Bilirubin
IUPAC-név 3-[2-({5-[(Z)-(3-etenil-4-metil-5-oxopirrol-2-ilidén)metil]-3-(2-karboxietil)-4-metil-1H-pirrol-2-il}metil)-5-[(Z)-(4-etenil-3-metil-5-oxopirrol-2-ilidén)metil]-4-metil-1H-pirrol-3-il]propánsav
Más nevek 2,7,13,17-tetrametil-1,19-dioxo-3,18-divinil-1,10,19,22,23,24-hexahidrobilin-8,12-dipropánsav
Kémiai azonosítók
CAS-szám 635-65-4
PubChem 5280352
ChemSpider 4444055
EINECS-szám 211-239-7
SMILES
CC1=C(NC(=C1CCC(=O)O)CC2=C(C(=C(N2) C=C3C(=C(C(=O)N3)C)C=C)C)CCC(=O)O) C=C4C(=C(C(=O)N4)C=C)C
InChI
1S/C33H36N4O6/c1-7-20-19(6)32(42)37-27(20)14-25-18(5)23 (10-12-31(40)41)29(35-25)15-28-22(9-11-30 (38)39)17(4)24(34-28)13-26-16(3)21 (8-2)33(43)36-26/h7-8,13-14,34-35H, 1-2,9-12,15H2,3-6H3, (H,36,43)(H,37,42) (H,38,39)(H,40,41)/b26-13-,27-14-
UNII RFM9X3LJ49
Kémiai és fizikai tulajdonságok
Kémiai képlet C33H36N4O6
Moláris tömeg 584,66 g/mol
Megjelenés narancssárga, vörössessárga por
Halmazállapot szilárd
Olvadáspont 192 °C
Oldhatóság (vízben) 9 mg/l
Oldhatóság (benzol) igen
Oldhatóság (kloroform) igen
Veszélyek
EU osztályozás Ártalmas anyag Xn
Ha másként nem jelöljük, az adatok az anyag standardállapotára (100 kPa) és 25 °C-os hőmérsékletre vonatkoznak.

A bilirubin vagy epefesték a hem sárga színű bomlásterméke. A vörösvérsejteket lebontó szervekben, lépben, májban, bizonyos típusú nyirokcsomókban keletkezik. (Ez adja a horzsolásokból szivárgó folyadék sárga színét, és a helyi bevérzések fokozatos színváltozását is.) Bizonyos betegségekben (májgyulladás, epepangás, fokozott vörösvértestlebontás) koncentrációja megnő a vérben, és felhalmozódik a bőrben és a szem ínhártyájában (sárgaság, icterus). Ugyancsak megnő a bilirubin mennyisége a vérben komoly böjtölés, koplalás alatt.

A bilirubin sárgásvörös/vörös kristályos anyag, mely hevítésre megfeketedik. Vízben gyakorlatilag nem oldódik, a benzol, kloroform, klórbenzol, szén-diszulfid, savak és bázisok jól oldják.

Georg Städeler(en) izolálta 1864-ben epekövekből. Hans Fischer és Hans Plieninger(de) szintetizálta és tisztázta a szerkezetét 1942-ben.

Az epekő(en) többek között a bilirubin kalciumsóját is tartalmazza. Ökrök epekövéből állítják elő.

A név a latin bilis (epe) és ruber (vörös) szóból származik.[1]

A bilirubin molekulában négy pirrol kapcsolódik egymáshoz de nem alkotnak gyűrűt (nyitottak) (tetrapirrol); ezzel szemben a hemben a négy pirrolrész gyűrűt alkot, amit porfirinnek nevezünk.

A bilirubin szerkezete nagyon hasonló a fikobilin pigment szerkezetéhez, mely néhány algafajban fordul elő, melyek fényenergiát gyűjtenek vele, valamint a fitokrómhoz is, mellyel a növények a fényt érzékelik. Ezekben a molekulákban sem alkotnak a pirrolok gyűrűt (nyílt pirrollánc).

Fény hatására a többi pigmenthez hasonlóan a bilirubin konformációja is megváltozik. Ezt kihasználják a máj fejletlensége miatt sárgasággal született koraszülötteknél: a kék fénnyel megvilágított bilirubin jobban oldódik vízben, mint a nem megvilágított (ezért a beteg csecsemőt kék fénnyel világítják). A normál terhesség után, időre született újszülötteknél is kialakul egy enyhe fokú, veszélytelen, "fiziológiás sárgaság" a magzati hemoglobin gyors lebomlása miatt.

Szerepe a szervezetben

szerkesztés
Néhány vegyület színe
bilirubin narancssárga
biliverdin(en) sötétzöld
szterkobilin(en) barna
szterkobilinogén(en) sötétbarna
urobilin(en) barna
urobilinogén(en) színtelen

A bilirubin a hemoglobinból keletkezik. A hemoglobin először szétválik hemre, globinra(en) és vasra a lép, máj és csontvelő sejtjeiben, miközben a hem oxidálódása már megkezdődik:

hemoglobin → verdoglobin → bilirubinglobin


hem
vas (Fe2+ → Fe3+)
globin

A globin a többi fehérjéhez hasonlóan aminosavakra bomlik. A vasat a szervezet teljes egészében felhasználja: a vérvesztésen kívül szinte nincs is vasürítő mechanizmus.

