3) 54.9(51.7,58.1)
HDCZA 854 (83.3,87.6) 85.8(82.9, 88.6) 85.9(83.7,88.0)
Wrist Count-scaled 82.3(80.3,84.2) 93.2(91.5,94.8) 69.7 (66.6,72.9)
Sadeh 1 .1(82.1,86.1) 90.9 (89.0,92.7) 76.4(73.2,79.6)
Sadeh 2 84.4(824,864) 90.9 (89.1,92.8) 76.9 (73.8,80.1)
Cole-Kripke 1 79.8(77.9,81.7) 77.9(75.7,80.1) 82.8(79.8,85.9)
Cole-Kripke 2 83.7(81.7,85.8) 94.4(92.7,96.1) 71.3(68.0,74.7)
Cole-Kripke 3 84.4(825,86.3) 94.9 (93.6,96.2) 72.1(68.8,754)
Tudor-Locke 1 83.5(814,85.5) 95.1(93.4,96.8) 69.7 (66.4,73.1)
Tudor-Locke 2 84.0(82.1,85.9) 95.0(93.3,96.7) 704 (67.2,73.6)
Tudor-Locke 3 839 (81 9,85.9) 924 (90.6, 94.2) 74.1(70.9,77.3)
Tudor-Locke 4 .1(82.1,86.1) 92.4(90.6,94.2) 744(712,77.5)
HDCZA .1(84.2,88.1) 85.6 (83.2,88.0) 87.5(854,89.7)
Axivity Back Count-scaled 743 (72.1,76.4) 92.3(90.6,93.9) 52.8(49.4,56.2)
Sadeh 1 754(73.2,77.7) 95.4(93.7,97.1) 51.8(484,55.3)
Sadeh 2 76.5(74.3,78.7) 95.8(94.3,97.3) 53.6(50.2,56.9)
Cole-Kripke 1 78.7 (76.4,81.0) 92.7 (90.8,94.5) 62.6(58.9,66.2)
Cole-Kripke 2 716 (69.5,73.6) 97.0 (95.5,984) 41.2(38.2,44.1)
Cole-Kripke 3 724(70.3,74.4) 97.3(96.0,98.6) 42.5(39.6,45.5)
Tudor-Locke 1 723(70.2,74.3) 97.3(96.0,98.6) 422(39.2,45.2)
Tudor-Locke 2 72.1(70.1,74.1) 97.5(96.3,98.7) 417 (38.7,44.7)
Tudor-Locke 3 76.0(73.7,78.3) 95.3(93.5,97.0) 53.2(49.8,56.5)
Tudor-Locke 4 76.2 (74.0,78.4) 95.9 (95.5,97.4) 53.1(49.7,56.5)
HDCZA 85.8 (83.6,88.0) 87.7 (85.5,90.0) 87.1(85.1,89.1)
Thigh Count-scaled 719(69.7,74.1) 88.1(86.1,90.1) 52.8(49.8,55.7)
Sadeh 1 77.6(75.2,80.1) 90.6 (88.1,93.1) 62.3 (58.7,65.8)
Sadeh 2 779 (75.5,80.4) 91.0 (88.6,93.4) 62.5(59.0,66.1)
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Table 3 (continued)
Device Placement Algorithm Mean accuracy % (95% Cl) Mean sensitivity % Mean
(95% ClI) specificity %
(95% ClI)
Cole-Kripke 1 784 (75.9,80.9) 84.4(81.7,87.1) 713(67.6,74.9)
Cole-Kripke 2 750(726,77.3) 94.0 (91.8,96.2) 524 (49.2,55.6)
Cole-Kripke 3 75.7 (73.3,78.0) 94.3(92.1,96.4) 53.8(50.6,56.9)
Tudor-Locke 1 75.1(72.7,77.5) 94.0(91.8,96.2) 52.8(49.7,56.0)
Tudor-Locke 2 76.2 (74.0,78.3) 95.5(94.1,96.9) 53.5(50.3,56.7)
Tudor-Locke 3 776 (75.1,80.1) 90.5 (88.0,93.1) 62.2 (58.7,65.8)
Tudor-Locke 4 78.7 (764, 81.0) 91.6 (89.6,93.7) 63.3(59.8,66.7)
HDCZA 87.3(85.5,89.0) 88.5(87.0,90.0) 87.2(85.1,89.3)
Wrist Count-scaled 774 (75.1,79.7) 86.0 (83.6, 88.3) 67.3(63.9,70.7)
Sadeh 1 79.8(774,82.2) 83.9 (814, 86.5) 75.6(72.2,78.9)
Sadeh 2 80.3 (780, 82.6) 84.5(82.1,86.9) 76.0 (72.6,65.8)
Cole-Kripke 1 76.0 (73.8,78.2) 726 (703,74.9) 81.0(77.8,84.2)
Cole-Kripke 2 80.0(77.5,82.4) 87.7 (85.0,90.4) 70.8(67.2,74.3)
Cole-Kripke 3 80.1(77.7,82.5) 87.6(85.0,90.3) 71.1(67.5,74.6)

Tudor-Locke 1
Tudor-Locke 2
Tudor-Locke 3
Tudor-Locke 4

HDCZA

80.0(77.5,82.4)
80.5(78.2,82.8)
80.3(78.0,82.6)
80.1(77.7,82.4)

87.5(85.7,89.4)

87.7 (85.0,90.4)
88.9(86.7,91.0)
84.5(82.1,86.9)
84.5(82.2,86.8)

87.5(85.9,89.0)

70.8 (67.2,74.3)
70.7 (67.1,74.3)
76.0(72.6,79.3)
75.5(72.1,78.9)

89.6(87.8,91.3)

both the Actigraph and Axivity compared to the wrist. By
contrast, specificity (% wake agreement) was considerably
better for both devices at the wrist than at the waist.

Algorithms vs placement

Site of placement did not appear to affect the over-
all accuracy or sensitivity for each algorithm to a great
extent as most algorithms appeared to perform similarly
when placed close to the centre of mass (thigh, lower
back, waist) or at the wrist, varying by less than 10%
(Table 3). However, site of placement had a large effect
on specificity for most algorithms with only the HDCZA
algorithm varying by less than 10% between placements.
Regardless of placement, we report similar total accuracy
across the HDCZA, CS, Sadeh 1, Sadeh 2, Cole-Kripke
1, Tudor-Locke 3, and Tudor-Locke 4 algorithms, but
lower accuracy for the Cole-Kripke 2, Cole-Kripke 3,
Tudor-Locke 1, and Tudor-Locke 2 algorithms. Given the
difficulty of actigraphy to detect periods of wakefulness
during sleep, the considerably higher level of specificity

for the HDCZA algorithm (ranging from 85.9% to 89.6%),
compared to all others which showed specificities as low
as 41.2%, with many less than 60%, should be noted.

A sensitivity analysis (Supplementary Table 2) was
undertaken to determine the effect of the post-processing
merge of PSG epochs into 60-s. In the original analyses if
either 30-s epoch within the minute was scored as wake,
we considered that whole minute as wake, whereas in the
sensitivity analyses if either 30-s epoch within the min-
ute was scored as sleep, we considered that whole minute
as sleep. For most algorithms (apart from a few placed at
the wrist) this resulted in marginal increases in accuracy
(<2%) as a result of increases in specificity (the ability to
detect wake-time) at the expense of decreases in sensitiv-
ity (the ability to detect sleep time).

