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tWe introdu
e a method for deriving a metri
, lo
ally based on the Fisher information matrix, intothe data spa
e. A Self-Organizing Map is 
omputed in the new metri
 to explore �nan
ial statements ofenterprises. The metri
 measures lo
al distan
es in terms of 
hanges in the distribution of an auxiliaryrandom variable that re�e
ts what is important in the data. In this paper the variable indi
ates bankrupt
ywithin the next few years. The 
onditional density of the auxiliary variable is �rst estimated, and the
hange in the estimate resulting from lo
al displa
ements in the primary data spa
e is measured usingthe Fisher information matrix. When a Self-Organizing Map is 
omputed in the new metri
 it stillvisualizes the data spa
e in a topology-preserving fashion, but represents the (lo
al) dire
tions in whi
hthe probability of bankrupt
y 
hanges the most.KeywordsBankrupt
y Analysis, Fisher Information Matrix, InformationMetri
, LearningMetri
, Self-OrganizingMap I. Introdu
tionBankrupt
ies have su
h a great importan
e on the �nan
ing models and business life in general,that their analysis has be
ome almost its own �eld of s
ien
e. It has been widely studied ine
onomi
s, and most data analysis methods have been suggested to the problem. A traditionalben
hmark for these methods has been the bankrupt
y predi
tion problem, but we argue thatat least as important from the pra
ti
al point of view is to develop methods for analyzing andunderstanding the di�erent 
orporate behavior types and their relation to bankrupt
y. In thistask, the Self-Organizing Map (SOM) [1℄, [2℄ has been found a valuable tool, mainly be
auseof its good visualization 
apabilities. The present paper introdu
es a further development ofSOM-based data analysis. Our results show that it yields maps with enhan
ed visualizationof bankrupt
y risk, and also have a statisti
ally better separation of bankrupt
ies from healthy
ompanies. The methodology 
an also be dire
tly utilized in other appli
ation areas.The su

ess of unsupervised algorithms, su
h as the Self-Organizing Map and 
lustering meth-ods, depends 
ru
ially on the metri
, the measure of the distan
e between the obje
ts of interest.The metri
, on the other hand, depends on whi
h kinds of variables have been 
hosen to repre-sent the obje
ts, i.e., on variable sele
tion and feature extra
tion. These pro
essing steps a�e
teven supervised methods although many supervised methods are in prin
iple, given unlimitedresour
es, universal approximators. The old problem of feature extra
tion or variable sele
tion,Mar
h 7, 2001 DRAFT
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hoosing how to represent the input data, persists as a 
ru
ial unsolved resear
h topi
 inpattern re
ognition, neural 
omputation, and data analysis.At its simplest, feature extra
tion redu
es to 
hoosing and s
aling the input variables, butmore generally it is a nonlinear mapping of the input spa
e to a spa
e that is more suitablefor further pro
essing. Su

essful feature extra
tion stages are usually tailored for the task athand using expert knowledge or heuristi
 rules of thumb. There is often, however, some impli
itauxiliary information available about the relevan
e of the features of the input. For instan
e, ina 
lassi�
ation task the relevant features are those that separate between the 
lasses.Impli
it information about the relevan
e of the features may also be available for unsuperviseddes
riptive data analysis tasks. A relevant 
lassi�
ation of the samples may be known and thegoal may be to �nd a natural grouping for them; a grouping that re�e
ts the 
lassi�
ation butmay, for example, dis
over sub
lasses. Another example is pro
ess monitoring in whi
h someindi
ator of the performan
e of the pro
ess may be asso
iated with ea
h data ve
tor. The qualityof the end produ
t 
ould be a suitable indi
ator. The goal would then be to �nd out fa
torsa�e
ting the performan
e of the pro
ess.Our ultimate aim is to develop algorithms that take su
h auxiliary information into a

ount inorder to expli
itly transform the original metri
 of the input spa
e. The spa
e is lo
ally s
aledso that the new (lo
al) distan
es will measure the 
hange of the auxiliary information (for apreliminary a

ount see [3℄). Proximity relations or, loosely speaking1, topology of the inputspa
e is still retained. Note that by 
ontrast, a 
hange of the metri
 that does not preserve theproximity relations would map some 
lose-by points of the input spa
e to very di�erent featurevalues, and the generalization power originating from the smoothness of the model would be lost.For 
omputational reasons the new metri
 is best suited for algorithms that rely mostly on lo
aldistan
es of the input spa
e. The Self-Organizing Map is one example. When an unsupervisedalgorithm learns using the new metri
, the learning pro
ess is a useful 
ombination of supervisedand unsupervised learning. The proximity relationships of the input spa
e are preserved as istypi
al of unsupervised methods, while the metri
 (lo
al s
aling of the spa
e) is indu
ed in asupervised manner.We will apply the new metri
 to analyze the bankrupt
y risk of enterprises on the basis of�nan
ial statements. The setting is similar to that of Kiviluoto and Bergius [4℄, [5℄, [6℄. They1Even though the mapping is 
ontinuous it is not topology preserving sin
e it may be proje
tive.Mar
h 7, 2001 DRAFT