 
A hem a lép, csontvelő és máj sejtjeiben bilirubinná alakul, majd a véráramon keresztül a májba, az epébe, végül a bélbe kerül

A vízben rosszul oldódó bilirubin albuminhoz kötődve jut el a májba (nem konjugált, más szóval indirekt bilirubin), ahol újra felszabadul, majd UDP-glükuronsavval(en) egyesülve (konjugált, azaz direkt bilirubin) ismét vízoldhatóvá válik, és az epén keresztül a bélbe kerül.[pontosabban?] Az epe sötétzöld színét a biliverdin adja.

A bélben a bilirubin legnagyobb része szterkobilinogénné, majd barna színű szterkobilinné alakul, és a széklettel ürül. Ez a vegyület adja a széklet barna színét.

A bélbeli bilirubin kis része urobilinogénné alakul és felszívódik a bélfalon át, majd visszakerül a vérkeringésbe. Itt egy része újra bilirubinná alakul, más részét a vese kiválasztja urobilin formájában. Az urokrómmal együtt ez a vegyület adja a vizelet sárga színét.

Normál körülmények között a vizeletben csak kevés urobilinogén van. A bilirubin nem jut át a vesében a glomerulal capsule-kon (Bowman-tok(en)?), csak a konjugált bilirubin. A bilirubin csak akkor jelenik meg a vizeletben, ha a vérben abnormális mennyiségben van jelen (bilirubinuria(en)). A vizeletbe került bilirubin sárga-barna színű, és rázásra sárga habot ad; régebben ezt az egyszerű módszert a bilirubin kimutatására használták (hab-teszt).

Kimutatás

szerkesztés

A ma használt legtöbb teszt azon alapul, hogy a bilirubinból különböző diazóniumsók hatására, az oldat savasságától is függően más-más színű vegyület keletkezik. A gyakorlatban a reagenset tesztcsíkok(en) tartalmazzák, amiket egyszerűen bele kell mártani a friss vizeletbe, és esetleg némi várakozás után össze kell hasonlítani egy színskálával.

Az alább leírt kimutatási módszerek jó része elavult; elsősorban a bilirubin kémiai reakciói miatt érdekesek.

A laboratóriumban általában az össz-bilirubin mennyiségét határozzák meg, de vannak vizsgálatok, melyek külön mutatják ki a direkt (UDP-glükuronsavval konjugálódott) és indirekt (albuminhoz kötött) bilirubint.

Vizeletből

szerkesztés

A tesztek előtt a vizeletet sokszor kloroformmal kirázzák. A kloroform sokkal jobban oldja a bilirubint, így a rázás után a bilirubin legnagyobb része a kloroformba kerül. Mivel a kloroform alig keveredik a vízzel (vizelettel), a kémcső aljáról pipettával kiszívható.

A vizelethez bárium-kloridot adva bárium-szulfát keletkezik, mely magával ragadja a bilirubint. A csapadékot leszűrve eltávolítható a bilirubin, miközben az urobilinogén továbbra is a vizeletben marad. Ezzel kimutatható az urobilinogén olyan próbákkal, melyek a bilirubinra is reagálnak (pl. Ehrlich-teszt(en)), miközben a bilirubin-próbák egy részével (pl. Fouchet-próba vagy Nakajama-reagens alább) a csapadékból is kimutatható a bilirubin. Hasonló hatás érhető el kalcium-hidroxiddal (pl. Huppert-próba alább).

Gmelin-próba

szerkesztés

5 ml vizelet fölé óvatosan 5 ml tömény salétromsavat csepegtetünk. Ha a vizeletben bilirubin van, a két folyadék érintkezési felületén zöld gyűrű alakul ki.

A salétromsav a bilirubint elıször biliverdinné (zöld), majd bilicianinná (kék) és biliprazinná (viola/piros), végül koletelinné (sárga) oxidálja.

A próbát Leopold Gmelin(en) német vegyész dolgozta ki.

A próba érzékenyebb változata a Rosenbach-reakció. A vizeletet szűrőpapíron többször átszűrjük, és üvegbottal tömény salétromsavat csöppentünk a szűrőpapírra. Bilirubin jelenlétében a csöpp körül színes gyűrűk láthatók.

A tesztet Ottomar Rosenbach(en) német orvos dolgozta ki.

Lugol-próba

szerkesztés

Négy csepp vizeletet Lugol-oldatba(en) cseppentünk és összerázzuk. A vizeletbeli bilirubin zöld elszíneződést okoz.