Sleep outcomes

Tables 4 (Actigraph) and 5 (Axivity) report differences
between each algorithm and PSG for relevant sleep out-
comes of interest in three broad categories: sleep timing
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Table 4 Comparison of PSG and Actigraph GT3x measured sleep outcomes using different algorithms and at each site

Sleep variable Device Placement Algorithm Mean (SD mins) Mean difference
(95% CI) from
PSG?®
Sleep onset (hh:mm) PSG n=114 21:38 (58) Reference
Actigraph GT3x Hip (n=114) Count-scaled 21:26 (61) -12 (-20,-4)
Sadeh 1 21:23 (54) -15(-20,-10)
Sadeh 2 20:39(112) -59(-79,-39)
Cole-Kripke 1 21:31 (53) -7 (-12,-2)
Cole-Kripke 2 21:20(51) -18(-23,-14)
Cole-Kripke 3 19:10 (153) -149 (-179,-119)
Tudor-Locke 1 19:49 (127) -109 (-132,-87)
Tudor-Locke 2 19:47 (49) -112 (-124,-100)
Tudor-Locke 3 20:48 (97) -50 (-67,-34)
Tudor-Locke 4 20:24 (64) -74 (-85, -63)
HDCZA 21:33 (75) -6 (-15, 4)
PSG n=119 21:37(57) Reference
Actigraph GT3x Wrist (n=119) Count-scaled 21:39 (57) 2(-3,7)
Sadeh 1 21:33 (54) -4(-8,1)
Sadeh 2 21:22 (120) -15(-37,6)
Cole-Kripke 1 21:46 (60) 8(3,13)
Cole-Kripke 2 21:31 (53) -6 (-12,-1)
Cole-Kripke 3 21:05 (114) -32(-52,-11)
Tudor-Locke 1 21:01(112) -37 (-57,-16)
Tudor-Locke 2 21:07 (57) -30 (-38,-22)
Tudor-Locke 3 21:37 (121) -20 (-42, 2)
Tudor-Locke 4 21:24 (58) -13(-18,-8)
HDCZA 21:33(58) -4(-8,-1)
Sleep offset (hh:mm) PSG n=114 6:44 (90) Reference
Actigraph GT3x Hip (n=114) Count-scaled 7:00 (63) 16 (1,31)
Sadeh 1 6:58 (57) 4(1,28)
Sadeh 2 7:36 (86) 3(34,71)
Cole-Kripke 1 6:57 (56) (O 27)
Cole-Kripke 2 6:59 (56) 15(1,29)
Cole-Kripke 3 8:17 (92) 93(73,114)
Tudor-Locke 1 8:03 (88) 79 (60, 98)
Tudor-Locke 2 7:58 (83) 74 (56, 93)
Tudor-Locke 3 7:34 (83) 51(33,68)
Tudor-Locke 4 7:29 (76) 46 (29, 62)
HDCZA 6:33 (141) -11(-40, 18)
PSG n=119 6:43 (91) Reference
Actigraph GT3x Wrist (n=119) Count-scaled 6:53 (62) 9 (-5, 24)
Sadeh 1 6:52 (61) 9(-4,22)
Sadeh 2 6:37 (93) -6 (-26, 14)
Cole-Kripke 1 6:53 (60) 10 (-4, 23)
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Table 4 (continued)
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Sleep variable Device Placement Algorithm Mean (SD mins) Mean difference
(95% CI) from
PSG?
Cole-Kripke 2 6:55(61) 12 (-1, 26)
Cole-Kripke 3 6:56 (92) 12 (-8, 33)
Tudor-Locke 1 7:00 (89) 16 (-4, 36)
Tudor-Locke 2 7:04 (62) 21 (6,36)
Tudor-Locke 3 6:55 (79) 12 (-6, 29)
Tudor-Locke 4 6:56 (63) 12 (-4, 28)
HDCZA 7:00 (95) 16 (-2, 35)
Sleep period time (min) PSG n=114 545 (92) Reference
Actigraph GT3x Hip (n=114) Count-scaled 573 (75) 28(13,43)
Sadeh 1 575(61) 29 (15,44)
Sadeh 2 658 (142) 113 (84, 142)
Cole-Kripke 1 566 (59) 20 (6, 35)
Cole-Kripke 2 579 (60) 34(20,47)
Cole-Kripke 3 788 (201) 243 (203, 283)
Tudor-Locke 1 734 (174) 189 (156, 222)
Tudor-Locke 2 732 (90) 187 (167, 207)
Tudor-Locke 3 647 (121) 102 (78, 126)
Tudor-Locke 4 666 (87) 121 (102, 140)
HDCZA 553 (104) 8(-15,31)
PSG n=119 546 (93) Reference
Actigraph GT3x Wrist (n=119) Count-scaled 553 (66) 7(-7,21)
Sadeh 1 559 (66) 13 (-1, 26)
Sadeh 2 556 (151) 10 (-22,42)
Cole-Kripke 1 548 (60) 1(-12,15)
Cole-Kripke 2 565 (66) 19 (6,31)
Cole-Kripke 3 591 (137) 45(17,73)
Tudor-Locke 1 600 (136) 54 (27,81)
Tudor-Locke 2 598 (67) 52 (36, 68)
Tudor-Locke 3 579 (145) 33 (2,63)
Tudor-Locke 4 572 (66) 26 (10,43)
HDCZA 567 (92) 21(2,40)
Total sleep time (min) PSG n=114 518 (89) Reference
Actigraph GT3x Hip (n=114) Count-scaled 532(73) 14 (-1,29)
Sadeh 1 557 (59) 39 (25,54)
Sadeh 2 623 (118) 105 (80, 130)
Cole-Kripke 1 527 (60) 9 (-6, 24)
Cole-Kripke 2 571(59) 53(39,67)
Cole-Kripke 3 734 (158) 216 (183, 248)
Tudor-Locke 1 701 (148) 183 (154,212)
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Sleep variable Device Placement Algorithm Mean (SD mins) Mean difference
(95% CI) from
PSG?
Tudor-Locke 2 695 (86) 177 (157,196)
Tudor-Locke 3 619 (109) 101 (78, 123)
Tudor-Locke 4 628 (81) 110(92,128)
HDCZA 495 (102) -23 (-45,-2)
PSG n=119 519 (89) Reference
Actigraph GT3x Wrist (n=119) Count-scaled 502 (61) -16 (-30, -2)
Sadeh 1 496 (58) -22(-36,-9)
Sadeh 2 490 (105) -29(-53,-4)
Cole-Kripke 1 418 (55) -101(-117,-84)
Cole-Kripke 2 523 (61) 5(-8,18)
Cole-Kripke 3 540 (97) 21(-1,43)
Tudor-Locke 1 550 (96) 32(11,53)
Tudor-Locke 2 549 (60) 31 (15, 46)
Tudor-Locke 3 514 (102) -5(-28,19)
Tudor-Locke 4 514 (60) -5(-20,11)
HDCZA 486 (91) -33(-51,-15)
WASO (min) PSG n=114 74 (126) Reference
Actigraph GT3x Hip (n=114) Count-scaled 41(18) -33 (-56,-9)
Sadeh 1 17.(17) -56 (-79,-34)
Sadeh 2 35(37) -39 (-63,-15)
Cole-Kripke 1 39(29) -35(-58,-13)
Cole-Kripke 2 8 (8) -66 (-89, -43)
Cole-Kripke 3 55 (56) -19(-45,7)
Tudor-Locke 1 34 (34) -40 (-64,-16)
Tudor-Locke 2 37(18) -36 (-60, -13)
Tudor-Locke 3 29 (24) -45 (-69, -22)
Tudor-Locke 4 38 (21) -36 (-59,-13)
HDCZA 58 (47) -16 (-42,10)
PSG n=119 71 (120) Reference
Actigraph GT3x Wrist (n=119) Count-scaled 51 (20) -20 (42, 2)
Sadeh 1 63(31) -8(-30,13)
Sadeh 2 66 (65) -5 (-30, 20)
Cole-Kripke 1 130 (50) 58 (36, 81)
Cole-Kripke 2 42 (25) -30 (-51,-8)
Cole-Kripke 3 51(55) -20 (-44, 4)
Tudor-Locke 1 50(53) -22 (-45, 2)
Tudor-Locke 2 49 (28) -22 (-44,-1)
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Table 4 (continued)