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 2001 104have used Self-Organizing Maps to extend bankrupt
y analysis from traditional straightforwardpredi
tion of bankrupt
y to visual exploratory analyses of the relationship between the �nan
ialstatements and bankrupt
y risk of di�erent kinds of enterprises. We 
omplement their studiesby using the new metri
 in the SOM-based exploratory analyses. The enterprises are organizedon a SOM in su
h a manner that the analysis will 
on
entrate on the (lo
al) fa
tors that a�e
tthe probability of bankrupt
y most. We will then explore the results to �nd out the importantdimensions for various kinds of enterprises.II. The metri
We wish to transform the distan
e measure of the data spa
e so that it will 
on
entrate on theimportant di�eren
es between data samples and disregard irrelevant dimensions. It may be 
learthat su
h a metri
 is impossible to 
onstru
t without some auxiliary, prior knowledge about theimportan
e of the di�eren
es. In this work we assume that there is auxiliary data available (moredetails below), and that the auxiliary data impli
itly de�nes what is important or relevant.The new metri
 is to be learned based on a data set, and used as a distan
e measure forsubsequent analysis and visualization of the set. The metri
 is 
onstru
ted su
h that it re�e
tsthe lo
al importan
e of di�erent dire
tions in the data spa
e. For example, it 
ould measurehow mu
h 
hanges in the �nan
ial state of a 
ompany a�e
t the bankrupt
y risk of that kind ofenterprise. Due to its lo
ality, the distan
e measure is 
apable of revealing di�erent fa
tors fordi�erent kinds of enterprises. Moreover, sin
e the distan
e measure is de�ned in the original dataspa
e, it is straightforward to interpret the results in terms of the original variables, here theindi
ators of �nan
ial states. For example, if the distan
es for a 
ompany type are large alongthe axis 
orresponding to the pro�tability, then pro�tability 
ontributes to the bankrupt
y riskof su
h 
ompanies.In exploratory data analysis appli
ations the similarity relationships between the data samples,the enterprises, 
an be visualized with methods su
h as the Self-Organizing Map, pre
isely in thesame way as previously. The only di�eren
e is that the relative distan
es of the enterpriseswill 
hange. If they are di�erent along an important dimension (a
tually the non-linear routeof minimal length) their distan
e is large, whereas if they are di�erent only along an irrelevantdimension they will be
ome very 
lose to ea
h other2.2In pra
ti
al 
omputations we will use lo
al approximations to the nonlinear routes, whi
h is sensible for algo-rithms su
h as the SOM that depend mostly on lo
al distan
es.Mar
h 7, 2001 DRAFT
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: The prin
ipleWe seek to des
ribe the similarity relationships of items x of the data spa
e by utilizing theinformation within the joint distribution of the data and auxiliary data 
. Denote the jointprobability density fun
tion (PDF) by p(x; 
). We will 
all x 2 X � Rn the primary data, anddenote the asso
iated random variable by X.Denote the random variable that produ
es the auxiliary data by C. It is assumed that the
 or, more spe
i�
ally, the 
onditional distributions p(
jx) impli
itly 
onvey information aboutwhi
h kinds of similarity relationships are important in the data. In our present appli
ation tobankrupt
y analysis, the 
 are binary and indi
ate whether an enterprise goes bankrupt withinthe next three years, and the x are feature ve
tors derived from the �nan
ial statements. The im-portant 
hanges in the �nan
ial state x are then those that 
hange the probability of bankrupt
y,the distribution p(
jx).A 
hange in distributions 
an be measured by the Kullba
k-Leibler divergen
e D. An old result[7℄ gives a formula for the lo
al Kullba
k-Leibler divergen
e asD(p(
jx)kp(
jx + dx)) = dxTJ(x)dx ; (1)where J(x) = Ep(
jx)(� ��x log p(
jx)�� ��x log p(
jx)�T) (2)is the Fisher information matrix and Ep(
jx) denotes expe
tation over the possible values of C,
onditioned on x. Here the Fisher information matrix J(x) is the representation of the tensor ofthe new metri
 in the original Eu
lidean 
oordinates in whi
h x is also presented. The matrix ispositive semide�nite, and it de�nes the lo
al s
aling of the dire
tions of the input spa
e at thepoint x. We then de�ne the new lo
al metri
 of the data spa
e asd2F (x;x+ dx) � D(p(
jx)kp(
jx + dx)) = dxTJ(x)dx : (3)In the new metri
 the 
onditional density p(
jx) 
hanges evenly in all dire
tions, at all points ofthe input spa
e.Note 1: The Fisher information matrix was originally derived for measuring the e�e
t thata 
hange in the model parameters produ
es on the probability distributions that the modelsgenerate [8℄. The resulting distan
e is 
alled (Fisher) information distan
e or (Fisher) informationmetri
 in the information geometry literature (see, e.g., [9℄, [10℄, [11℄). Here we measure the e�e
tMar
h 7, 2001 DRAFT
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hange in the lo
ation in the primary data spa
e to obtain a metri
 there. We will 
allthe resulting metri
 the Fisher metri
 and 
all the approa
h semisupervised sin
e the auxiliarydistribution in a way supervises the 
onstru
tion of the metri
.Note 2: The new metri
 (3) is de�ned lo
ally, for 
lose-by points x and x+ dx, and global dis-tan
es are de�ned by path integrals. In prin
iple there exists another more straightforward alter-native: to simply measure the distan
e between any non-lo
al pair x and x0 by D(p(
jx)kp(
jx0)).Su
h a measure might be useful for some appli
ations but its disadvantage is that it would 
om-pletely override the original stru
ture of the data spa
e. Two points with identi
al density esti-mates, p(
jx) and p(
jx0), would have a zero distan
e even if the points were originally far away.If some kind of generalizability exists over X, it would be destroyed by the 
hange of the topology.In fa
t, the original representations x would not be needed at all, and the data points 
ould besimply represented by distributions in the C-spa
e. All information 
ontained in the primarydata would then be lost.An additional disadvantage would be that the new representations 
annot be interpreted interms of the original data variables, at least not without further analyses. In the bankrupt
yappli
ation it is of prime importan
e to know whi
h aspe
ts of the �nan
ial state of a 
ompanyare related to 
hanges in its bankrupt
y risk and our method fo
uses on this problem.B. Learning metri
: ComputationThe 
onditional probability distribution p(
jx) is usually estimated from a data set fxk 
kgk,k = 1; : : : ; N . Any method that produ
es di�erentiable estimates is potentially useful. The 
hoi
eof the estimator is dis
ussed in Se
tion II-C; for the moment assume tentatively that we have anestimate p̂(
jx) of the 
onditional density available.The estimate p̂(
jx) 
ould in prin
iple be used in pla
e of p(
jx) in (2-3) to approximate the newmetri
. However, for numeri
al 
omputations it is not ne
essary to form the Fisher informationmatrix expli
itly, for one 
an get the squared lo
al distan
es dire
tly fromd2F (x;x+ dx) = Ep̂(
jx)(�dxT ��x log p̂(
jx)�2) : (4)The new metri
 
an be used in any supervised or unsupervised method; in Se
tion III we willdes
ribe how to use it to 
ompute Self-Organizing Maps for visualization and exploratory dataanalysis purposes.Mar
h 7, 2001 DRAFT
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Fig. 1. The metri
 generated by a PDF estimate for a two-dimensional two-
lass data set (N=1000).The �rst 
lass is sampled from a symmetri
al Gaussian with p(
) = 13 (the topmost 
luster in the�gure), the se
ond from a sum of two Gaussians (the bottom 
lusters). For all the Gaussians, �=0.6,and the mutual distan
es of the 
enters are equal to unity. The gray-s
ale ba
kground illustrates themarginal density p(x), and the small line segments (or dots) depi
t the dominant dire
tion and relativedistan
es d2 in the lo
al metri
. Distan
es are nonzero only in the dire
tions where the 
onditionaldensity 
hanges. The PDF was estimated with a Gaussian Parzen estimator (� = 0:4).If only partially labelled data are available, it is best to use a PDF estimator with the abilityto utilize su
h data. The Gaussian mixture model MDA2, des
ribed in Se
tion II-C, 
an beeasily extended for partially labelled data as it is usually optimized by the EM algorithm. Afterthe PDF estimator is �xed, using partially labelled data with the new metri
 is straightforward,for the metri
 is de�ned into the primary data spa
e and therefore 
an be 
omputed with theknowledge about the primary sample x only.A demonstration of the new metri
 for an arti�
ial, easily visualizable two-dimensional, two-
lass data set is presented in Figure 1.Note 1: Non-lo
al distan
es 
an be de�ned as the minimal path integrals of the lo
al distan
es,minimum taken over all possible paths. This generates a Riemannian metri
 (for general treat-ments of the related information geometry, see [9℄, [10℄, [11℄). In pra
ti
e the 
omputation of theintegrals would be extremely tedious and we will below resort to lo
al approximations whi
h aresensible for methods that rely mostly on lo
al distan
es (see Se
tion III).Mar
h 7, 2001 DRAFT



