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Abstract

We introduce a method for deriving a metric, locally based on the Fisher information matrix, into
the data space. A Self-Organizing Map is computed in the new metric to explore financial statements of
enterprises. The metric measures local distances in terms of changes in the distribution of an auxiliary
random variable that reflects what is important in the data. In this paper the variable indicates bankruptcy
within the next few years. The conditional density of the auxiliary variable is first estimated, and the
change in the estimate resulting from local displacements in the primary data space is measured using
the Fisher information matrix. When a Self-Organizing Map is computed in the new metric it still
visualizes the data space in a topology-preserving fashion, but represents the (local) directions in which

the probability of bankruptcy changes the most.
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I. INTRODUCTION

Bankruptcies have such a great importance on the financing models and business life in general,
that their analysis has become almost its own field of science. It has been widely studied in
economics, and most data analysis methods have been suggested to the problem. A traditional
benchmark for these methods has been the bankruptcy prediction problem, but we argue that
at least as important from the practical point of view is to develop methods for analyzing and
understanding the different corporate behavior types and their relation to bankruptcy. In this
task, the Self-Organizing Map (SOM) [1], [2] has been found a valuable tool, mainly because
of its good visualization capabilities. The present paper introduces a further development of
SOM-based data analysis. Our results show that it yields maps with enhanced visualization
of bankruptcy risk, and also have a statistically better separation of bankruptcies from healthy
companies. The methodology can also be directly utilized in other application areas.

The success of unsupervised algorithms, such as the Self-Organizing Map and clustering meth-
ods, depends crucially on the metric, the measure of the distance between the objects of interest.
The metric, on the other hand, depends on which kinds of variables have been chosen to repre-
sent the objects, i.e., on variable selection and feature extraction. These processing steps affect
even supervised methods although many supervised methods are in principle, given unlimited

resources, universal approximators. The old problem of feature extraction or variable selection,
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that is, choosing how to represent the input data, persists as a crucial unsolved research topic in
pattern recognition, neural computation, and data analysis.

At its simplest, feature extraction reduces to choosing and scaling the input variables, but
more generally it is a nonlinear mapping of the input space to a space that is more suitable
for further processing. Successful feature extraction stages are usually tailored for the task at
hand using expert knowledge or heuristic rules of thumb. There is often, however, some implicit
auxiliary information available about the relevance of the features of the input. For instance, in
a classification task the relevant features are those that separate between the classes.

Implicit information about the relevance of the features may also be available for unsupervised
descriptive data analysis tasks. A relevant classification of the samples may be known and the
goal may be to find a natural grouping for them; a grouping that reflects the classification but
may, for example, discover subclasses. Another example is process monitoring in which some
indicator of the performance of the process may be associated with each data vector. The quality
of the end product could be a suitable indicator. The goal would then be to find out factors
affecting the performance of the process.

Our ultimate aim is to develop algorithms that take such auxiliary information into account in
order to explicitly transform the original metric of the input space. The space is locally scaled
so that the new (local) distances will measure the change of the auxiliary information (for a
preliminary account see [3]). Proximity relations or, loosely speaking!, topology of the input
space is still retained. Note that by contrast, a change of the metric that does not preserve the
proximity relations would map some close-by points of the input space to very different feature
values, and the generalization power originating from the smoothness of the model would be lost.

For computational reasons the new metric is best suited for algorithms that rely mostly on local
distances of the input space. The Self-Organizing Map is one example. When an unsupervised
algorithm learns using the new metric, the learning process is a useful combination of supervised
and unsupervised learning. The proximity relationships of the input space are preserved as is
typical of unsupervised methods, while the metric (local scaling of the space) is induced in a
supervised manner.

We will apply the new metric to analyze the bankruptcy risk of enterprises on the basis of

financial statements. The setting is similar to that of Kiviluoto and Bergius [4], [5], [6]. They

'Even though the mapping is continuous it is not topology preserving since it may be projective.
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have used Self-Organizing Maps to extend bankruptcy analysis from traditional straightforward
prediction of bankruptcy to visual exploratory analyses of the relationship between the financial
statements and bankruptcy risk of different kinds of enterprises. We complement their studies
by using the new metric in the SOM-based exploratory analyses. The enterprises are organized
on a SOM in such a manner that the analysis will concentrate on the (local) factors that affect
the probability of bankruptcy most. We will then explore the results to find out the important

dimensions for various kinds of enterprises.

II. THE METRIC

We wish to transform the distance measure of the data space so that it will concentrate on the
important differences between data samples and disregard irrelevant dimensions. It may be clear
that such a metric is impossible to construct without some auxiliary, prior knowledge about the
importance of the differences. In this work we assume that there is auziliary data available (more
details below), and that the auxiliary data implicitly defines what is important or relevant.

The new metric is to be learned based on a data set, and used as a distance measure for
subsequent analysis and visualization of the set. The metric is constructed such that it reflects
the local importance of different directions in the data space. For example, it could measure
how much changes in the financial state of a company affect the bankruptcy risk of that kind of
enterprise. Due to its locality, the distance measure is capable of revealing different factors for
different kinds of enterprises. Moreover, since the distance measure is defined in the original data
space, it is straightforward to interpret the results in terms of the original variables, here the
indicators of financial states. For example, if the distances for a company type are large along
the axis corresponding to the profitability, then profitability contributes to the bankruptcy risk
of such companies.