Sleep variable Device Placement Algorithm Mean (SD mins) Mean difference
(95% CI) from
PSG?
Tudor-Locke 3 65 (59) -6 (-31,18)
Tudor-Locke 4 58 (24) -13(-34, 8)
HDCZA 81 (60) 10 (-14, 35)
Sleep efficiencyspy (%) PSG n=114 95.0 (4.1) Reference
Actigraph GT3x Hip (n=114) Count-scaled 928 (3.1) -2.2(-3.1,-14)
Sadeh 1 97.0 (2.8) 20(1.2,27)
Sadeh 2 95.1(3.5) 0.0 (-0.8,0.9)
Cole-Kripke 1 93.2(5.0) -1.8(-2.8,-0.8)
Cole-Kripke 2 98.6(1.4) 36(29,43)
Cole-Kripke 3 939 (4.6) -1.1(-2.2,-0.1)
Tudor-Locke 1 95.9 (2.6) 0.8(0.0,1.7)
Tudor-Locke 2 94.9 (2.4) -0.1(-1.0,0.8)
Tudor-Locke 3 95.8 (2.8) 0.7 (-0.1, 1.6)
Tudor-Locke 4 94.4 (3.0) -0.6 (-1.5,0.3)
HDCZA 89.5 (8.6) -55(-7.2,-3.7)
PSG n=119 949 (4.1) Reference
Actigraph GT3x Wrist (n=119) Count-scaled 90.8 (3.3) -4.2(-5.0,-34)
Sadeh 1 88.9(5.1) -6.0 (-7.0,-5.1)
Sadeh 2 88.8(5.9) -6.1(-7.2,-5.0)
Cole-Kripke 1 76.6 (8.3) -184(-19.9,-16.8)
Cole-Kripke 2 92.7 (4.0) -2.2(-3.1,-1.3)
Cole-Kripke 3 92.0(5.1) -29(-39,-19)
Tudor-Locke 1 924 (4.8) -2.5(-3.5,-1.6)
Tudor-Locke 2 919 (4.7) -30(-3.8,-2.1)
Tudor-Locke 3 89.6 (54) -54(-6.3,-4.4)
Tudor-Locke 4 89.9(3.9) -5.1(-5.9,-4.3)
HDCZA 85.9(10.3) 9.1 (-11.1,-7.1)
Sleep efficiencyyg (%) PSG n=114 89.1 (12.5) Reference
Actigraph GT3x Hip (n=114) Count-scaled 916 (9.8) 2.5(-0.1,5.0)
Sadeh 1 95.9 (4.6) 6.8 (44,9.2)
Sadeh 2 95.1 (3.5) 59(3.6,93)
Cole-Kripke 1 90.7 (6.4) 1.6 (-0.9, 4.1)
Cole-Kripke 2 98.2 (3.0) 9.1(6.7,11.4)
Cole-Kripke 3 93.9 (4.6) 48(23,7.2)
Tudor-Locke 1 95.9 (2.6) 6.7 (4.3,9.2)
Tudor-Locke 2 949 (2.4) 58(34,82)

Tudor-Locke 3 95.8 (2.8) 6.6 (4.3,9.0)
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Table 4 (continued)
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Sleep variable Device Placement Algorithm Mean (SD mins) Mean difference
(95% CI) from
PSG?
Tudor-Locke 4 944 (3.0) 53(29,7.7)
HDCZA NA NA
PSG n=119 89.2(12.5)
Actigraph GT3x Wrist (n=119) Count-scaled 86.5(7.8) -28(-5.1,-04)
Sadeh 1 85.5(7.4) -3.7(-6.0,-1.5)
Sadeh 2 88.8(5.9) -0.4 (-2.8, 2.0)
Cole-Kripke 1 72.2(9.3) -17.0(-19.7,-14.3)
Cole-Kripke 2 90.0 (6.6) 0.8(-1.3,2.9)
Cole-Kripke 3 92.0(5.1) 2.8(04,5.1)
Tudor-Locke 1 924 (4.8) 32(08,5.5)
Tudor-Locke 2 91.9 (4.1) 2.7(04,5.1)
Tudor-Locke 3 89.6 (54) 0.4 (-2.0,2.7)
Tudor-Locke 4 89.9 (3.9) 0.6 (-1.6, 2.9)
HDCZA NA NA
Night wakings (frequency) PSG n=114 258 (8.3) Reference
Actigraph GT3x Hip (h=114) Count-scaled 0.4 (0.6) -25.4(-27.0,-23.9)
Sadeh 1 0.2 (0.5 -25.6 (-27.2,-24.1)
Sadeh 2 104 (6.7) 5(-17.2,-13.7)
Cole-Kripke 1 13.5(7.8) 3(-14.0,-10.5)
Cole-Kripke 2 0.0(0.2) -25.8(-27.3,-24.2)
Cole-Kripke 3 13.2(8.1) 6(-14.7,-10.6)
Tudor-Locke 1 10.9 (7.0) 9(-16.7,-13.1)
Tudor-Locke 2 11.0 (4.5) 8(-164,-13.2)
Tudor-Locke 3 114(7.7) 4(-16.1,-12.6)
Tudor-Locke 4 12.6 (7.0) 2(-149,-114)
HDCZA 17.1(5.7) -8.7(-10.2,-7.2)
PSG n=119 26.3(84) Reference
Actigraph GT3x Wrist (n=119) Count-scaled 0.7 (0.8 -25.6(-27.1,-24.1)
Sadeh 1 1.0 (1.1) -25.3 (-26.7,-23.8)
Sadeh 2 204 (7.5) -59(-74,-43)
Cole-Kripke 1 25.1(7.2) -1.2(-2.8,0.4)
Cole-Kripke 2 0.3(0.6) -26.0 (-27.5,-24.5)
Cole-Kripke 3 17.9(8.5) -84 (-10.1,-6.7)
Tudor-Locke 1 19.2(9.3) 1(-89,-54)
Tudor-Locke 2 20.1(8.6) -6.2 (-7.8,-4.6)
Tudor-Locke 3 24.7 (10.0) 1.6(-3.5,-0.2)
Tudor-Locke 4 25.1(9.0) 1.2(-2.8,04)
HDCZA 206 (6.2) -5.7(-7.1,-4.2)

