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Abstract Visualization is crucial in the first steps of data analysis. In visual data
exploration with scatter plots, no single plot is sufficient to analyze complicated
high-dimensional data sets. Given numerous visualizations created with different
features or methods, meta-visualization is needed to analyze the visualizations to-
gether. We solve how to arrange numerous visualizations onto a meta-visualization
display, so that their similarities and differences can be analyzed. Visualization
has recently been formalized as an information retrieval task; we extend this ap-
proach, and formalize meta-visualization as an information retrieval task whose
performance can be rigorously quantified and optimized. We introduce a machine
learning approach to optimize the meta-visualization, based on an information
retrieval perspective: two visualizations are similar if the analyst would retrieve
similar neighborhoods between data samples from either visualization. Based on
the approach, we introduce a nonlinear embedding method for meta-visualization:
it optimizes locations of visualizations on a display, so that visualizations giving
similar information about data are close to each other. In experiments we show
such meta-visualization outperforms alternatives, and yields insight into data in
several case studies.
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1 Introduction

Visualization is crucial especially in the first stages of data analysis when strong
hypotheses or models are not yet available for the data. We consider exploration
of high-dimensional data by scatter plots. A scatter plot can show 2-3 original
data features, or a mapping created by dimensionality reduction; visualization
by low-dimensional scatter plots has been a traditional application of nonlinear
dimensionality reduction (NLDR) methods (Roweis and Saul [2000; Belkin and
Niyogi| 2002; [Weinberger and Saul |2006; |Zhang and Zha 2004; Yan et al 2007}
Zhang et al/2009; |Guan et all[2011}; |Zhou et al|2011} see |[van der Maaten et al|[2009
for a recent review). It is easy to see that a single low-dimensional scatter plot
cannot represent all properties of a high-dimensional data set; even NLDR methods
cannot preserve all essential data properties when the output is lower-dimensional
than the effective data dimensionality (see|Venna et al|2010). No single scatter plot
is then enough to comprehensively explore the data; instead, multiple visualizations
must be created and studied.

For high-dimensional data there are numerous possible ways to create visual-
izations. At simplest, traditional two-dimensional scatter plots could be created
where each scatter plot would show two of the original features; with D features
there are (D? — D)/2 such traditional scatter plots. Linear dimensionality reduc-
tion methods and NLDR methods can each yield infinitely many scatter plots by
emphasizing different features in the similarity metric and by different hyperpa-
rameter values. Each plot reveals different data properties. The remaining problem
is that it is hard and time-consuming to get an overview of a data set from a large
unorganized set of scatter plots; to aid analysis, the multiple plots must be re-
lated to one another. Analyzing and displaying the similarities and relationships
between visualizations can be called meta-visualization.

In this paper we introduce a machine learning approach for meta-visualization:
we solve how to arrange numerous scatter plots of a data set onto a display, to show
their relationships. Such a meta-visualization can reveal which plots have redun-
dant information, and which different aspects of the data are shown in a set of
plots. Our solution principle is that visualizations showing similar information about
the data should be close-by on the display. Our approach yields a well-defined task for
meta-visualization whose success can be quantitatively measured and optimized.

NLDR for visualization has recently been formalized as an information retrieval
task (Venna et all[2010); the formalization has yielded an information retrieval
perspective to existing NLDR methods and new well-performing methods (Venna,
et al||2010; [Peltonen and Kaski 2011} [Yang et al [2013]). Our work in this paper
extends this information retrieval perspective and formalizes meta-visualization of
several scatter plots as an information retrieval task.

Given several scatter plot visualizations of a data set, the first step in our
approach is to evaluate similarity or distance between them. We introduce an
information retrieval approach to evaluate the similarity: two scatter plots are sim-
ilar if they reveal similar neighborhoods between data samples. The similarity
is quantified as an information retrieval cost of retrieving neighbors seen in one
plot from the other plot. High similarity often indicates the same structure of
data is visible in both plots. Given the similarities, the plots must be mapped
onto the meta-visualization display. This is an NLDR task where each complex
object is an individual visualization. We introduce an NLDR approach for meta-
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visualization: locations of plots on the meta-visualization display are optimized for an
information retrieval task, so that close-by plots show similar data relationships,
under a non-overlappingness constraint. In experiments our approach yields in-
formative meta-visualizations for analyzing data through different feature sets,
NLDR with different hyperparameters, and numerous NLDR methods.