In exploratory data analysis applications the similarity relationships between the data samples,
the enterprises, can be visualized with methods such as the Self-Organizing Map, precisely in the
same way as previously. The only difference is that the relative distances of the enterprises
will change. If they are different along an important dimension (actually the non-linear route
of minimal length) their distance is large, whereas if they are different only along an irrelevant

dimension they will become very close to each other?.
%In practical computations we will use local approximations to the nonlinear routes, which is sensible for algo-

rithms such as the SOM that depend mostly on local distances.
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A. Learning metric: The principle

We seek to describe the similarity relationships of items x of the data space by utilizing the
information within the joint distribution of the data and auziliary data c. Denote the joint
probability density function (PDF) by p(x,c). We will call x € X C R” the primary data, and
denote the associated random variable by X.

Denote the random variable that produces the auxiliary data by C. It is assumed that the
¢ or, more specifically, the conditional distributions p(c|x) implicitly convey information about
which kinds of similarity relationships are important in the data. In our present application to
bankruptcy analysis, the ¢ are binary and indicate whether an enterprise goes bankrupt within
the next three years, and the x are feature vectors derived from the financial statements. The im-
portant changes in the financial state x are then those that change the probability of bankruptcy,
the distribution p(c|x).

A change in distributions can be measured by the Kullback-Leibler divergence D. An old result

[7] gives a formula for the local Kullback-Leibler divergence as

D (p(cfx)|lp(clx + dx)) = dx" I (x)dx , (1)

369 = By { (e t08p(eb0) (5 logp(c|x>)T} ®)

is the Fisher information matrix and Ej,|x) denotes expectation over the possible values of C,

where

conditioned on x. Here the Fisher information matrix J(x) is the representation of the tensor of
the new metric in the original Euclidean coordinates in which x is also presented. The matrix is
positive semidefinite, and it defines the local scaling of the directions of the input space at the

point x. We then define the new local metric of the data space as
d2(x,x + dx) = D(p(c|x)||p(c|x + dx)) = dx’ I (x)dx . (3)

In the new metric the conditional density p(c|x) changes evenly in all directions, at all points of
the input space.

Note 1: The Fisher information matrix was originally derived for measuring the effect that
a change in the model parameters produces on the probability distributions that the models
generate [8]. The resulting distance is called (Fisher) information distance or (Fisher) information

metric in the information geometry literature (see, e.g., [9], [10], [11]). Here we measure the effect
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of a change in the location in the primary data space to obtain a metric there. We will call
the resulting metric the Fisher metric and call the approach semisupervised since the auxiliary
distribution in a way supervises the construction of the metric.

Note 2: The new metric (3) is defined locally, for close-by points x and x 4 dx, and global dis-
tances are defined by path integrals. In principle there exists another more straightforward alter-
native: to simply measure the distance between any non-local pair x and x’ by D(p(c|x)||p(c|x')).
Such a measure might be useful for some applications but its disadvantage is that it would com-
pletely override the original structure of the data space. Two points with identical density esti-
mates, p(c|x) and p(c|x’), would have a zero distance even if the points were originally far away.
If some kind of generalizability exists over X, it would be destroyed by the change of the topology.
In fact, the original representations x would not be needed at all, and the data points could be
simply represented by distributions in the C-space. All information contained in the primary
data would then be lost.

An additional disadvantage would be that the new representations cannot be interpreted in
terms of the original data variables, at least not without further analyses. In the bankruptcy
application it is of prime importance to know which aspects of the financial state of a company

are related to changes in its bankruptcy risk and our method focuses on this problem.

B. Learning metric: Computation

The conditional probability distribution p(c|x) is usually estimated from a data set {x* c¥};,
k=1,...,N. Any method that produces differentiable estimates is potentially useful. The choice
of the estimator is discussed in Section II-C; for the moment assume tentatively that we have an
estimate p(c|x) of the conditional density available.

The estimate p(c|x) could in principle be used in place of p(c|x) in (2-3) to approximate the new
metric. However, for numerical computations it is not necessary to form the Fisher information

matrix explicitly, for one can get the squared local distances directly from

2
d%(x,x + dx) = E(clx) { <de8£X logﬁ(c|x)> } . (4)

The new metric can be used in any supervised or unsupervised method; in Section IIT we will
describe how to use it to compute Self-Organizing Maps for visualization and exploratory data

analysis purposes.
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Fig. 1. The metric generated by a PDF estimate for a two-dimensional two-class data set (N=1000).

The first class is sampled from a symmetrical Gaussian with p(c) = % (the topmost cluster in the

figure), the second from a sum of two Gaussians (the bottom clusters). For all the Gaussians, 0=0.6,
and the mutual distances of the centers are equal to unity. The gray-scale background illustrates the
marginal density p(x), and the small line segments (or dots) depict the dominant direction and relative
distances d? in the local metric. Distances are nonzero only in the directions where the conditional

density changes. The PDF was estimated with a Gaussian Parzen estimator (o = 0.4).

If only partially labelled data are available, it is best to use a PDF estimator with the ability
to utilize such data. The Gaussian mixture model MDA2, described in Section II-C, can be
easily extended for partially labelled data as it is usually optimized by the EM algorithm. After
the PDF estimator is fixed, using partially labelled data with the new metric is straightforward,
for the metric is defined into the primary data space and therefore can be computed with the
knowledge about the primary sample x only.

A demonstration of the new metric for an artificial, easily visualizable two-dimensional, two-
class data set is presented in Figure 1.

Note 1: Non-local distances can be defined as the minimal path integrals of the local distances,
minimum taken over all possible paths. This generates a Riemannian metric (for general treat-
ments of the related information geometry, see [9], [10], [11]). In practice the computation of the
integrals would be extremely tedious and we will below resort to local approximations which are

sensible for methods that rely mostly on local distances (see Section III).
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Note 2: If the estimate p(c|x) is very uneven or the Fisher metric spans an unpreferably low-
dimensional space, the metric can be “regularized” by mixing it with the original Euclidean metric

of X, resulting in the metric tensor represented by
J(x) = (1 - XN)J(x)+ A, (5)
where A is a small positive constant (0 < A < 1) and I is the identity matrix.