NA not available

? Bolded differences refer to those whether actigraphy was not significantly different (P> 0.05) to PSG, and thus provide a good estimate for that sleep measure
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Table 5 Comparison of PSG and Axivity measured sleep outcomes using different algorithms and at each site
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Sleep variable Device Placement Algorithm Mean (SD) Mean difference
(95% CI) from
PSG?®
Sleep onset (hh:mm) PSG (n=116) 21:41 (58) Reference
Axivity Thigh (n=116) Count-scaled 21:28 (63) -14 (-22,-5)
Sadeh 1 21:34 (62) -8 (-14,-1)
Sadeh 2 20:57 (102) -44 (-62,-27)
Cole-Kripke 1 21:31(52) -10 (-15,-5)
Cole-Kripke 2 21:23 (54) -18 (-22,-14)
Cole-Kripke 3 20:17 (115) -84 (-104, -64)
Tudor-Locke 1 20:40 (100) -61 (-78,-45)
Tudor-Locke 2 20:15 (59) -86 (-99, -73)
Tudor-Locke 3 21:07 (100) -34(-51,-17)
Tudor-Locke 4 20:50 (62) -52(-62,-42)
HDCZA 21:09 (101) -33(-48,-18)
PSG n=115 21:43 (58) Reference
Axivity Back (n=115) Count-scaled 21:22 (54) -20(-28,-13)
Sadeh 1 21:28 (58) -15(-20,-9)
Sadeh 2 20:29 (104) -73(-92,-55)
Cole-Kripke 1 21:28 (52) -15(-19,-10)
Cole-Kripke 2 21:25 (56) -18 (-22,-13)
Cole-Kripke 3 19:19 (142) -144(-172,-116)
Tudor-Locke 1 19:51 (136) -112(-137,-86)
Tudor-Locke 2 19:52 (59) -111(-125,-97)
Tudor-Locke 3 20:45 (102) -57 (-75,-40)
Tudor-Locke 4 20:21 (67) -79 (-91,-67)
HDCZA 21:26 (101) -21(-37,-5)
PSG n=125 21:39(57) Reference
Axivity Wrist (n=125) Count-scaled 21:32 (63) -6(-14,2)
Sadeh 1 21:40 (65) 2(-6,10)
Sadeh 2 21:13 (96) -25(-39,-10)
Cole-Kripke 1 21:39 (61) 1(-5,7)
Cole-Kripke 2 21:30 (56) -9(-14,-3)
Cole-Kripke 3 20:56 (94) -43 (-57,-28)
Tudor-Locke 1 21:05 (95) -34 (-48, -20)
Tudor-Locke 2 20:54 (60) -44 (-53,-35)
Tudor-Locke 3 21:30(100) -9 (-24, 6)
Tudor-Locke 4 21:12 (66) -27 (-34,-20)
HDCZA 21:01 (113) -38(-54,-21)
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Table 5 (continued)
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Sleep variable Device Placement Algorithm Mean (SD) Mean difference
(95% CI) from
PSG?
Sleep offset (hh:mm) PSG n=116 6:40 (92) Reference
Axivity Thigh (n=116) Count-scaled 6:42 (65) 2(-12,17)
Sadeh 1 6:44 (59) 5(-9,18)
Sadeh 2 6:58 (98) 18 (-4, 40)
Cole-Kripke 1 6:40 (65) 0(-14,14)
Cole-Kripke 2 6:49 (57) 9 (-4,23)
Cole-Kripke 3 7:26 (98) 47 (23,70)
Tudor-Locke 1 7:14(99) 35(12,57)
Tudor-Locke 2 7:12(87) 32(11,53)
Tudor-Locke 3 6:54 (98) 14 (-8, 36)
Tudor-Locke 4 6:45 (73) 6(-13, 24)
HDCZA 6:35(120) -4 (-29,21)
PSG n=115 6:42 (95) Reference
Axivity Back (n=115) Count-scaled 6:47 (69) 5(-10, 20)
Sadeh 1 6:49 (61) 7(-7,21)
Sadeh 2 7:34(107) 52(28,76)
Cole-Kripke 1 6:49 (62) 8 (-6, 22)
Cole-Kripke 2 6:55 (61) 14 (0, 27)
Cole-Kripke 3 8:01(128) 79 (51,106)
Tudor-Locke 1 7:57 (106) 75 (51, 99)
Tudor-Locke 2 7:41(93) 59 (38, 80)
Tudor-Locke 3 7:22 (107) 41 (17, 64)
Tudor-Locke 4 7:11 (88) 29 (9, 49)
HDCZA 6:34 (108) -8(-32,17)
PSG n=125 6:40 (92) Reference
Axivity Wrist (n=125) Count-scaled 6:35 (70) -5(-19,10)
Sadeh 1 6:39 (62) -1(-15,12)
Sadeh 2 6:22(103) -18(-39,4)
Cole-Kripke 1 6:31(73) -9 (-23,6)
Cole-Kripke 2 6:41 (61) 1(-12,15)
Cole-Kripke 3 6:47 (97) 7 (-14,28)
Tudor-Locke 1 6:40 (96) 0(-21,21)
Tudor-Locke 2 6:31(71) -9(-24,7)
Tudor-Locke 3 6:07 (116) -33(-57,-9)
Tudor-Locke 4 6:19 (73) -21(-39,-4)
HDCZA 6:21 (143) -19 (-47, 8)
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Table 5 (continued)
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Sleep variable Device Placement Algorithm Mean (SD) Mean difference
(95% CI) from
PSG?
Sleep period time (min) PSG n=116 538 (95) Reference

Axivity Thigh (n=116) Count-scaled 555 (78) 16 (-1, 33)
Sadeh 1 550 (69) 12 (-2, 26)
Sadeh 2 602 (130) 64 (34, 93)
Cole-Kripke 1 549 (69) 10 (-4, 25)
Cole-Kripke 2 566 (63) 27 (13,471)
Cole-Kripke 3 670 (139) 132 (100, 163)
Tudor-Locke 1 657 (115) 97 (70, 124)
Tudor-Locke 2 658 (107) 119 (95, 144)
Tudor-Locke 3 588 (128) 49 (20, 78)
Tudor-Locke 4 597 (88) 58(37,79)
HDCZA 567 (86) 28(8,49)