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 2001 108Note 2: If the estimate p̂(
jx) is very uneven or the Fisher metri
 spans an unpreferably low-dimensional spa
e, the metri
 
an be �regularized� by mixing it with the original Eu
lidean metri
of X, resulting in the metri
 tensor represented byJ0(x) = (1� �)J(x) + �I ; (5)where � is a small positive 
onstant (0 < � < 1) and I is the identity matrix.C. Metri
s from two kinds of PDF estimatesOur goal here is to estimate the probability density p(
jx) of the auxiliary random variable C,
onditioned onX. Plenty of alternative methods are available. Many of them have been developedfor 
lassi�
ation purposes (for reviews see e.g. [12℄, [13℄). Most su
h methods would typi
ally besuboptimal for our purpose, however, be
ause a good 
lassi�er optimizes the (sometimes impli
it)probability density fun
tion (PDF) estimate near the 
lass borders or, more generally, near thearea where the de
ision 
riterion rea
hes 
riti
al values.In prin
iple, any estimator whi
h produ
es di�erentiable estimates of the 
onditional densities
ould be used. In this paper we skip the dis
ussion about the merits of di�erent estimators andrely on two 
lassi
al methods. The �rst is a 
omputationally intensive but well-performing non-parametri
 estimate, the (Parzen) kernel estimator, and the se
ond is a Gaussian mixture model.Both estimators 
an be expressed within the same general mixture density form.Let us 
onsider an additive mixture model in whi
h the generating 
omponent densities areidenti�ed with the dis
rete random variable U . The value of U is uj if the jth 
omponentgenerator has generated the 
urrent data sample. We assume that 
 and x are 
onditionallyindependent given the value of U . Then the joint density generated by the jth 
omponent isp(
i; uj ;x) = p(
ijuj)p(xjuj)p(uj) :We will model p(
ijuj) by a 
oe�
ient �ji, p(uj) by �j, and p(xjuj ;�j) by a fun
tion bj(x;�j)parameterized by �j . In this notation the model for the joint density of the data isp̂(
i;x;�) =Xj �j�jibj(x;�j) ; (6)where � has been used to denote the whole set of parameters of the model.By applying the Bayes rule, an estimate of the 
onditional density is obtained:p̂(
ijx;�) = Pj �j�jibj(x;�j)Pj �jbj(x;�j) : (7)Mar
h 7, 2001 DRAFT



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 2001 109The kernel estimator and the mixture density model di�er in their parameterizations. Esti-mation of the parameters in these spe
ial 
ases will be dis
ussed in more detail below. For themoment, assume that the values of all the parameters of the 
onditional density estimate (7) areknown.It is shown in Appendix A that if the 
omponent densities bj(x;�j) are Gaussians with equaldiagonal 
ovarian
e matri
es �2I and means �j then the distan
e in (4) be
omes�4d2(x;x + dx) = Ep̂(
jx)�hdxT �Ep(uj jx;
i;�j)f�jg �Ep(uj jx;�j)f�jg�i2� : (8)The parameter � governs the width of the Gaussians and therefore the smoothness of the resultingPDF estimates. A method for 
hoosing the value of � when the new metri
 is used for learningSelf-Organizing Maps will be des
ribed later in Se
tion IV-B.1: A suitable likelihood measure isproposed, and the value of the sigma 
an be sele
ted to maximize the measure in the learning orvalidation set.C.1 Kernel estimationIn kernel density estimation the 
omponent densities bj(x;�j) are 
alled kernels; the numberof kernels is equal to the number of data points n, and the parameters �j are set to the datasamples, �j = xj . The prior probabilities are set to �j = 1=N . The parameter �ji = 1 if in thejth data pair (xj ; 
0j) the value of C is 
0j = 
i. Otherwise �ji = 0. The only free parameter leftto be estimated is the varian
e �2 of the kernels.C.2 Gaussian mixtureWhen the 
omponent densities in the model (7) are 
hosen to be Gaussians parameterized bytheir means, the model is equivalent to the Mixture Dis
riminant Analysis 2 in [14℄ (
f. also [15℄;the relation between mixture dis
riminant analysis and our work will be dis
ussed in more detailin Se
tion II-D). Now �j, �ji, and �j will all be estimated from the data. Formulas for estimatingthe model with the EM algorithm [16℄ are presented in Appendix B.D. Related worksA

ording to our knowledge the introdu
ed prin
iple is new. Works in whi
h some aspe
tsresemble our approa
h exist, however. Amari and Wu [17℄ have augmented support ve
tor ma-Mar
h 7, 2001 DRAFT
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hines by making an isotropi
 
hange to the metri
 near the 
lass border. In 
ontrast to this, ourmetri
 is non-isotropi
 and 
hanges the metri
 everywhere. Jaakkola and Haussler [18℄ indu
eda distan
e measure into a dis
rete input spa
e using a generative probability model. The 
ru
ialdi�eren
es are that they do not use external information, and that they do not 
onstrain themetri
 to preserve the topology.In some earlier works auxiliary information has been in
orporated dire
tly into the represen-tations of the data (see, e.g., [2℄, [19℄; note, however, that the goal in these works is di�erentfrom ours). The auxiliary information 
an be en
oded for example in the 1-out-of-C manner and
on
atenated to the data ve
tors x. The main problem of this approa
h, for our purposes, is thearbitrary relative s
ale of the primary and auxiliary data. If the relative s
ale of the auxiliarydata is too small, the primary data will dominate in the distan
e measure, whereas our goal is tomeasure 
hanges in the auxiliary data and represent these 
hanges as the distan
e measure of theprimary data spa
e. If the relative s
ale of the (dis
rete) auxiliary data is too large, on the otherhand, then the data ve
tors will e�e
tively be divided into separate 
lusters, ea
h 
orrespondingto one possible value of the auxiliary variable. The proximity relations (topology) of the originaldata spa
e will then be destroyed.Mappings from the original spa
e to a new lower- or equal-dimensional spa
e, whi
h is thegeneral de�nition of feature extra
tion, have a relation to our method. Automati
 methods foroptimizing su
h mappings, for example by maximizing mutual information have been proposed[20℄, [21℄. Unlike in a standard separate feature extra
tion stage, however, the 
hange of the metri
in our method de�nes a manifold whi
h 
annot in general be proje
ted to a Eu
lidean spa
e of thesame or lower dimensionality. Therefore, no dimensionality-preserving or dimensionality-redu
ingmapping with the same lo
al properties exists whi
h means that the 
hange of the metri
 is amore general operation than feature sele
tion by a dimensionality-preserving (or dimensionality-redu
ing) nonlinear mapping.The 
hange of the metri
 