C. Metrics from two kinds of PDF estimates

Our goal here is to estimate the probability density p(c|x) of the auxiliary random variable C,
conditioned on X. Plenty of alternative methods are available. Many of them have been developed
for classification purposes (for reviews see e.g. [12], [13]). Most such methods would typically be
suboptimal for our purpose, however, because a good classifier optimizes the (sometimes implicit)
probability density function (PDF) estimate near the class borders or, more generally, near the
area where the decision criterion reaches critical values.

In principle, any estimator which produces differentiable estimates of the conditional densities
could be used. In this paper we skip the discussion about the merits of different estimators and
rely on two classical methods. The first is a computationally intensive but well-performing non-
parametric estimate, the (Parzen) kernel estimator, and the second is a Gaussian mixture model.
Both estimators can be expressed within the same general mixture density form.

Let us consider an additive mixture model in which the generating component densities are
identified with the discrete random variable U. The value of U is u; if the jth component
generator has generated the current data sample. We assume that ¢ and x are conditionally

independent given the value of U. Then the joint density generated by the jth component is

p(Ci,Uj,X) = p(Ci|Uj)p(X|Uj)p(Uj) .

We will model p(c;|uj) by a coefficient &3, p(u;) by j, and p(x|u;; ;) by a function b;(x;8;)

parameterized by €. In this notation the model for the joint density of the data is
plei,x; @) =) migjibi(x;05) , (6)
J

where ® has been used to denote the whole set of parameters of the model.

By applying the Bayes rule, an estimate of the conditional density is obtained:
>, mi&iibj (x5 05)
Zj ijj(X; 09)

pleilx; ©) =
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The kernel estimator and the mixture density model differ in their parameterizations. Esti-
mation of the parameters in these special cases will be discussed in more detail below. For the
moment, assume that the values of all the parameters of the conditional density estimate (7) are
known.

It is shown in Appendix A that if the component densities b;(x; ;) are Gaussians with equal

diagonal covariance matrices oI and means @; then the distance in (4) becomes

otd?(x,x + dx) =
2
Ep(elx) { [de (Ep(ujlx,cl';ej){aj} N EP(“f‘x?gi){aj})] } - ®

The parameter o governs the width of the Gaussians and therefore the smoothness of the resulting
PDF estimates. A method for choosing the value of o when the new metric is used for learning
Self-Organizing Maps will be described later in Section IV-B.1: A suitable likelihood measure is
proposed, and the value of the sigma can be selected to maximize the measure in the learning or

validation set.

C.1 Kernel estimation

In kernel density estimation the component densities bj(x;6;) are called kernels; the number
of kernels is equal to the number of data points n, and the parameters 8; are set to the data
samples, @; = x;. The prior probabilities are set to m; = 1/N. The parameter &;; = 1 if in the
jth data pair (x;,c}) the value of C'is ¢} = ¢;. Otherwise {;; = 0. The only free parameter left

to be estimated is the variance o2 of the kernels.

C.2 Gaussian mixture

When the component densities in the model (7) are chosen to be Gaussians parameterized by
their means, the model is equivalent to the Mixture Discriminant Analysis 2 in [14] (cf. also [15];
the relation between mixture discriminant analysis and our work will be discussed in more detail
in Section II-D). Now 7j, £j;, and @; will all be estimated from the data. Formulas for estimating

the model with the EM algorithm [16] are presented in Appendix B.

D. Related works

According to our knowledge the introduced principle is new. Works in which some aspects

resemble our approach exist, however. Amari and Wu [17] have augmented support vector ma-
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chines by making an isotropic change to the metric near the class border. In contrast to this, our
metric is non-isotropic and changes the metric everywhere. Jaakkola and Haussler [18] induced
a distance measure into a discrete input space using a generative probability model. The crucial
differences are that they do not use external information, and that they do not constrain the
metric to preserve the topology.

In some earlier works auxiliary information has been incorporated directly into the represen-
tations of the data (see, e.g., [2], [19]; note, however, that the goal in these works is different
from ours). The auxiliary information can be encoded for example in the 1-out-of-C manner and
concatenated to the data vectors x. The main problem of this approach, for our purposes, is the
arbitrary relative scale of the primary and auxiliary data. If the relative scale of the auxiliary
data is too small, the primary data will dominate in the distance measure, whereas our goal is to
measure changes in the auxiliary data and represent these changes as the distance measure of the
primary data space. If the relative scale of the (discrete) auxiliary data is too large, on the other
hand, then the data vectors will effectively be divided into separate clusters, each corresponding
to one possible value of the auxiliary variable. The proximity relations (topology) of the original
data space will then be destroyed.

Mappings from the original space to a new lower- or equal-dimensional space, which is the
general definition of feature extraction, have a relation to our method. Automatic methods for
optimizing such mappings, for example by maximizing mutual information have been proposed
[20], [21]. Unlike in a standard separate feature extraction stage, however, the change of the metric
in our method defines a manifold which cannot in general be projected to a Euclidean space of the
same or lower dimensionality. Therefore, no dimensionality-preserving or dimensionality-reducing
mapping with the same local properties exists which means that the change of the metric is a
more general operation than feature selection by a dimensionality-preserving (or dimensionality-
reducing) nonlinear mapping.