PSG n=115 539 (97) Reference

Axivity Back (n=115) Count-scaled 564 (77) 25(10,41)
Sadeh 1 561 (68) 22(7,37)
Sadeh 2 665 (153) 126 (93, 160)
Cole-Kripke 1 562 (67) 23(8,37)
Cole-Kripke 2 570 (63) 31(18,45)
Cole-Kripke 3 763 (187) 224 (185, 263)
Tudor-Locke 1 727 (172) 188 (150, 225)
Tudor-Locke 2 710(117) 171 (146, 196)
Tudor-Locke 3 638 (146) 99 (67,131)
Tudor-Locke 4 648 (109) 109 (87,132)
HDCZA 553 (90) 14 (-8, 35)

PSG n=125 541 (95) Reference

Axivity Wrist (n=125) Count-scaled 543 (81) 1(-13,16)
Sadeh 1 538(78) -3(-18,12)
Sadeh 2 549 (113) 8(-16,32)
Cole-Kripke 1 532(72) -10(-24, 5)
Cole-Kripke 2 551(71) 10 (-3, 23)
Cole-Kripke 3 592 (109) 51(27,74)
Tudor-Locke 1 576 (104) 35(12,58)
Tudor-Locke 2 578 (74) 37(20,53)
Tudor-Locke 3 519(122) -23 (-49, 4)
Tudor-Locke 4 548 (72) 7(-10, 24)
HDCZA 560 (95) 18(-2,39)
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Table 5 (continued)

Page 18 of 27

Sleep variable Device Placement Algorithm Mean (SD) Mean difference
(95% CI) from
PSG?
Total sleep time (mins) PSG n=116 511(93) Reference

Axivity Thigh (n=116) Count-scaled 507 (76) -4 (-21,13)
Sadeh 1 518(72) 7 (-9, 23)
Sadeh 2 564 (105) 53(28,78)
Cole-Kripke 1 480 (71) -31(-48,-14)
Cole-Kripke 2 545 (65) 36 (21,51)
Cole-Kripke 3 633 (116) 122 (95, 149)
Tudor-Locke 1 610 (103) 99 (75, 124)
Tudor-Locke 2 619 (100) 109 (86, 132)
Tudor-Locke 3 554 (104) 43 (18, 68)
Tudor-Locke 4 556 (83) 45 (25, 66)
HDCZA 498 (72) -12(-30, 6)

PSG n=115 511 (94) Reference

Axivity Back (n=115) Count-scaled 533 (76) 22 (6,37)
Sadeh 1 546 (69) 35 (20, 50)
Sadeh 2 634 (129) 123 (94, 151)
Cole-Kripke 1 529 (68) 18 (2,33)
Cole-Kripke 2 560 (64) 49 (35,63)
Cole-Kripke 3 716 (160) 205 (171, 239)
Tudor-Locke 1 693 (149) 182 (149, 215)
Tudor-Locke 2 675(112) 164 (140, 189)
Tudor-Locke 3 614 (126) 103 (75, 132)
Tudor-Locke 4 618 (101) 107 (85, 129)
HDCZA 498 (80) -13(-31,6)

PSG n=125 514 (92) Reference

Axivity Wrist (n=125) Count-scaled 491 (80) -22 (-38,-6)
Sadeh 1 472 (77) -41 (-58, -25)
Sadeh 2 491 (100) -22(-44,0)
Cole-Kripke 1 404 (66) -110(-127,-92)
Cole-Kripke 2 506 (73) -8(-23,7)
Cole-Kripke 3 547 (97) 33(11,55)
Tudor-Locke 1 535 (93) 21(0,43)
Tudor-Locke 2 531(72) 17(1,33)
Tudor-Locke 3 691 (111) -45 (-70, -20)
Tudor-Locke 4 489 (70) =24 (-41,-7)
HDCZA 492 (78) -22 (-39,-5)
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Table 5 (continued)
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Sleep variable Device Placement Algorithm Mean (SD) Mean difference
(95% CI) from
PSG?
WASO (min) PSG n=116 74 (125) Reference
Axivity Thigh (n=116) Count-scaled 48 (22) -26 (49, -3)
Sadeh 1 33(29) -41 (-65,-18)
Sadeh 2 38 (40) -36 (-59,-13)
Cole-Kripke 1 69 (46) -6 (-29, 18)
Cole-Kripke 2 19 (22) -55(-78,-32)
Cole-Kripke 3 37 (37) -37 (-60, -13)
Tudor-Locke 1 26 (22) -49 (-71,-26)
Tudor-Locke 2 38(21) -36(-59,-13)
Tudor-Locke 3 34 (40) -40 (-64,-17)
Tudor-Locke 4 41 (25) -33(-56,-11)
HDCZA 69 (37) -5(-29,18)
PSG n=115 76 (126) Reference
Axivity Back (n=115) Count-scaled 32(16) -45 (-68,-21)
Sadeh 1 15(18) -62 (-84,-39)
Sadeh 2 32(41) -44 (-69, -20)
Cole-Kripke 1 33(32) -44 (-67,-21)
Cole-Kripke 2 10 (13) -66 (-90, -43)
Cole-Kripke 3 47 (48) -30 (-55,-4)
Tudor-Locke 1 33(38) -43 (-68,-18)
Tudor-Locke 2 35 (20) -4) (-65,-18)
Tudor-Locke 3 24 (31) -31(-76,-30)
Tudor-Locke 4 30 (20) -46 (-70, -23)
HDCZA 54 (27) -22(-46, 2)
PSG n=125 71 (119) Reference
Axivity Wrist (n=125) Count-scaled 51(28) -19(-41,2)
Sadeh 1 66 (43) -5(-26,17)
Sadeh 2 58 (29) -13(-34,9)
Cole-Kripke 1 128 (48) 57 (36,79)
Cole-Kripke 2 46 (39) -25 (-46, -3)
Cole-Kripke 3 45 (26) -25 (-46,-4)
Tudor-Locke 1 42 (26) -29 (-50, -8)
Tudor-Locke 2 47 (24) -23 (-44,-3)
Tudor-Locke 3 50 (24) -20 (-42,1)
Tudor-Locke 4 59 (25) -12(-32,8)
HDCZA 68 (39) -3(-24,19)
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Table 5 (continued)
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Sleep variable Device Placement Algorithm Mean (SD) Mean difference
(95% CI) from
PSG?
Sleep efficiencypr (%) PSG n=116 94.8 (4.3) Reference
Axivity Thigh (n=116) Count-scaled 91.3(3.8) -35(-44,-26)
Sadeh 1 94.0 (5.6) -0.8 (-2.0,0.5)
Sadeh 2 94.0 (4.1) -0.8(-1.8,0.2)
Cole-Kripke 1 87.6(7.8) -7.2(-8.7,-5.7)
Cole-Kripke 2 96.7 (3.9) 1.9(0.9,29)
Cole-Kripke 3 94.8 (4.0) 0.0(-1.0, 1.0)
Tudor-Locke 1 96.2(2.7) 14(05,23)
Tudor-Locke 2 94.3 (3.1) -0.6 (-1.4,0.3)
Tudor-Locke 3 94.6 (4.1) -0.2(-1.2,0.7)
Tudor-Locke 4 93.2(4.1) -1.6(-2.5,-0.6)
HDCZA 88.2 (5.1) -6.6 (-7.7,-5.6)
PSG n=115 94.8 (4.3) Reference
Axivity Back (n=115) Count-scaled 94.3 (2.9) -0.5(-1.3,0.4)
Sadeh 1 973(3.2) 26(1.7,34)
Sadeh 2 95.6 (4.2) 0.9(-0.1,1.8)
Cole-Kripke 1 94.3 (5.5) -0.5(-1.7,0.6)
Cole-Kripke 2 982 (2.2) 35(26,4.3)
Cole-Kripke 3 94.4 (4.6) -0.4(-1.4,0.6)
Tudor-Locke 1 95.8 (3.7) 1.1(0.1,2.0)
Tudor-Locke 2 95.1 (2.7) 0.3(-0.5,1.2)
Tudor-Locke 3 96.6 (3.1) 1901.0,27)
Tudor-Locke 4 95.5(2.9) 0.7 (-0.2, 1.5)
HDCZA 90.3 (4.3) -45(-55,-3.5)
PSG n=125 94.8 (4.2) Reference
Axivity Wrist (n=125) Count-scaled 90.5 (5.5) -43(-54,-3.2)
Sadeh 1 87.8 (8.0) -7.0(-85,-5.5)
Sadeh 2 89.5(4.3) -53(-6.2,-44)
Cole-Kripke 1 76.1(8.3) -18.8(-20.3,-17.2)
Cole-Kripke 2 91.8(7.3) -3.1(-45,-1.6)
Cole-Kripke 3 92.5(3.6) -24(-3.2,-1.5)
Tudor-Locke 1 929 (3.6) -19(-2.7,-1.0)
Tudor-Locke 2 91.8 (4.0) -3.0(-3.9,-2.1)
Tudor-Locke 3 90.3 (3.9) -45(-5.3,-3.7)
Tudor-Locke 4 89.3 (4.5) -5.6 (-6.5,-4.6)
HDCZA 88.1(5.2) -6.7 (-7.7,-5.7)
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Table 5 (continued)
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Sleep variable Device Placement Algorithm Mean (SD) Mean difference
(95% CI) from
PSG?
Sleep efficiencyyg (%) PSG n=116 88.8(9.6)