an additionally be interpreted as a kind of nonlinear version oflinear dis
riminant analysis (LDA; for appli
ations of LDA in �nan
e see, e.g., [22℄). The LDA�nds a linear transformation, de�ned globally for the whole data spa
e, that aims at maximizing
lass separability. In a more re
ently proposed variant 
alled mixture dis
riminant analysis [14℄,[15℄, a set of Gaussian kernels are �tted to data by optionally 
onstraining the dimensionality ofthe subspa
e within whi
h the kernels are allowed to reside. In 
ontrast to LDA and the newerMar
h 7, 2001 DRAFT
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e lo
ally to make the 
lass distribution 
hange isotropi
ally,or with the same rate in every dire
tion. This allows inspe
tion of the 
lass distributions evenmore 
losely.Note that the dis
riminant analysis is 
ommonly used for two tasks: a
quiring 
lassi�
ationsand understanding the relationships between 
lasses by visualizations and other means. Ourmodel is more 
losely related to the latter task, whereas LDA usually emphasizes the former.The 
lassi
al 
anoni
al 
orrelation analysis has re
ently been generalized by repla
ing the linear
ombinations with nonlinear fun
tions [23℄, [24℄. Our framework 
ould as well be adapted to thetask of �nding statisti
al dependen
ies between two data sets by repla
ing the dis
rete auxiliaryrandom variable with a parametrized set of features 
omputed from an auxiliary 
ontinuousrandom variable, whi
h will be explored in future work.III. Self-Organizing Maps in the Fisher metri
In prin
iple any model that utilizes lo
al distan
es 
ould be adapted to use the Fisher metri
(4). In this work we derive the on-line Self-Organizing Map algorithm for the new metri
 and useit in data analysis.A. The Self-Organizing MapThe Self-Organizing Map (SOM) [1℄, [2℄ is a regular grid of units, with a model ve
tor miasso
iated with ea
h unit i. During the learning pro
ess the model ve
tors are gradually modi�edto follow the distribution of the input data in an ordered fashion: model ve
tors 
lose-by on themap latti
e attain 
lose-by lo
ations in the input spa
e. Two-dimensional map grids 
an be usedto visualize various properties of the input data in data analysis appli
ations.The SOM algorithm iterates two steps. The index of the winning unit w 
losest to the 
urrentinput sample x(t) at time t is �rst sought byw(x(t)) = argmini d2(x(t);mi(t)) ; (9)where d is a distan
e fun
tion, 
ommonly Eu
lidean. Then the model ve
tors are adapted a
-
ording to mi(t+ 1) =mi(t)� 12hwi(t) ��mid2(x;mi) : (10)If d is the Eu
lidean distan
e, the adaptation rule be
omes the familiarmi(t+ 1) =mi(t) + hwi(t)(x�mi) : (11)Mar
h 7, 2001 DRAFT



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 2001 112Here hwi(t) is the so-
alled neighborhood fun
tion, a de
reasing fun
tion of the distan
e betweenthe units w and i on the map latti
e. The height and width of hwi(t) de
rease gradually in time.For more details see [2℄.B. SOM in the new metri
To organize SOMs in the Fisher metri
 that is determined by the di�eren
es between theestimated posterior distributions p̂(
jx), we �rst 
onstru
t a PDF estimator for the distributions.To �nd the winning unit for the data sample x(t), we then 
al
ulate distan
es to the set of modelve
tors, and �nd the one 
losest to x. In general, the distan
es will be non-lo
al.To 
ompute non-lo
al distan
es, a sear
h for the minimal path integral would be required,where di�erential distan
es along the paths would be de�ned by (4). Here we will approximatethe non-lo
al distan
es by the lo
al distan
e measure (4), 
omputed around the data sample x(t).The winning unit will then be found with (9). If dx is small, this approximation will be fair,whereas for far-o� points the approximation will be rougher.The assumption is that the approximation is lo
ally a

urate enough to preserve the order ofthe distan
es, so that the model ve
tor mi a
tually 
losest in the Riemannian metri
 (de�ned asthe shortest path from x tomi) is equal to themw 
omputed from the lo
al approximation. Thisis sensible sin
e model ve
tors that are 
lose to x (as measured by the true non-lo
al distan
es)are also likely to have small dx, so the lo
al approximation will not usually a�e
t whi
h unitbe
omes the winner. O

asionally this may still happen, so the true test of the goodness of theapproximation will be the experimental results. The results of the 
ase study in Se
tion IV arefavourable.As in the original SOM, the model ve
tor of the winning unit and units in its neighborhood areupdated into the dire
tion where the distan
e d2(x;mi) de
reases most rapidly, and proportionallyto the magnitude of the 
hange. In a Eu
lidean metri
, the update is given by the gradient��mikx �mik2. The Fisher metri
, however, is a Riemannian metri
, and steepest des
ent in aRiemannian metri
 is given by the so-
alled natural gradient [25℄. Generally, the natural gradientis equal to the 
onventional gradient multiplied by the representation of the metri
 tensor (amatrix). Be
ause in the original 
oordinate system the metri
 tensor is represented by the Fisherinformation matrix, the natural gradient in these same 
oordinates is given byJ�1(x) ��mid2(x;mi) = J�1(x) ��mi [(mi � x)TJ(x)(mi � x)℄ = 2(mi � x) : (12)Mar
h 7, 2001 DRAFT
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lose to ea
h other, (12) 
oin
ides with the dire
tion of the shortestpath from x to mi.In 
on
lusion, the update rule in the Fisher metri
 is the same as in the Eu
lidean SOM, (11).The di�eren
e lies in the de�nition of the winner, (9), where the distan
e measure is in generalde�ned by (4), and in the 
ase of Gaussian kernel-based PDF estimators by (8).C. A demonstrationThe e�e
t of the 
hange of the metri
 on SOM is demonstrated in Figure 2 for a six-dimensional,three-
lass toy data set. We 
omputed a Self-organizing Map in both the original Eu
lidean metri
and in the Fisher metri
, and visualized the posterior 
lass distribution on the SOMs. As 
an beseen in the �gure, the 
lasses are more distin
tly and orderly separated on the SOM 
omputedin the Fisher metri
. Most notably the unimodality of the distribution of ea
h 
lass is 
learlyvisible.In data analysis appli
ations the same SOM grid 
an be used for visualizing other aspe
ts ofthe data as well. Su
h displays will be used in Se
tion IV.D. Computational 
omplexityEa
h iteration of the SOM algorithm 
onsists of the sele
tion of the winning SOM unit for the
urrent input, and an update of the model ve
tors. Sin
e the update rule in the Fisher metri
is un
hanged from the Eu
lidean 
ase, the 
omputational 
omplexity of the update is the same,i.e., O(NDIMNSOM) for a neighborhood fun
tion that 
overs the whole map grid. Here NDIM isthe dimensionality of the input and NSOM is the number of SOM units.To sele
t the winner, distan
es must be 
al
ulated from the input to ea
h SOM unit. Usingthe lo
al distan
e approximation, this 
an be done by 
omputing the Fisher information matrix�rst, or by dire
tly 
al
ulating the distan
es. The �rst alternative requires O(NDIMNCNU +N2DIM (NC + NSOM)) operations, where NC is the number of 
lasses and NU is the number ofmixture 
omponents in the PDF estimate. The se
ond alternative requires O(NDIMNC(NU +NSOM)) operations. If the dimensionality is small 
ompared to the number of 
lasses and the sizeof the SOM, then 
omputing the Fisher information matrix expli
itly may be faster; otherwise itis preferable to 
al
ulate the distan
es dire
tly.In the better method (MDA2) of the present 
ase study there are 10 kernels, the number of
lasses is 2, the dimensionality is 23, and the winner sear
h therefore requires about twi
e theMar
h 7, 2001 DRAFT
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a b 