The change of the metric can additionally be interpreted as a kind of nonlinear version of
linear discriminant analysis (LDA; for applications of LDA in finance see, e.g., [22]). The LDA
finds a linear transformation, defined globally for the whole data space, that aims at maximizing
class separability. In a more recently proposed variant called mixture discriminant analysis [14],
[15], a set of Gaussian kernels are fitted to data by optionally constraining the dimensionality of

the subspace within which the kernels are allowed to reside. In contrast to LDA and the newer
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variants, we transform the input space locally to make the class distribution change isotropically,
or with the same rate in every direction. This allows inspection of the class distributions even
more closely.

Note that the discriminant analysis is commonly used for two tasks: acquiring classifications
and understanding the relationships between classes by visualizations and other means. Our
model is more closely related to the latter task, whereas LDA usually emphasizes the former.

The classical canonical correlation analysis has recently been generalized by replacing the linear
combinations with nonlinear functions 23], [24]. Our framework could as well be adapted to the
task of finding statistical dependencies between two data sets by replacing the discrete auxiliary
random variable with a parametrized set of features computed from an auxiliary continuous

random variable, which will be explored in future work.

ITI. SELF-ORGANIZING MAPS IN THE FISHER METRIC

In principle any model that utilizes local distances could be adapted to use the Fisher metric
(4). In this work we derive the on-line Self-Organizing Map algorithm for the new metric and use

it in data analysis.

A. The Self-Organizing Map

The Self-Organizing Map (SOM) [1], [2] is a regular grid of units, with a model vector m,;
associated with each unit ¢. During the learning process the model vectors are gradually modified
to follow the distribution of the input data in an ordered fashion: model vectors close-by on the
map lattice attain close-by locations in the input space. Two-dimensional map grids can be used
to visualize various properties of the input data in data analysis applications.

The SOM algorithm iterates two steps. The index of the winning unit w closest to the current

input sample x(¢) at time ¢ is first sought by
w(x(t)) = arg min d*(x(t), m;(t)) , (9)

where d is a distance function, commonly Euclidean. Then the model vectors are adapted ac-
cording to
1 0

mi(t + 1) == mz(t) - ihwi(t)8—rnid2(x’ mz) . (10)

If d is the Euclidean distance, the adaptation rule becomes the familiar

m;(t + 1) = my(t) + hwi(t)(x — m;) . (11)
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Here hy;(t) is the so-called neighborhood function, a decreasing function of the distance between
the units w and 7 on the map lattice. The height and width of h,,;(t) decrease gradually in time.

For more details see [2].

B. SOM in the new metric

To organize SOMs in the Fisher metric that is determined by the differences between the
estimated posterior distributions p(c|x), we first construct a PDF estimator for the distributions.
To find the winning unit for the data sample x(t), we then calculate distances to the set of model
vectors, and find the one closest to x. In general, the distances will be non-local.

To compute non-local distances, a search for the minimal path integral would be required,
where differential distances along the paths would be defined by (4). Here we will approximate
the non-local distances by the local distance measure (4), computed around the data sample x(%).
The winning unit will then be found with (9). If dx is small, this approximation will be fair,
whereas for far-off points the approximation will be rougher.

The assumption is that the approximation is locally accurate enough to preserve the order of
the distances, so that the model vector m; actually closest in the Riemannian metric (defined as
the shortest path from x to m;) is equal to the m,, computed from the local approximation. This
is sensible since model vectors that are close to x (as measured by the true non-local distances)
are also likely to have small dx, so the local approximation will not usually affect which unit
becomes the winner. Occasionally this may still happen, so the true test of the goodness of the
approximation will be the experimental results. The results of the case study in Section IV are
favourable.

As in the original SOM, the model vector of the winning unit and units in its neighborhood are
updated into the direction where the distance d?(x, m;) decreases most rapidly, and proportionally

to the magnitude of the change. In a Fuclidean metric, the update is given by the gradient
0

52—||x — my||%. The Fisher metric, however, is a Riemannian metric, and steepest descent in a
1

Riemannian metric is given by the so-called natural gradient [25]. Generally, the natural gradient
is equal to the conventional gradient multiplied by the representation of the metric tensor (a
matrix). Because in the original coordinate system the metric tensor is represented by the Fisher

information matrix, the natural gradient in these same coordinates is given by

0

Bmi

0

-1
J7 (%) om.

d(x,m;) = 37 (%) ——[(m; — x)"J(x)(m; — x)] = 2(m; — x) . (12)
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Assuming that x and m; are close to each other, (12) coincides with the direction of the shortest
path from x to m;.

In conclusion, the update rule in the Fisher metric is the same as in the Euclidean SOM, (11).
The difference lies in the definition of the winner, (9), where the distance measure is in general

defined by (4), and in the case of Gaussian kernel-based PDF estimators by (8).

C. A demonstration

The effect of the change of the metric on SOM is demonstrated in Figure 2 for a six-dimensional,
three-class toy data set. We computed a Self-organizing Map in both the original Euclidean metric
and in the Fisher metric, and visualized the posterior class distribution on the SOMs. As can be
seen in the figure, the classes are more distinctly and orderly separated on the SOM computed
in the Fisher metric. Most notably the unimodality of the distribution of each class is clearly
visible.

In data analysis applications the same SOM grid can be used for visualizing other aspects of

the data as well. Such displays will be used in Section IV.

D. Computational complexity

Each iteration of the SOM algorithm consists of the selection of the winning SOM unit for the
current input, and an update of the model vectors. Since the update rule in the Fisher metric
is unchanged from the Euclidean case, the computational complexity of the update is the same,
i.e., O(NpramrNsoar) for a neighborhood function that covers the whole map grid. Here Npray is
the dimensionality of the input and Ngoas is the number of SOM units.