A Lugol-oldat: 1 g jód és 2 g kálium-jodid 100 ml desztillált vízben oldva.

A tesztet Jean Guillaume Auguste Lugol(en) francia orvosról nevezték el.

Bonnano-próba

szerkesztés

A vizelethez pár csepp tömény sósavat és nátrium-nitritet adunk. A bilirubinból zöld színű biliverdin keletkezik.

Krokievitz-próba

szerkesztés

Nátrium-nitrittel és szulfanilsavval a bilirubin élénkvörös lesz, ami 1-2 csepp tömény sósav hatására ametisztkékké változik.

Brasham-próba

szerkesztés

A kloroformmal kirázott és bepárolt vizeletkivonat salétromsavra élénkvörös színt ad.

Fouchet-próba

szerkesztés

A vizeletet bárium-kloriddal keverik össze, majd triklórecetsav és vas(III)-klorid keverékét adják hozzá (Fouchet-reagens[2]). Ha van bilirubin a vizeletben, az oldat zöld színűre változik.

A Kapsinov-próba teljesen hasonló. A vizelethez Obermayer-reagenset adnak. Ez füstölgő sósavban oldott vas(III)-klorid. Az eredmény itt is a zöld elszíneződés.

A reagenset Friedrich Obermayer (1861–1925) osztrák belgyógyászról nevezték el.

Huppert-próba

szerkesztés

A kalcium-hidroxiddal megkötött csapadékról pár csepp alkohollal eluáljuk (kioldjuk a csapadékból) a megkötött bilirubint, és tömény sósavat adunk hozzá. A szükség esetén vízfürdőn melegített oldat zöld színű lesz a bilirubintól.

A Nakajama-reagens a Huppert-próba módosítása. Alkoholban oldott vas(III)-kloridot és sósavat teszünk a bárium-szulfátos csapadékhoz, majd felforraljuk. A bilirubintól az oldat intenzív zöld színű lesz.

A próbát Karl Hugo Huppert(en) német orvos-vegyészről nevezték el.

Jolles-próba

szerkesztés

A vizeletet bárium-klorid, kloroform és pár csepp sósavval összerázzuk és a csapadékot megszárítjuk. Egy-két csepp tömény kénsavra a bilirubin kékre vagy ametisztkékre színeződik.

A próbát Adolf Jolles[3] (1863–1942) osztrák vegyészről nevezték el.

Gluzinszky-próba

szerkesztés

A vizeletet formalinnal forraljuk, amitől bilirubin jelenlétében zöld színű lesz. Pár csepp sósav hatására ametisztkékké/ibolyaszínűvé változik.

With-próba

szerkesztés

A vizeletet a kalcium-foszfát csapadék magához köti. Savban való oldás után a Jendrassik-Gróf eljárás szerint határozzuk meg a bilirubin-tartalmat.

Az össz-bilirubin normál szintje a vérben 17, a direkt bilirubiné 5 μmol/l alatt kell legyen. Csecsemőknél a bilirubint konjugáló enzimrendszer éretlensége miatt általában 50–200 μmol/l között van. 300 μmol/l fölött be kell avatkozni az agykárosodás veszélye miatt. 400 μmol/l fölött részleges vércserét végeznek. A vércsere elkerülésére kék fénnyel ún. újszülöttkori fényterápiát alkalmaznak, amely hatására közvetlenül a bőrben, illetve a bőr alatti kapillárisokban a bilirubin a vese által kiválasztható vegyületté alakul.

Van den Bergh-próba

szerkesztés

Az Ehrlich-reagenssel(en) diazotáljuk a bilirubint színes vegyületté. A próba mennyiségi meghatározásra is alkalmas, és elkülöníthető a direkt és indirekt bilirubin (az előbbi esetben a színreakció már alkoholos kezelés nélkül is jelentkezik).

Jendrassik-Gróf-próba

szerkesztés

Nátrium-acetátos koffeinoldat segíti elő a diazotálást. A direkt és indirekt bilirubin külön-külön mennyiségileg mérhető.

A próbát Jendrassik Loránd[4] (1896–1970) magyar orvosról nevezték el.

  1. Fülöp József: Rövid kémiai értelmező és etimológiai szótár. Celldömölk: Pauz–Westermann Könyvkiadó Kft. 1998. 28. o. ISBN 963 8334 96 7  
  2. Fouchet's Reagent. HIMEDIA (Hozzáférés: 2018. szeptember 5.) arch
  3. Johannes Koll: A.o. Prof. Dr. Adolf Jolles. Gedenkbuch für die Opfer des Nationalsozialismus an der Hochschule für Welthandel 1938–1945 (Hozzáférés: 2018. szeptember 6.)
  4. Magyar életrajzi lexikon. Hungarológiai Alapkönyvtár (Hozzáférés: 2019. szeptember 7.)

Kapcsolódó szócikkek

szerkesztés
A Wikimédia Commons tartalmaz Bilirubin témájú médiaállományokat.