d e fFig. 2. A demonstration of the di�eren
e between SOMs 
omputed in the Fisher metri
 and in theEu
lidean metri
. The primary data was six-dimensional and multinormally distributed, i.e. x �N (0; 1). The auxiliary data was divided into three smoothly 
hanging Gaussian 
lasses, i.e. p(
jx) =G(x�m
; �2)=Pl G(x�ml; �2), whereG(x; �2) is the probability density at x given by the distributionN (0; �2). The 
lass 
enters m
 were pla
ed evenly around the origin so that km
k = 1, and thevarian
e �2 was 0.81. The size of the data set was 3382 points. A PDF estimate was generated usingthe Parzen model, with � = 1:0. SOMs were then trained to the data with the sto
hasti
 algorithm(9), (11). Posterior probabilities of the 
lasses (a

ording to (7) for the Parzen estimate) evaluatedat the model ve
tors of the SOM are shown for the two SOMs (size: 40 by 40 units) organized torepresent the same data set in the Fisher (a: 
lass 0, b: 
lass 1, 
: 
lass 2) and in the standardEu
lidean (d�f) metri
. The probability 0.767 is shown with the lightest shade and the probability0.040 as pure bla
k.amount of 
omputation required for the simple Eu
lidean metri
.Note that there exist several speedup methods for the SOM (see, e.g., [26℄). We have notinvestigated in detail their use with the Fisher metri
 but many of them are appli
able.IV. Appli
ation to bankrupt
y analysisThe method presented in the previous 
hapters is applied below to a bankrupt
y analysistask. Traditionally, most of the quantitative studies on bankrupt
y have been dire
ted towardspredi
tion. The two dominating approa
hes in the bankrupt
y predi
tion problem have been
lassi�
ation and probability estimation. In a 
lassi�
ation task, based on the present and possiblyalso past data, the 
ompanies are divided into two groups: those that are likely to go bankruptwithin a 
ertain time interval, and those that are not. In probability estimation, the aim is toMar
h 7, 2001 DRAFT
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y within 
ertain time interval�a simpli�ed versionof this is to rate the 
ompanies a

ording to their bankrupt
y risk, without requiring the ratingsto be true probabilities. Naturally, probability estimation (and risk rating) models also o�er abasis for 
lassi�
ation.A seminal work on bankrupt
y predi
tion was performed by Altman and 
o-workers (summa-rized in [22℄), who applied Linear Dis
riminant Analysis to this problem. Later, almost everystatisti
al method, in
luding neural network approa
hes, has been proposed (see e.g. [27℄, [28℄,[29℄, [30℄, [31℄, [32℄, [33℄, [34℄, [35℄, [36℄. Generally, it has been observed that some of thesemethods, espe
ially the more "advan
ed" ones su
h as neural network models, have slightly over-performed LDA. However, in all 
ases the improvement has been quite small, ex
luding the studieswhere only training set performan
e has been reported, or where the data set has been very small.Another view, 
omplementary to the bankrupt
y predi
tion problem, is here referred to asbankrupt
y analysis: trying to understand the di�erent 
orporate behaviors and their relationto the risk of bankrupt
y. A very in�uential qualitative work in this area has been 
arried outby Argenti [37℄. One of his observations was that there are several di�erent bankrupt
y types("failure traje
tories") that di�er in their 
auses, symptoms, and length. Along these lines ofthought, a resear
h proje
t in Helsinki University of Te
hnology has attempted to quantify andvisualize these di�erent behavior patterns [5℄, [6℄, [38℄, [39℄. Be
ause the present study is 
loselyrelated to this proje
t, some of its �ndings and also 
hallenges are brie�y summarized below.First, the SOM does not in
rease the a

ura
y in bankrupt
y predi
tion, but is very useful invisualizing the present state of a 
ompany and possible dire
tions of its future development�theanalyst gets a mu
h more a

urate idea of the state of the 
ompany from the visualization on aSOM than from a single s
alar estimating the bankrupt
y risk.Se
ond, di�erent types of 
orporate behavior (traje
tories) 
an be identi�ed with the SOM.Third, one problem with the visualization using an SOM is that when the data has an intrinsi
dimensionality higher than that of the SOM grid, dis
ontinuities in the mapping sometimes result.For instan
e, a single 
luster of high bankrupt
y risk may appear multimodal on the SOM. TheFisher metri
 approa
h, des
ribed in previous 
hapters, is likely to help with this problem, for themanifold spanned by the Fisher metri
 is of lower dimensionality than the original data spa
e.Thus, the primary goal in this se
tion is to use the new methods to better understand the(nonlinear) dependen
ies between bankrupt
ies and �nan
ial indi
ators. The dependen
ies areMar
h 7, 2001 DRAFT
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onverted into a metri
 of the input spa
e, and we use the SOM to visualize the dependen
ies in a
on
ise form. Be
ause the metri
 is 
hosen to des
ribe 
hanges in the bankrupt
y sensitivity, theSOM should emphasize features of the input spa
e that are (lo
ally) 
ontributing to bankrupt
ies.In this se
tion, we will for brevity 
all a SOM 
omputed in the Eu
lidean metri
 SOM-E, anda SOM 
omputed in the Fisher metri
 SOM-F.A. DataThe �nan
ial statements were from Finnish small and medium-sized enterprises. The line ofbusiness, age, size, and 
ompleteness of the available data were used as the sele
tion 
riteria,but no data was otherwise reje
ted on the basis of 'atypi
ality'. In the data set there were6 195 �nan
ial statements given by about 1 500 
ompanies. Of these statements, 158 
on
erned
ompanies whi
h have gone bankrupt.In this paper we do not take into a