To select the winner, distances must be calculated from the input to each SOM unit. Using
the local distance approximation, this can be done by computing the Fisher information matrix
first, or by directly calculating the distances. The first alternative requires O(NpryprNo Ny +
N2/ (Nc 4+ Nsownr)) operations, where N¢ is the number of classes and Ny is the number of
mixture components in the PDF estimate. The second alternative requires O(NpryNo(Ny +
Nsour)) operations. If the dimensionality is small compared to the number of classes and the size
of the SOM, then computing the Fisher information matrix explicitly may be faster; otherwise it
is preferable to calculate the distances directly.

In the better method (MDA2) of the present case study there are 10 kernels, the number of

classes is 2, the dimensionality is 23, and the winner search therefore requires about twice the
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Fig. 2. A demonstration of the difference between SOMs computed in the Fisher metric and in the
Euclidean metric. The primary data was six-dimensional and multinormally distributed, i.e. x ~
N(0,1). The auxiliary data was divided into three smoothly changing Gaussian classes, i.e. p(c|x) =
G(x—m, p?)/ Y, G(x—my, p?), where G(x, p?) is the probability density at x given by the distribution
N(0,p%). The class centers m, were placed evenly around the origin so that ||m.|| = 1, and the
variance p? was 0.81. The size of the data set was 3382 points. A PDF estimate was generated using
the Parzen model, with ¢ = 1.0. SOMs were then trained to the data with the stochastic algorithm
(9), (11). Posterior probabilities of the classes (according to (7) for the Parzen estimate) evaluated
at the model vectors of the SOM are shown for the two SOMs (size: 40 by 40 units) organized to
represent the same data set in the Fisher (a: class 0, b: class 1, ¢: class 2) and in the standard
Euclidean (d—f) metric. The probability 0.767 is shown with the lightest shade and the probability
0.040 as pure black.

amount of computation required for the simple Euclidean metric.
Note that there exist several speedup methods for the SOM (see, e.g., [26]). We have not

investigated in detail their use with the Fisher metric but many of them are applicable.

IV. APPLICATION TO BANKRUPTCY ANALYSIS

The method presented in the previous chapters is applied below to a bankruptcy analysis
task. Traditionally, most of the quantitative studies on bankruptcy have been directed towards
prediction. The two dominating approaches in the bankruptcy prediction problem have been
classification and probability estimation. In a classification task, based on the present and possibly
also past data, the companies are divided into two groups: those that are likely to go bankrupt

within a certain time interval, and those that are not. In probability estimation, the aim is to
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get estimates of the probability of bankruptcy within certain time interval—a simplified version
of this is to rate the companies according to their bankruptcy risk, without requiring the ratings
to be true probabilities. Naturally, probability estimation (and risk rating) models also offer a
basis for classification.

A seminal work on bankruptcy prediction was performed by Altman and co-workers (summa-
rized in [22]), who applied Linear Discriminant Analysis to this problem. Later, almost every
statistical method, including neural network approaches, has been proposed (see e.g. [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36]. Generally, it has been observed that some of these
methods, especially the more "advanced" ones such as neural network models, have slightly over-
performed LDA. However, in all cases the improvement has been quite small, excluding the studies
where only training set performance has been reported, or where the data set has been very small.

Another view, complementary to the bankruptcy prediction problem, is here referred to as
bankruptcy analysis: trying to understand the different corporate behaviors and their relation
to the risk of bankruptcy. A very influential qualitative work in this area has been carried out
by Argenti [37]. One of his observations was that there are several different bankruptcy types
("failure trajectories") that differ in their causes, symptoms, and length. Along these lines of
thought, a research project in Helsinki University of Technology has attempted to quantify and
visualize these different behavior patterns [5], [6], [38], [39]. Because the present study is closely
related to this project, some of its findings and also challenges are briefly summarized below.

First, the SOM does not increase the accuracy in bankruptcy prediction, but is very useful in
visualizing the present state of a company and possible directions of its future development—the
analyst gets a much more accurate idea of the state of the company from the visualization on a
SOM than from a single scalar estimating the bankruptcy risk.

Second, different types of corporate behavior (trajectories) can be identified with the SOM.

Third, one problem with the visualization using an SOM is that when the data has an intrinsic
dimensionality higher than that of the SOM grid, discontinuities in the mapping sometimes result.
For instance, a single cluster of high bankruptcy risk may appear multimodal on the SOM. The
Fisher metric approach, described in previous chapters, is likely to help with this problem, for the
manifold spanned by the Fisher metric is of lower dimensionality than the original data space.

Thus, the primary goal in this section is to use the new methods to better understand the

(nonlinear) dependencies between bankruptcies and financial indicators. The dependencies are
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converted into a metric of the input space, and we use the SOM to visualize the dependencies in a
concise form. Because the metric is chosen to describe changes in the bankruptcy sensitivity, the
SOM should emphasize features of the input space that are (locally) contributing to bankruptcies.

In this section, we will for brevity call a SOM computed in the Euclidean metric SOM-E, and
a SOM computed in the Fisher metric SOM-F.

A. Data

The financial statements were from Finnish small and medium-sized enterprises. The line of
business, age, size, and completeness of the available data were used as the selection criteria,
but no data was otherwise rejected on the basis of ’atypicality’. In the data set there were
6195 financial statements given by about 1500 companies. Of these statements, 158 concerned
companies which have gone bankrupt.

In this paper we do not take into account the development of companies in time. Multiple
statements from the same enterprise but from different years are treated as independent samples.

We used a set of 23 common financial indicators including measures of growth, profitability,
solidity, liquidity, and operational efficiency; the samples of the primary data space x were 23-
dimensional real vectors. The indicators were preprocessed (each separately) using histogram
equalization. The auxiliary random variable C' was binary, indicating whether the statement was

followed by a bankruptcy within 3 years.