Axivity Thigh (n=116) Count-scaled 88.2 (9.6) -0.5(-3.4,2.3)
Sadeh 1 90.1 (8.7) 1.4(-1.3,4.0)
Sadeh 2 94.0 (4.1) 53(29,76)
Cole-Kripke 1 83.6(9.3) -5.2(-8.0,-2.4)
Cole-Kripke 2 95.1(5.2) 6.4(3.9,89)
Cole-Kripke 3 94.8 (4.0) 6.1(3.7,84)
Tudor-Locke 1 96.2(2.7) 74(5.1,9.8)
Tudor-Locke 2 943 (3.1) 55(3.1,7.9)
Tudor-Locke 3 94.6 (4.1) 58(3.5,82)
Tudor-Locke 4 93.2 (4.1) 45(2.1,6.8)
HDCZA NA NA

PSG n=115 88.8(12.7)

Axivity Back (n=115) Count-scaled 92.7 (9.1) 39(13,6.5)
Sadeh 1 950(65) 6.2(35,838)
Sadeh 2 95.6 (4.2) 6.9 (4.5,9.2)
Cole-Kripke 1 92.0(6.5) 3.2(06,5.8)
Cole-Kripke 2 97.5(4.2) 8.7(6.3,11.1)
Cole-Kripke 3 943 (4.6) 56(3.1,8.1)
Tudor-Locke 1 95.8 (3.7) 7.1(4.7,94)
Tudor-Locke 2 95.1(2.7) 6.3(3.9,8.8)
Tudor-Locke 3 96.6 (3.1) 7.9(5.5,10.2)
Tudor-Locke 4 95.5(2.9) 6.7 (4.3,9.1)
HDCZA NA NA

PSG n=125 88.8(124)

Axivity Wrist (hn=125) Count-scaled 85.0(10.2) -39 (-6.5,-1.2)
Sadeh 1 81.7 (10.5) -7.1(-99,-4.3)
Sadeh 2 89.5(4.3) 0.7 (-1.6,2.9)
Cole-Kripke 1 70.1 (104) -18.7 (-21.5,-15.9)
Cole-Kripke 2 87.5(9.1) -1.3(-3.9,1.3)
Cole-Kripke 3 92.5(3.6) 36(14,59)
Tudor-Locke 1 929 (3.6) 41(1.9,6.3)
Tudor-Locke 2 91.8 (4.0) 3.0(08,5.2)
Tudor-Locke 3 90.3 (3.9) 1.5(-0.7,3.7)
Tudor-Locke 4 89.3 (4.5) 0.4(-1.8,2.7)
HDCZA NA NA
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Table 5 (continued)

Sleep variable Device Placement Algorithm Mean (SD) Mean difference
(95% CI) from
PSG?
Night wakings (frequency) PSG n=116 26.0(8.3) Reference
Axivity Thigh (n=116) Count-scaled 0.6 (0.9 -254(-26.9,-23.9)
Sadeh 1 03(06) -25.7 (-27.2,-24.2)
Sadeh 2 14.0(7.9) -12.0(-13.9,-10.1)
Cole-Kripke 1 20.0(8.1) -6.0(-7.8,-4.2)
Cole-Kripke 2 0.2 (0.5) -259 (-274,-24.4)
Cole-Kripke 3 11.1(7.6) -15.0(-16.9,-13.0)
Tudor-Locke 1 9.3 (6.4) -16.7 (-18.5,-14.9)
Tudor-Locke 2 109 (6.1) -15.1(-16.8,-13.4)
Tudor-Locke 3 133 (7.8) -12.7 (-14.6,-10.8)
Tudor-Locke 4 143 (7.4) -11.7 (-134,-10.0)
HDCZA 19.1 (4.9) -6.9 (-84,-5.5)
PSG n=115 26.1 (8.4) Reference
Axivity Back (n=115) Count-scaled 0.2 (0.5) -259(-27.4,-24.3)
Sadeh 1 0.1(0.3) -26.0 (-27.6, 24.5)
Sadeh 2 84 (5.6) -17.7 (-19.3,-16.1)
Cole-Kripke 1 106 (6.5) -155(-17.1,-14.0)
Cole-Kripke 2 0.1(0.3) -26.1 (-27.6,-24.5)
Cole-Kripke 3 106 (6.5) -155(-17.6,-134)
Tudor-Locke 1 8.8(5.7) -17.3(-19.3,-15.3)
Tudor-Locke 2 88(4.2) -17.3(-19.0,-15.6)
Tudor-Locke 3 74(5.2) -18.7 (-204,-17.1)
Tudor-Locke 4 84 (5.0) -17.7(-193,-16.2)
HDCZA 175(4.8) -8.7(-10.2,-7.2)
PSG n=125 26.0 (8.1) Reference
Axivity Wrist (n=125) Count-scaled 0.6(0.8) -25.4(-26.8,-24.0)
Sadeh 1 0.9(0.9) -25.1 (-26.5,-23.7)
Sadeh 2 204 (6.9) -56(-7.1,-4.1)
Cole-Kripke 1 24.8(7.2) -1.2(-2.8,0.5)
Cole-Kripke 2 0.3(0.6) -25.7 (-27.1,-243)
Cole-Kripke 3 17.7(7.1) -83(-9.8,-6.8)
Tudor-Locke 1 17.0(7.2) -9.0(-105,-7.5)
Tudor-Locke 2 18.1(7.4) -79(-94,-64)
Tudor-Locke 3 18.7 (6.5) -7.3(-8.8,-5.7)
Tudor-Locke 4 20.8 (6.9) -5.3(-6.7,-3.8)
HDCZA 19.8 (5.5) -6.2 (-7.6,-4.9)

2 Bolded differences refer to those whether actigraphy was not significantly different (P> 0.05) to PSG, and thus provide a good estimate for that sleep measure
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(sleep onset and offset), sleep quantity (sleep period time
and total sleep time), and sleep quality (sleep efficiency,
WASO, and number of night wakings).