ount the development of 
ompanies in time. Multiplestatements from the same enterprise but from di�erent years are treated as independent samples.We used a set of 23 
ommon �nan
ial indi
ators in
luding measures of growth, pro�tability,solidity, liquidity, and operational e�
ien
y; the samples of the primary data spa
e x were 23-dimensional real ve
tors. The indi
ators were prepro
essed (ea
h separately) using histogramequalization. The auxiliary random variable C was binary, indi
ating whether the statement wasfollowed by a bankrupt
y within 3 years.B. MethodsThe data was randomly divided into an estimation set and a test set of roughly equal sizes.Two PDF estimates, the �rst based on Parzen estimation with Gaussian kernels and the se
ondon a Gaussian mixture with 10 mixture 
omponents, were �tted to the estimation set. HexagonalSOMs of the size of 20�10 units were then 
omputed both in the Eu
lidean and in the Fishermetri
, the latter derived from the PDF estimates.B.1 Veri�
ation measuresIn this se
tion we present a measure of goodness for verifying that the SOM-F re�e
ts aspe
ts ofthe input data that are relevant to the risk of bankrupt
y. There are three 
omponents a�e
tingthe goodness: (1) the quality of the PDF estimator, (2) the a

ura
y by whi
h the SOMs represent
Mar
h 7, 2001 DRAFT
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y3, and (3) the quality of the visualizations, i.e., the smoothness andquality of organization of the SOMs.We will not measure the �rst 
omponent; it is assumed that the standard PDF estimators areadequate. The a

ura
y of representation will be measured by the log-likelihood of the test datagiven the estimates at the lo
ations of the winner units,Xk log p̂(
kjmw(xk)) : (13)Regarding the quality of visualizations we will resort to visual 
omparisons between visualizationsobtained by SOM-E and SOM-F.The likelihoods obtained by the two PDF estimates and SOM-E and SOM-F were 
omputedfor a wide range of values of the parameter �, from the order of the average distan
e between two
losest data points to the order of the maximal distan
e. The likelihood obtained dire
tly fromthe PDF estimator was 
omputed to �nd out an approximation of the best possible performan
e,and a model always predi
ting prior probabilities of the 
lasses served as a lower limit of usefulresults.Note: The likelihood used for measuring the a

ura
y of representation has a 
onne
tion to thequantization error that is 
ommonly used for measuring the quality of SOMs. The quantizationerror is de�ned to be the average distan
e from the original data to the winning SOM units,Efkx�mw(x)kg. In SOM-F, the 
orresponding measure would be the Kullba
k-Leibler divergen
ebetween the posterior distributions p̂(
jx) and p̂(
jmw(x)). Assuming that x and mw(x) are 
loseto ea
h other, the squared di�eren
e 
an be 
omputed using the Fisher information matrix as in(4). However, sin
e the measure is based solely on estimates of PDFs and not on the data itself,minimizing the quantization error in the estimated Fisher metri
 does not guarantee that themap represents the real data. There exists a simple remedy: If the estimate p̂(
jx) is repla
edby the real distribution p(
jx), then the Kullba
k-Leibler divergen
e measures devian
e of therepresentation from the true PDF. It 
an be easily shown that the average divergen
e betweenp(
jx) and p̂(
jmw(x)) is approximated by a linear fun
tion of the likelihood (13).3Note that although this a

ura
y 
an be measured by the predi
tion a

ura
y, our goal is not to simply maximizepredi
tion a

ura
y but to quantify a

ura
y of visualizations.
Mar
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IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 2001 118B.2 Visualization of the resultsIn addition to the usual visualization methods available for all SOMs, with SOM-F one 
an vi-sualize 
orrelations between bankrupt
y sensitivity and dire
tions of the data spa
e. The amountof s
aling of a dire
tion dx, revealed by the quadrati
 form dxTJdx, measures the e�e
t of thedire
tion on the bankrupt
y sensitivity. We will visualize the magnitudes of these s
alings at themost easily interpretable dire
tions of the data spa
e, the original variables of the data.The relative amount of s
aling in the dire
tion of 
oordinate axis l is given byrl(x) =s eTl J(x)elPm eTmJ(x)em (14)where el is the unit ve
tor parallel to the axis. A large value of rl(x) indi
ates a strong e�e
t bythe variable l, lo
ally around x.C. ResultsThe likelihoods of SOM-E and SOM-F in the test set are shown in Figure 3 as a fun
tion of theparameter � (whi
h governs the smoothness of the PDF estimates). The SOM-F, as expe
ted,performs 
learly better than the Eu
lidean SOM. The SOM-E is roughly equal only for the kernel-based PDF estimate when � is very small�then the PDF estimate and the resulting Fisher metri
are probably very uneven. The lo
ation of a �nan
ial statement on the SOM-F is thus a morea

urate predi
tor of bankrupt
y than the lo
ation of the statement on the SOM-E.To test the statisti
al signi�
an
e of the performan
e di�eren
e, the data was divided into 10separate sets. At ea
h test round, one set was used as the test data and the other sets as thetraining data. The likelihood 
urves of the SOM-E and SOM-F were 
al
ulated for the test sets(using the MDA2 estimate), and the peaks of the 
urves were 
ompared with the sign test. TheSOM-F outperformed the SOM-E (p < 0:002).Still, the variation of the �nan
ial indi
ators on SOM-F displays (Fig. 5) is remarkably smooth,
omparable to the smoothness of the SOM-E displays. Moreover, the bankrupt 
ompanies arevisually 
learly separated on both SOMs, in the sense that their distribution is unimodal andthat the posterior 
lass densities 
hange smoothly on the map (Fig. 4). In summary, the goodorganization and visualization 
apabilities of the SOM have been maintained or even improvedwhile the Fisher metri
 has in
reased the predi
tion a

ura
y.The relative s
aling of the 
oordinate axes in the new metri
 
an be visualized as easily un-Mar
h 7, 2001 DRAFT
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a bFig. 3. The a

ura
y of the SOMs 
omputed in the Eu
lidean metri
 (SOM-E) and in the Fisher metri
(SOM-F) in representing the probability of bankrupt
y, measured by the likelihood of data at thelo
ations of the best-mat
hing SOM units (13). a: The PDF is estimated with the Gaussian kernel(Parzen) estimate. b: The PDF is estimated by a Gaussian mixture having 10 mixture 
omponents.The 
urve marked by �PDF� provides an approximate upper limit: it is the likelihood at the datapoints instead of at the best mat
hing units. The 
urve marked by �A priori� provides the lower limitof sensible results, obtained by the best 
onstant estimates. The parameter � governs the smoothnessof the PDF estimates.