B. Methods

The data was randomly divided into an estimation set and a test set of roughly equal sizes.
Two PDF estimates, the first based on Parzen estimation with Gaussian kernels and the second
on a Gaussian mixture with 10 mixture components, were fitted to the estimation set. Hexagonal
SOMs of the size of 20x10 units were then computed both in the Euclidean and in the Fisher

metric, the latter derived from the PDF estimates.

B.1 Verification measures

In this section we present a measure of goodness for verifying that the SOM-F reflects aspects of
the input data that are relevant to the risk of bankruptcy. There are three components affecting

the goodness: (1) the quality of the PDF estimator, (2) the accuracy by which the SOMs represent
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the probability of bankruptcy?, and (3) the quality of the visualizations, i.e., the smoothness and
quality of organization of the SOMs.

We will not measure the first component; it is assumed that the standard PDF estimators are
adequate. The accuracy of representation will be measured by the log-likelihood of the test data

given the estimates at the locations of the winner units,
ok
Zlogp(c |mw(xk)) : (13)
k

Regarding the quality of visualizations we will resort to visual comparisons between visualizations
obtained by SOM-E and SOM-F.

The likelihoods obtained by the two PDF estimates and SOM-E and SOM-F were computed
for a wide range of values of the parameter o, from the order of the average distance between two
closest data points to the order of the maximal distance. The likelihood obtained directly from
the PDF estimator was computed to find out an approximation of the best possible performance,
and a model always predicting prior probabilities of the classes served as a lower limit of useful
results.

Note: The likelihood used for measuring the accuracy of representation has a connection to the
quantization error that is commonly used for measuring the quality of SOMs. The quantization
error is defined to be the average distance from the original data to the winning SOM units,
E{|lx—mx)|l}. In SOM-F, the corresponding measure would be the Kullback-Leibler divergence
between the posterior distributions p(c|x) and p(c|m,,(x)). Assuming that x and m,,) are close
to each other, the squared difference can be computed using the Fisher information matrix as in
(4). However, since the measure is based solely on estimates of PDFs and not on the data itself,
minimizing the quantization error in the estimated Fisher metric does not guarantee that the
map represents the real data. There exists a simple remedy: If the estimate p(c|x) is replaced
by the real distribution p(c|x), then the Kullback-Leibler divergence measures deviance of the
representation from the true PDF. It can be easily shown that the average divergence between

p(c[x) and p(c|m,(y)) is approximated by a linear function of the likelihood (13).
3Note that although this accuracy can be measured by the prediction accuracy, our goal is not to simply maximize

prediction accuracy but to quantify accuracy of visualizations.
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B.2 Visualization of the results

In addition to the usual visualization methods available for all SOMs, with SOM-F one can vi-
sualize correlations between bankruptcy sensitivity and directions of the data space. The amount
of scaling of a direction dx, revealed by the quadratic form dx’ Jdx, measures the effect of the
direction on the bankruptcy sensitivity. We will visualize the magnitudes of these scalings at the
most easily interpretable directions of the data space, the original variables of the data.

The relative amount of scaling in the direction of coordinate axis [ is given by

eT xX)e
R "

where e; is the unit vector parallel to the axis. A large value of r;(x) indicates a strong effect by

the variable [, locally around x.

C. Results

The likelihoods of SOM-E and SOM-F in the test set are shown in Figure 3 as a function of the
parameter o (which governs the smoothness of the PDF estimates). The SOM-F, as expected,
performs clearly better than the Fuclidean SOM. The SOM-E is roughly equal only for the kernel-
based PDF estimate when o is very small—then the PDF estimate and the resulting Fisher metric
are probably very uneven. The location of a financial statement on the SOM-F is thus a more
accurate predictor of bankruptcy than the location of the statement on the SOM-E.

To test the statistical significance of the performance difference, the data was divided into 10
separate sets. At each test round, one set was used as the test data and the other sets as the
training data. The likelihood curves of the SOM-E and SOM-F were calculated for the test sets
(using the MDA2 estimate), and the peaks of the curves were compared with the sign test. The
SOM-F outperformed the SOM-E (p < 0.002).

Still, the variation of the financial indicators on SOM-F displays (Fig. 5) is remarkably smooth,
comparable to the smoothness of the SOM-E displays. Moreover, the bankrupt companies are
visually clearly separated on both SOMs, in the sense that their distribution is unimodal and
that the posterior class densities change smoothly on the map (Fig. 4). In summary, the good
organization and visualization capabilities of the SOM have been maintained or even improved
while the Fisher metric has increased the prediction accuracy.

The relative scaling of the coordinate axes in the new metric can be visualized as easily un-
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Fig. 3. The accuracy of the SOMs computed in the Euclidean metric (SOM-E) and in the Fisher metric
(SOM-F) in representing the probability of bankruptcy, measured by the likelihood of data at the
locations of the best-matching SOM units (13). a: The PDF is estimated with the Gaussian kernel
(Parzen) estimate. b: The PDF is estimated by a Gaussian mixture having 10 mixture components.
The curve marked by “PDF” provides an approximate upper limit: it is the likelihood at the data
points instead of at the best matching units. The curve marked by “A priori” provides the lower limit
of sensible results, obtained by the best constant estimates. The parameter o governs the smoothness

of the PDF estimates.

a b c d

Fig. 4. The separation of bankruptcy-prone and healthy companies on the SOMs. a-b: The estimate
of the probability of bankruptcy at each map unit in a SOM-F and b SOM-E. The estimate is the
posterior density of the Gaussian mixture model at ¢ = 0.31. The darkest shade denotes probability
0.12; the lightest denotes probability 0.002. (Note that the prior probability of bankruptcy is small,
just 0.022.) The actual relative frequency of bankruptcies in the test set for each map unit is shown
in ¢ for SOM-F and in d for SOM-E. The frequency graphs are noisy since the number of bankrupt

companies was small. White: no bankruptcies, black: two thirds of all companies have gone bankrupt.
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a b c

| '
d e f

Fig. 5. The distribution of the values of three financial indicators on (a-c) SOM-F and (d-f) SOM-E. An

index of (a and d) profitability; (b and e) liquidity; (¢ and f) capital structure. The Fisher metric

for SOM-F has been computed from a Gaussian mixture estimate with ¢ = 0.31.

derstandable overviews of the relative importance of the input variables. Some examples are
presented in Figure 6. The non-constant values of the r(x) suggest that nonlinear effects exist,

which would justify the use of nonlinear models for this data set.