Sleep timing

For sleep onset, almost all algorithms detected a sleep
onset significantly earlier than the PSG gold standard,
with differences ranging from just 2 min to as much as
149 min for the Actigraph and 1 min to 144 min for the
Axivity. Overall, differences in sleep onset were generally
smaller for either device when placed at the wrist, with
several algorithms providing valid estimates of sleep onset
with differences of just 1-15 min compared to PSG (Acti-
graph hip HDCZA, Actigraph wrist CS, Sadeh 1, Sadeh 2,
Tudor-Locke 3, Axivity wrist CS, Sadeh 1, Cole-Krikpe 1,
Tudor-Locke 3). In terms of sleep offset, differences were
smaller for Actigraphs placed at the wrist than those at the
hip, with all algorithms except for Tudor-Locke 2 showing
small differences compared with PSG. In general, differ-
ences for the Axivity placed at the wrist were smaller than
those placed at the thigh or back. However, overall, it can
be seen that the Axivity placed on the thigh and to a lesser
extent on the back, perform better than Actigraph at the
hip, with 8 and 4 of 11 algorithms respectively reporting
only small, non-significant differences compared to PSG,
whereas just one algorithm (HDCZA) produced small dif-
ferences with the Actigraph placed at the hip.

Sleep quantity

Tables 4 and 5 demonstrate that many of the algorithms
show large differences compared with PSG, in some
cases overestimating sleep by more than two hours
whether measured as sleep period time or total sleep
time. However, there was a clear pattern of wrist place-
ment providing substantially more accurate estimates
of sleep quantity, for both devices. For example, differ-
ences (95% CI) for the Actigraph at the wrist ranged from
1 (-12, 15) to 54 (27, 81) minutes for sleep period time,
whereas the corresponding values for hip placement were
up to 243 (203, 283) minutes different. A similar pattern
is shown for the Axivity (Table 5). While several algo-
rithms performed well only a few (Sadeh 1, Cole-Kripke
1, HDCZA), consistently performed well for both devices
and placement sites and only the count-scaled algorithm
showed a difference with PSG of less than 30 min for
all eight measures examined (total sleep time and sleep
period time at both wrist and hip for both devices).

Sleep quality
In terms of WASO, examination of Tables 4 and 5 dem-
onstrate that actigraphy produces lower values for
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WASO compared with PSG for almost all sites, devices
and algorithms tested. However, in general, estimates
more closely matched PSG values when the device was
placed at the wrist, particularly for the Actigraph, with
7 of the 11 algorithms showing small differences (differ-
ences ranging from just 5 to 22 min for these algorithms).
On the other hand, better estimates of sleep efficiency
were obtained from devices placed on the hip (Acti-
graph), thigh or back (Axivity). Regardless of device or
placement, the algorithms tested resulted in small dif-
ferences in sleep efficiency compared to PSG. Overall,
sleep efficiency defined using TIB was lower than sleep
efficiency defined using SPT and resulted in larger differ-
ences compared to PSG. Lastly, estimates of the number
of night wakings differed considerably from PSG meas-
ures for most of the algorithms examined. Only 1 of the
20 Actigraph (Cole-Kripke 1 at the wrist) and 2 of the
30 Axivity (Sadeh 1 at the back and Cole-Kripke 1 at the
wrist) algorithms tested did not produce large differences
in waking frequency (Tables 4 and 5).

Bland-Altman

Figure 1 shows the Bland—Altman plots for agreement in
SPT (a metric for sleep duration) and WASO (a metric
for sleep quality) for the ‘overall best performing algo-
rithm’ (HDCZA with the Axivity at the wrist), and the
CS algorithm (which was the ‘best performing’ for the
Axivity at the wrist for SPT). These plots illustrate that
the CS algorithm performs better than the HDCZA for
accurate assessment of SPT, with narrower 95% limits
of agreement (LOA) (-165 to 172 min compared to -212
to 250 min for HDCZA). Both algorithms demonstrated
similar performance for assessing WASO, with slightly
lower 95% LOA for HDCZA (CS: -279 to 260 min; and
HDCZA: -251 to 245 min) but both showed considerable
inaccuracy in determining WASO at higher levels.

Discussion

Our study demonstrates that current count-based sleep
algorithms show higher total accuracy and specificity
when devices were placed at the wrist compared with
other sites of wear, regardless of actigraphy brand or
algorithm tested. Overall, the HDCZA algorithm demon-
strated high levels of sensitivity, specificity and thus accu-
racy regardless of device brand or placement. In terms of
the range of sleep outcomes studied, results were more
variable and differed across outcomes of interest, algo-
rithm and site of wear. Thus, researchers may choose a
certain algorithm over another depending on their pri-
mary sleep outcome of interest; for example, studies of
sleep timing may prefer the CS algorithm placed at the
wrist, whereas studies more focussed on sleep quality
may prefer the HDCZA algorithm. Poorer detection of
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Fig. 1 Bland-Altman plots for sleep period time (SPT) and wake after sleep onset (WASO) for the HDCZA and CS algorithms using the Axivity
at the wrist compared to PSG. Red dashed lines indicate 95% limits of agreement

wakefulness (poor specificity) by many of the algorithms
and sites of wear continues to plague actigraphy esti-
mates of both sleep and wake in paediatric studies [21]
but specificity values are not always reported [22] despite
the potential to influence data interpretation. This is also
an issue in the adult field [23].

Several studies have assessed the agreement between
research grade devices and PSG in healthy children, but
many have been in small samples and utilised single sites
of wear, devices or algorithms to detect sleep and wake
states and derive sleep estimates [10, 20, 22]. Most of
the sleep detection algorithms used in the present study
have been previously developed and validated against
PSG in healthy adults [5, 9, 13], and only a few have been
validated against PSG in children [7, 10] albeit in small
samples (1 <40). The findings from this much larger and
more comprehensive study are broadly consistent with
the original validation studies and a review of previous
validation studies in children, which show that accuracy
(0.84-0.92) and sensitivity (0.82—0.96) are generally good,
whereas specificity (0.20—0.65) is considerably lower [24].