a b 
 dFig. 4. The separation of bankrupt
y-prone and healthy 
ompanies on the SOMs. a-b: The estimateof the probability of bankrupt
y at ea
h map unit in a SOM-F and b SOM-E. The estimate is theposterior density of the Gaussian mixture model at � = 0:31. The darkest shade denotes probability0.12; the lightest denotes probability 0.002. (Note that the prior probability of bankrupt
y is small,just 0.022.) The a
tual relative frequen
y of bankrupt
ies in the test set for ea
h map unit is shownin 
 for SOM-F and in d for SOM-E. The frequen
y graphs are noisy sin
e the number of bankrupt
ompanies was small. White: no bankrupt
ies, bla
k: two thirds of all 
ompanies have gone bankrupt.Mar
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a b 

d e fFig. 5. The distribution of the values of three �nan
ial indi
ators on (a-
) SOM-F and (d-f) SOM-E. Anindex of (a and d) pro�tability; (b and e) liquidity; (
 and f) 
apital stru
ture. The Fisher metri
for SOM-F has been 
omputed from a Gaussian mixture estimate with � = 0:31.derstandable overviews of the relative importan
e of the input variables. Some examples arepresented in Figure 6. The non-
onstant values of the r(x) suggest that nonlinear e�e
ts exist,whi
h would justify the use of nonlinear models for this data set.V. Dis
ussionWe have introdu
ed a new method for deriving metri
s from the estimated posterior distributionof an auxiliary relevan
e-indu
ing variable, and used it in 
omputing Self-Organizing Maps. Themetri
 is based on the Fisher information matrix, whi
h results from a lo
al approximation of theKullba
k-Leibler divergen
e between the posterior densities at 
lose-by points in the primary dataspa
e. In the new metri
 the estimated posterior probabilities 
hange evenly in all dire
tions.In other words, the metri
 represents lo
al 
ontribution of the dire
tions of the data spa
e to
hanges in the relevan
e-indi
ating random variable.We 
omputed a SOM in the Fisher metri
 and applied it to the visualization of bankrupt
ysensitivity as a fun
tion of several quantitative �nan
ial indi
ators. The SOM was more a

urateMar
h 7, 2001 DRAFT
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a b 
Fig. 6. The relative 
ontributions r2l (x) to the 
hange in the bankrupt
y sensitivity, plotted as graylevels on the map display, for the indi
ators of Figure 5. The relative 
ontribution of the pro�tabilityindi
ator (a: s
ale from 0.007 to 0.080) de
reases and the 
ontribution of the 
apital stru
ture indi
ator(
: s
ale from 0.0002 to 0.215) in
reases at the bankrupt
y zone (the stripe in the top left 
orner),while the 
ontribution of the liquidity indi
ator (b: s
ale from 0.001 to 0.013) is very low.in representing the (estimated) probability of bankrupt
y than an Eu
lidean SOM while the visualquality of the maps was 
omparable or improved.The Fisher metri
 
an be used for dis
overing and visualizing lo
ally relevant dimensions, andas a kind of automati
 feature-extra
tion stage. We have presented one way of visualizing the
ontributions of the input variables to the Fisher metri
. In general the visualization of themetri
 tensor as a fun
tion of the primary data spa
e is a subje
t for further experimentationand resear
h.When used as a kind of feature extra
tion stage the method has the ni
e property that it
hanges the metri
 while still preserving the proximity relations of the original data spa
e. Fora PDF estimator whi
h approa
hes the real PDF when the number of data grows, the resultsare independent of the original 
oordinate system, and therefore of the metri
, of the data.Preservation of the proximity relations is, of 
ourse, a natural requirement for sensible operationof further pro
essing stages like the SOM; if the topology of the original spa
e is not worthpreserving then it is best to use a suitable (dis
ontinuous) prepro
essing stage.It may be worth noting that the 
hange of the metri
 a�e
ts the density of X. In the Fishermetri
, the density of p(x) 
hanges to jJ(x)j�1=2p(x). This 
hange redu
es the density of dataat the points of the X-spa
e where the posterior probabilities p(
jx) 
hange rapidly. If this isundesirable, a modi�ed Fisher metri
 with a 
onstant magni�
ation fa
tor 
an be used.In �nding the relevant lo
al features of the input spa
e, the extra
tion of the Fisher metri
 isMar
h 7, 2001 DRAFT
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ently introdu
ed Kullba
k-Leibler 
lustering algorithm [40℄, [41℄. This 
onne
tionwill be detailed in future papers.In summary, we have extended the SOM-based exploratory analyses of the fa
tors a�e
tingbankrupt
y risk in di�erent kinds of 
ompanies by the new learning metri
. The Fisher metri
derived from PDFs improved the a

ura
y with whi
h the visual maps represent bankrupt
yand even the quality of the visualizations. Bankrupt
y analysis from �nan
ial statements isa 
ommon task, and it is relatively well known whi
h features are meaningful; moreover, thee�e
tive dimensionality of meaningful data spa
es is small. It is therefore hard to improve on themethods that are already in use in this �eld. Hen
e, the Fisher metri
 is likely to be even moreuseful when the stru
ture of the data is less known and there is little justi�
ation for manualfeature sele
tion. Appendix ADerivation of the distan
e d2 for the mixture modelThe gradient of (7) is��x p̂(
ijx;�) =Xj �j �ji � p̂(
ijx)Pk �kbk(x;�k) ��xbj(x;�j) ;and hen
e ��x log p̂(
ijx;�) =Xj �j �ji=p̂(
ijx)� 1Pk �kbk(x;�k) ��xbj(x;�j) :For a Gaussian bj having a diagonal 
ovarian
e matrix �2I,��xbj(x;�j) = � 1�2 bj(x;�j)(x� �j) ;and hen
e�2 ��x log p̂(
ijx;�) = Xj � �ji�jbj(x;�j)p̂(
ijx)Pk �kbk(x;�k) � �jbj(x;�j)Pk �kbk(x;�k)� (�j � x) : (15)
Mar
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kets 
an be simpli�ed toPk �kbk(x;�k)Pk �k�kibk(x;�k) �j�jibj(x;�j)Pk �kbk(x;�k) � �jbj(x;�j)Pk �kbk(x;�k) =�j�jibj(x;�j)Pk �k�kibk(x;�k) � �jbj(x;�j)Pk �kbk(x;�k) =p(
i; uj ;x;�j)Pk p(
i; uk;x;�k) � p(x; uj ;�j)Pk p(x; uk;�k) =p(uj jx; 
i;�j)� p(ujjx;�j) : (16)Plugging (16) into (15) yields�2 ��x log p̂(
ijx;�) = Xj [p(uj jx; 
i;�j)� p(ujjx;�j)℄(�j � x) =Ep(uj jx;
i;�j)f�j � xg �Ep(uj jx;�j)f�j � xg =Ep(uj jx;
i;�j)f�jg �Ep(uj jx;�j)f�jg ; (17)and plugging (17) into (4) yields (8). Appendix BEM estimation of the Gaussian mixture model of joint densitiesWe used the EM algorithm to maximize the likelihood of the model (6). The value of therandom variable U that indi
ates whi
h generator has produ
ed ea
h data item is 
onsidered asthe missing data. The value of U for the data sample (xk; 
k) is denoted by uk. Both the dataand the uk are assumed to be independent and identi
ally distributed.As an initialization we set �j = 1=NU and �ji = 1=(NUNC), where NU denotes the number of
omponent generators and NC denotes the number of possible values of C. The �j are initializedby the K-means algorithm.The E-step 
onsists of two sub-steps. First the joint distribution of the missing data is inferred,and then the expe
ted log-likelihood of the model with respe
t to this distribution is 
omputed,
onditioned on the old parameters and the data.Given the old set of parameters �(0), the joint distribution of the missing data isp(fukj gkjf(xk; 
k)gk;�(0)) =Yk p(ujjxk; 
k;�(0)) ; (18)Mar
h 7, 2001 DRAFT