V. DISCUSSION

We have introduced a new method for deriving metrics from the estimated posterior distribution
of an auxiliary relevance-inducing variable, and used it in computing Self-Organizing Maps. The
metric is based on the Fisher information matrix, which results from a local approximation of the
Kullback-Leibler divergence between the posterior densities at close-by points in the primary data
space. In the new metric the estimated posterior probabilities change evenly in all directions.
In other words, the metric represents local contribution of the directions of the data space to
changes in the relevance-indicating random variable.

We computed a SOM in the Fisher metric and applied it to the visualization of bankruptcy

sensitivity as a function of several quantitative financial indicators. The SOM was more accurate
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s vamw

a b c

Fig. 6. The relative contributions r?(x) to the change in the bankruptcy sensitivity, plotted as gray
levels on the map display, for the indicators of Figure 5. The relative contribution of the profitability
indicator (a: scale from 0.007 to 0.080) decreases and the contribution of the capital structure indicator
(c: scale from 0.0002 to 0.215) increases at the bankruptcy zone (the stripe in the top left corner),
while the contribution of the liquidity indicator (b: scale from 0.001 to 0.013) is very low.

in representing the (estimated) probability of bankruptcy than an Euclidean SOM while the visual
quality of the maps was comparable or improved.

The Fisher metric can be used for discovering and visualizing locally relevant dimensions, and
as a kind of automatic feature-extraction stage. We have presented one way of visualizing the
contributions of the input variables to the Fisher metric. In general the visualization of the
metric tensor as a function of the primary data space is a subject for further experimentation
and research.

When used as a kind of feature extraction stage the method has the nice property that it
changes the metric while still preserving the proximity relations of the original data space. For
a PDF estimator which approaches the real PDF when the number of data grows, the results
are independent of the original coordinate system, and therefore of the metric, of the data.
Preservation of the proximity relations is, of course, a natural requirement for sensible operation
of further processing stages like the SOM; if the topology of the original space is not worth
preserving then it is best to use a suitable (discontinuous) preprocessing stage.

It may be worth noting that the change of the metric affects the density of X. In the Fisher
metric, the density of p(x) changes to |J(x)|~'/2p(x). This change reduces the density of data
at the points of the X-space where the posterior probabilities p(c|x) change rapidly. If this is
undesirable, a modified Fisher metric with a constant magnification factor can be used.

In finding the relevant local features of the input space, the extraction of the Fisher metric is
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similar to the recently introduced Kullback-Leibler clustering algorithm [40], [41]. This connection
will be detailed in future papers.

In summary, we have extended the SOM-based exploratory analyses of the factors affecting
bankruptcy risk in different kinds of companies by the new learning metric. The Fisher metric
derived from PDFs improved the accuracy with which the visual maps represent bankruptcy
and even the quality of the visualizations. Bankruptcy analysis from financial statements is
a common task, and it is relatively well known which features are meaningful; moreover, the
effective dimensionality of meaningful data spaces is small. It is therefore hard to improve on the
methods that are already in use in this field. Hence, the Fisher metric is likely to be even more
useful when the structure of the data is less known and there is little justification for manual

feature selection.

APPENDIX A

DERIVATION OF THE DISTANCE d? FOR THE MIXTURE MODEL

The gradient of (7) is

0 p(cilx) 0 .
PO = LS G a0
and hence
0 £gz/p CZ|X 9 A~ 0.
o log p(c;|x; ©) E ]Z E——E ok) 8ij(x, 0;) .

For a Gaussian b; having a diagonal covariance matrix o1,

B 1
&bj(X; 0;) = — ;bj(X; 0;)(x—0;),
and hence
0 .
02& log p(ci|x; ©) =
£jimibi(x;0;) mibj(x; 0;)
— — 0,—x). (15
2 [p<ci|x) S b 0n) Sy e 0y | B 7 (19)
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Using (7), the expression in brackets can be simplified to

Dop bk (%5 0k)  mi&iibi(x;0;)  mibi(x;0;)
> Telribi (35 08) 2o i (x5 08) D) mbr(x;0))
mi&iibi(x:0;5)  mibi(x;05)
>k Tekibi (x5 0k) >k mebi(x;6k)
p(ci, uj,x;0;) p(x,uj;0;)

S (Cir e, X 08) > (%, uk; O)

p(ujx, ci; 05) — p(ujlx; 85) . (16)

Plugging (16) into (15) yields
0
2.0 4 e @) —
0" 5 logb(cilx; ©)
> Ip(ujlx, ci; 65) — p(ujlx; 8;))(8; — x) =
J
Ep(Uj|x,ci;9j){0j - X} - Ep(uj\x;ej){oj - X} =
Ep(uj\x,ci;ej){ej} - Ep(uj|x;0j){0j} ) (17)

and plugging (17) into (4) yields (8).