However it is clear from both previous research and the
current study that the specificity (54—77%) [24] or abil-
ity to detect periods of wakefulness in the sleep period
window, of most algorithms was better when the device
was worn at the wrist, with estimates ranging from 67
to 90%. These figures are considerably higher than those
observed in adult studies, which have reported specifi-
cities of 34—46% for the HDCZA, Sadeh and Cole algo-
rithms when validated in adult samples [9, 11, 25]. These
discrepancies may arise because of differences in sleep
characteristics between children and adults. In our study,
most children had long periods of sleep without wake-
fulness during the night. Although immobility generally
infers sleep in accelerometery-based assessment, immo-
bility is possible during periods of wakefulness and as
such can be mistakenly identified as sleep by actigraphy;
it is likely this occurs more in adults because they have
more periods of conscious nocturnal awakenings than
children [11, 26]. Our Bland—Altman plots also revealed
some bias between actigraphy-measured sleep period
time and PSG, where larger differences were apparent
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as sleep period time decreased. More wakefulness and
the shorter sleep times of adults likely contributes to the
greater misclassification of WASO and thus poorer speci-
ficity overall compared with children.

The wrist placement was also superior to the thigh,
lower back and hip for estimates of sleep onset, off-
set, quantity (TST and SPT) and WASO for most
algorithms. Prior research has also indicated that hip-
worn accelerometers tend to overestimate total sleep
time and sleep efficiency while underestimating wake
after sleep onset (WASO), resulting in lower speci-
ficity compared to wrist-worn devices [25, 27]. This
reduced specificity for hip-worn devices can be attrib-
uted to the algorithms predominantly designed for
wrist-specific acceleration features, which are more
attuned to nocturnal movements indicative of wake-
fulness. Devices positioned closer to the body’s center
of mass, such as the waist or lower back, are likely to
register less movement during the night, potentially
leading to overlooked periods of wakefulness. Differ-
ing feature selection (y-axis acceleration, inclinometer
data, rolling-window size, changes in z-angle, etc.)
may also explain why different algorithms outper-
formed others when devices were worn at the same
site. Although we previously reported better esti-
mates of sleep onset using the count-scaled algorithm
when devices were worn at the hip [10], this was a
much smaller study in younger children, and the very
small differences observed (-3 min versus 2 min) may
reflect device specific differences or alternatively age-
related differences in sleep settling habits. Only sleep
efficiency (both definitions) was consistently superior
when devices were worn at the hip. Because most algo-
rithms overestimated sleep offset when worn at the hip
(i.e. result in later waking), and underestimated WASO,
sleep efficiency was thus higher. When determining the
most optimal placement, device and algorithm to use,
systematic variation should be an important aspect
to consider. Systematic variation is more tractable
than random variation because the direction of bias is
known. In this study, the HDCZA, Sadeh 1, CS, and
Cole-Kripke 1 algorithms performed well for estimates
of sleep onset, offset, total sleep time and sleep period
time, and importantly these estimates did not randomly
vary when different devices or placements were used.
Knowing that an algorithm, regardless of site placement
or device type, always identifies sleep onset before PSG
means that actigraphy identifies earlier sleep onset and
thus overestimates total sleep time, and in turn, sleep
efficiency.

Many current algorithms are disadvantaged by requir-
ing sleep onset and offset times from diaries, which
pose both respondent and analysis burden. Therefore,

Page 25 of 27

we specifically compared sleep estimates from three dif-
ferent algorithms (Sadeh 1, Cole-Kripke 2, Tudor-Locke
1) with PSG using diary recorded sleep onset and offset
timings to guide the algorithm. Overall, the use of a sleep
diary did not improve the level of agreement of sleep esti-
mates between accelerometers and PSG. Although the
children were asked about their sleep onset and waking
times not long after awakening, it appears that estimating
these timings by self-report is challenging, particularly
estimating timing of sleep onset, and especially when
more than one day of data are collected. These findings
lend further support for using automated algorithms for
detecting sleep and wake states, especially in large sam-
ple sizes.

Limitations of our study include that the accuracy
in clinical populations or in children with any signifi-
cant sleep disturbance is unknown, and it is not known
whether these results would be similar in other age
groups or those with irregular sleep patterns. Although
we did not include a direct measure of sleep latency (an
important sleep metric), “in-bed” time remained the
same across site placement, device and algorithm, which
suggests later sleep onsets would result in longer sleep
latency.

The strengths of this study include the simultaneous
comparison of two research-grade accelerometers worn
at several sites (wrist, hip, thigh, lower back) with PSG,
the rigorous reporting of actigraphy data according to
recommendations for children [22], and the larger num-
ber of children included in this validation study than
most previous studies [22]. Importantly, sleep data were
generated using 11 different automated sleep detec-
tion algorithms commonly reported in the literature,
but not previously compared to PSG in a large sample
of children and adolescents. While the comparison of
accelerometers to the “gold-standard” PSG is a strength,
it must be acknowledged that these two techniques
do measure very different signals and actigraphy sleep
scoring rules, particularly for WASO, are not entirely
comparable to PSG. This likely explains the discrep-
ancies, alongside the fact that actigraphy can wrongly
infer sleep when children are lying awake and relatively
motionless. This is particularly relevant as children set-
tle to sleep but are still awake, and likely explains the
earlier sleep onset detected by actigraphy. PSG detects
sleep using changes in brain wave signals which can
occur within a 30 s epoch. This rapid change may also
explain the high frequencies of wakings detected by
PSG, but not by actigraphy.

The differences between PSG and actigraphy method-
ology may also explain the large discrepancies between
algorithms for estimates such as WASO and number of
awakenings. Many of the algorithms define WASO as any
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transition between sleep and wake after sleep onset and
before sleep offset, similar to PSG scoring. However, the
CS algorithm aims to minimise artefactual movements
detected during sleep by actigraphy and defines WASO
as movements that occur over 5 continuous minutes of
awake. This method of defining WASO means disagree-
ments between PSG and actigraphy are considerably
greater, but it is not clear if estimates of sleep used to
demonstrate relationships with various aspects of health
are affected by differences in how WASO is defined. To
our knowledge, this has not been examined in the litera-
ture. Researchers may need to consider whether using a
different gold standard measure of sleep, such as vide-
osomnography, that measures similar constructs of sleep
as actigraphy in future validation studies. Accurately dis-
criminating between “awake” time and movement during
sleep is important if the true relationships between sleep
and health are of interest. Future studies where relation-
ships between sleep estimates derived using different
sleep algorithms and health should also be evaluated.
Likewise, understanding what brand of accelerometer
and site placement is best for accurate assessment of
sleep may not necessarily align with the best choice for
assessing other movement behaviours in the day (such as
physical activity and sedentary behaviour). Researchers
investigating 24 h movement behaviours will have to con-
sider these results in the context of their objectives.

Conclusion

In conclusion, our study suggests that automated sleep
detection algorithms applied to Actigraph and Axivity
accelerometers, worn either at the lower back, hip or
thigh, provide moderately comparable measures with
PSG, but estimates of sleep outcomes including sleep
quantity, sleep onset, sleep offset and WASO improve
markedly when accelerometers are worn at the wrist.
Accelerometry should be used cautiously in studies
where estimates of sleep quality such as sleep efficiency
and number of awakenings during sleep period are
important or in samples of participants who experience
frequent periods of wake after sleep onset.

Abbreviations
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SDSC Sleep Disturbances Scale for Children
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EOG Electro-oculograms
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