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 2001 124below we will generally use the supers
ript (0) to refer to the old parameters. The probabilityp(uj jxk; 
k;�(0)) that the mixture 
omponent uj has generated the data sample (xk; 
k) isp(uj jxk; 
k;�(0)) = bj(xk;�(0)j )�(0)ji:
i=
k�(0)jp(xk; 
kj�(0)) � �jk :It 
an be shown that the expe
ted log-likelihood L(�) of the model (6) with respe
t to thedistribution (18) isEfL(�)g =Xj;k �jk hlog bj(xk;�j) + log �ji:
i=
k + log �ji :In the M-step the expe
ted log-likelihood is maximized. It 
an be shown that with respe
t tothe �ji the maximum is at �ji = Pk:
k=
i �jkPk �jk : (19)For the �j the maximum is at �j =Xk �jk=N (20)where N is the number of data samples, and for the �j at�j = Pk �jkxkPk �jk : (21)A
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 generated by a PDF estimate for a two-dimensional two-
lass data set (N=1000).The �rst 
lass is sampled from a symmetri
al Gaussian with p(
) = 13 (the topmost 
luster in the�gure), the se
ond from a sum of two Gaussians (the bottom 
lusters). For all the Gaussians,�=0.6, and the mutual distan
es of the 
enters are equal to unity. The gray-s
ale ba
kgroundillustrates the marginal density p(x), and the small line segments (or dots) depi
t the dominantdire
tion and relative distan
es d2 in the lo
al metri
. Distan
es are nonzero only in the dire
tionswhere the 
onditional density 
hanges. The PDF was estimated with a Gaussian Parzen estimator(� = 0:4).Figure 2:A demonstration of the di�eren
e between SOMs 
omputed in the Fisher metri
 and in theEu
lidean metri
. The primary data was six-dimensional and multinormally distributed, i.e.x � N (0; 1). The auxiliary data was divided into three smoothly 
hanging Gaussian 
lasses, i.e.p(
jx) = G(x �m
; �2)=PlG(x �ml; �2), where G(x; �2) is the probability density at x givenby the distribution N (0; �2). The 
lass 
enters m
 were pla
ed evenly around the origin so thatkm
k = 1, and the varian
e �2 was 0.81. The size of the data set was 3382 points. A PDFestimate was generated using the Parzen model, with � = 1:0. SOMs were then trained to thedata with the sto
hasti
 algorithm (9), (11). Posterior probabilities of the 
lasses (a

ording to(7) for the Parzen estimate) evaluated at the model ve
tors of the SOM are shown for the twoSOMs (size: 40 by 40 units) organized to represent the same data set in the Fisher (a: 
lass 0, b:
lass 1, 
: 
lass 2) and in the standard Eu
lidean (d�f) metri
. The probability 0.767 is shownwith the lightest shade and the probability 0.040 as pure bla
k.
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ura
y of the SOMs 
omputed in the Eu
lidean metri
 (SOM-E) and in the Fisher metri
(SOM-F) in representing the probability of bankrupt
y, measured by the likelihood of data atthe lo
ations of the best-mat
hing SOM units (13). a: The PDF is estimated with the Gaussiankernel (Parzen) estimate. b: The PDF is estimated by a Gaussian mixture having 10 mixture
omponents. The 
urve marked by �PDF� provides an approximate upper limit: it is the likelihoodat the data points instead of at the best mat
hing units. The 
urve marked by �A priori� providesthe lower limit of sensible results, obtained by the best 
onstant estimates. The parameter �governs the smoothness of the PDF estimates.Figure 4:The separation of bankrupt
y-prone and healthy 
ompanies on the SOMs. a-b: The estimate ofthe probability of bankrupt
y at ea
h map unit in a SOM-F and b SOM-E. The estimate is theposterior density of the Gaussian mixture model at � = 0:31. The darkest shade denotes proba-bility 0.12; the lightest denotes probability 0.002. (Note that the prior probability of bankrupt
yis small, just 0.022.) The a
tual relative frequen
y of bankrupt
ies in the test set for ea
h mapunit is shown in 
 for SOM-F and in d for SOM-E. The frequen
y graphs are noisy sin
e thenumber of bankrupt 
ompanies was small. White: no bankrupt
ies, bla
k: two thirds of all
ompanies have gone bankrupt.
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IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. XX, NO. Y, MONTH 2001 130Figure Legends:Figure 5:The distribution of the values of three �nan
ial indi
ators on (a-
) SOM-F and (d-f) SOM-E.An index of (a and d) pro�tability; (b and e) liquidity; (
 and f) 
apital stru
ture. The Fishermetri
 for SOM-F has been 
omputed from a Gaussian mixture estimate with � = 0:31.Figure 6:The relative 
ontributions r2l (x) to the 
hange in the bankrupt
y sensitivity, plotted as gray levelson the map display, for the indi
ators of Figure 5. The relative 
ontribution of the pro�tabilityindi
ator (a: s
ale from 0.007 to 0.080) de
reases and the 
ontribution of the 
apital stru
tureindi
ator (
: s
ale from 0.0002 to 0.215) in
reases at the bankrupt
y zone (the stripe in the topleft 
orner), while the 
ontribution of the liquidity indi
ator (b: s
ale from 0.001 to 0.013) is verylow.
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