APPENDIX B

EM ESTIMATION OF THE (GAUSSIAN MIXTURE MODEL OF JOINT DENSITIES

We used the EM algorithm to maximize the likelihood of the model (6). The value of the
random variable U that indicates which generator has produced each data item is considered as
the missing data. The value of U for the data sample (x*,c*) is denoted by u*. Both the data
and the u* are assumed to be independent and identically distributed.

As an initialization we set 7; = 1/Ny and {;; = 1/(NyN¢), where Ny denotes the number of
component generators and N¢ denotes the number of possible values of C. The 8; are initialized
by the K-means algorithm.

The E-step consists of two sub-steps. First the joint distribution of the missing data is inferred,
and then the expected log-likelihood of the model with respect to this distribution is computed,
conditioned on the old parameters and the data.

Given the old set of parameters (9(0), the joint distribution of the missing data is

p{uf el {(xF, ") ©0) = ] p(uy|x*, ;00 (18)
k
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below we will generally use the superscript (0) to refer to the old parameters. The probability

p(u]'|xk,ck; G)(U)) that the mixture component u; has generated the data sample (x*,c¥) is

by 00)e® A0

jitc;=ck"J

u-xk,ck;G(O) =
p( J| ) p(Xk,Ck|®(0))

E’Tjk.

It can be shown that the expected log-likelihood L£(®) of the model (6) with respect to the
distribution (18) is
E{L(®)} = Z Tik [log b;(x";8;) +log Ejizes=ch T logm;
gk
In the M-step the expected log-likelihood is maximized. It can be shown that with respect to

the £;; the maximum is at
_ Zk:ck:ci Tik

For the m; the maximum is at
;= ZTjk/N (20)
k

where N is the number of data samples, and for the 8; at

ok
o, = 2T (21)
>k Tik
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Figure Legends:

Figure 1:

The metric generated by a PDF estimate for a two-dimensional two-class data set (N=1000).
The first class is sampled from a symmetrical Gaussian with p(c) = % (the topmost cluster in the
figure), the second from a sum of two Gaussians (the bottom clusters). For all the Gaussians,
0=0.6, and the mutual distances of the centers are equal to unity. The gray-scale background
illustrates the marginal density p(x), and the small line segments (or dots) depict the dominant
direction and relative distances d? in the local metric. Distances are nonzero only in the directions
where the conditional density changes. The PDF was estimated with a Gaussian Parzen estimator

(0 =0.4).

Figure 2:

A demonstration of the difference between SOMs computed in the Fisher metric and in the
Euclidean metric. The primary data was six-dimensional and multinormally distributed, i.e.
x ~ N(0,1). The auxiliary data was divided into three smoothly changing Gaussian classes, i.e.
p(clx) = G(x — m,,p?)/ Y., G(x — my, p?), where G(x, p?) is the probability density at x given
by the distribution A'(0, p?). The class centers m, were placed evenly around the origin so that
|m.|| = 1, and the variance p? was 0.81. The size of the data set was 3382 points. A PDF
estimate was generated using the Parzen model, with ¢ = 1.0. SOMs were then trained to the
data with the stochastic algorithm (9), (11). Posterior probabilities of the classes (according to
(7) for the Parzen estimate) evaluated at the model vectors of the SOM are shown for the two
SOMs (size: 40 by 40 units) organized to represent the same data set in the Fisher (a: class 0, b:
class 1, c: class 2) and in the standard Euclidean (d-f) metric. The probability 0.767 is shown
with the lightest shade and the probability 0.040 as pure black.

March 7, 2001 DRAFT



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 2001 129

Figure Legends:

Figure 3:

The accuracy of the SOMs computed in the Euclidean metric (SOM-E) and in the Fisher metric
(SOM-F) in representing the probability of bankruptcy, measured by the likelihood of data at
the locations of the best-matching SOM units (13). a: The PDF is estimated with the Gaussian
kernel (Parzen) estimate. b: The PDF is estimated by a Gaussian mixture having 10 mixture
components. The curve marked by “PDF” provides an approximate upper limit: it is the likelihood
at the data points instead of at the best matching units. The curve marked by “A priori” provides
the lower limit of sensible results, obtained by the best constant estimates. The parameter o

governs the smoothness of the PDF estimates.

Figure 4:

The separation of bankruptcy-prone and healthy companies on the SOMs. a-b: The estimate of
the probability of bankruptcy at each map unit in a SOM-F and b SOM-E. The estimate is the
posterior density of the Gaussian mixture model at ¢ = 0.31. The darkest shade denotes proba-
bility 0.12; the lightest denotes probability 0.002. (Note that the prior probability of bankruptcy
is small, just 0.022.) The actual relative frequency of bankruptcies in the test set for each map
unit is shown in ¢ for SOM-F and in d for SOM-E. The frequency graphs are noisy since the
number of bankrupt companies was small. White: no bankruptcies, black: two thirds of all

companies have gone bankrupt.
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Figure Legends:

Figure 5:
The distribution of the values of three financial indicators on (a-¢) SOM-F and (d-f) SOM-E.
An index of (a and d) profitability; (b and e) liquidity; (c and f) capital structure. The Fisher

metric for SOM-F has been computed from a Gaussian mixture estimate with ¢ = 0.31.

Figure 6:

The relative contributions r?(x) to the change in the bankruptcy sensitivity, plotted as gray levels
on the map display, for the indicators of Figure 5. The relative contribution of the profitability
indicator (a: scale from 0.007 to 0.080) decreases and the contribution of the capital structure
indicator (c: scale from 0.0002 to 0.215) increases at the bankruptcy zone (the stripe in the top
left corner), while the contribution of the liquidity indicator (b: scale from 0.001 to 0.013) is very

low.
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