Meta-visualization lessens the workload of the analyst: rather than having to
analyze and each plot separately in an unordered set of plots, from a well-organized
meta-visualization the analyst can see which plots provide similar information,
since plots physically close-by on the meta-visualization show similar data rela-
tionships, whereas plots physically far-away (such as separated clusters of plots)
show different aspects of the data. The arrangement of plots thus reveals the dif-
ferent aspects of data as groups of plots. The analyst can then make insights about
the shown similarities and differences: for example, two plots might show similar
information because they are based on separate but redundant feature sets. We
demonstrate this in a bioinformatics study, where a set of tissue samples are plot-
ted based on different biological pathways in each plot. Some pathways turn out
to have a similar ability to discriminate diseases in the tissue samples, that is,
they yield similar plots where samples of some diseases are separated from the
rest. Then the plots along the different pathways become grouped by the ability of
the pathways to discriminate the different diseases in the tissue samples. A more
detailed discussion is provided in Section [3.2

To summarize, we contribute, based on an information retrieval approach, 1)
an NLDR formalization of the meta-visualization task; 2) a data-driven divergence
measure between scatter plots; 3) an NLDR method arranging plots on a meta-
visualization display, optimized for retrieval of related plots.

This paper extends our conference paper (Peltonen and Lin|2013) by introduc-
ing two comparison approaches for meta-visualization, an empirical comparison
showing how our full information retrieval approach is needed for best results, an
experiment showing the benefit of emphasizing non-overlappingness for readable
meta-visualization, as well as extended discussion of case studies and methodolog-
ical details.

We start the paper with a review of related work in Section [2| In Section |3| we
then introduce our approach: we first present the information retrieval principle
for comparing plots as well as the resulting computational measure in Section (3.1}
and the information retrieval principle for laying out a meta-visualization as well
as the resulting meta-visualization NLDR method in Section In Section
we discuss potential alternative approaches that we will compare our approach
to in experiments. In Section [d] we perform a series of experiments including two
quantitative comparisons to alternative approaches (Sections and and an
illustration of the influence of a readability parameter (Section , as well as
three case studies using meta-visualization to study hyperparameter influence on
a prominent NLDR method (Section , differences among NLDR methods (Sec-
tion, and exploration of a gene expression experiment collection along different
gene pathways (Section . Lastly, we conclude with discussion in Section
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2 Background

Historically, the term “meta-visualization” has been used with several meanings;
in most cases it has denoted working with several visualizations, such as manual
and interactive design of coordinated multiple views with a visualization system
(Robinson and Weaver|[2006; [Weaver||2006). The term has also been used for vi-
sualization of an algorithm workflow using plots at different levels of abstraction
(Sikachev et all2011)); we do not focus on such work. We use “meta-visualization”
to denote works that relate several visualizations, potentially without user’s direct
intervention: our usage corresponds to that of Bertini et all (2011) who described
meta-visualization as “a visualization of visualizations”, and more specifically as
“a visualization layout strategy that organizes single visualizations into an orga-
nized form”; our proposed method is such a strategy for organizing visualizations.
We concentrate on meta-visualization of scatter plots; parallel coordinate plots
and recent visualizations (Wickham and Hofmann|[2011)) are alternatives.

The need to organize visualizations has been noted (Bertini et al|2011)); com-
mon organizations are simple lists or matrices. In a scatter plot matriz, an element
(i,7) is a plot of the ith feature vs. the jth feature; related methods include Hy-
perSlice (see Wong and Bergeron![1997). Figure [ (right) shows an example of a
scatter plot matrix. Traditional scatter plot matrices have the limitation that the
organization of plots depends only on feature indices and not on content of the
plots; additionally, the scatter plot matrix cannot be easily constructed for a more
general set of plots that do not arise from combinations of two feature indices.

Some methods find orderings of visualizations (Peng et al|2004)). The Grand
Tour 1985) animates overviews of data projections. Rankings are used
to find the most “interesting” visualizations, see |Tatu et al| (2009). Some NLDR

methods arrange data onto several displays, but do not solve
how to relate numerous displays.

Interactive systems like DEVise show multiple visualizations
and let users lay them out. Overview+detail techniques show data subsets next to
an overall view in (see |Cockburn et al/2009). Methods with linked views (Kehrer
[and Hauser|[2013) highlight items in several views. [Claessen and van Wijk| (2011])
integrate scatter plots, parallel coordinate plots, and histograms in regular arrange-
ments. [Viau and McGuffin| (2012) connect multivariate charts by curves showing
relations between feature tuples.

We point out that machine learning methods have been proposed to learn from
multiple views of a data set, for example by canonical correlation analysis (CCA)
to discover correlated linear components in the views or by other multi-view learn-
ing methods (see for a recent survey on multi-view learning). Such
methods are complementary to ours but have a different goal in that they typi-
cally aim to extract a small set of new low-dimensional components such as CCA
components describing related characteristics among the original high-dimensional
views, rather than analyzing the original set of views. In contrast, we aim at visual
analysis of the original set of views which are already low-dimensional plots each,
and we will allow analysis of similarities among plots by arranging them onto a
meta-visualization.

Most works above relate a small number of visualizations. Given numerous
plots, arranging them onto the meta-visualization becomes crucial; we solve this task.
One can then e.g. add parallel coordinate plots connecting axes of nearby plots
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or axes interactively chosen by the analyst; the above works thus complement our
method.

Tatu et al (2012) arranged plots of subspaces by applying multidimensional
scaling to Tanimoto similarities, which evaluate dimension overlap between sub-
spaces. Such arrangements are not based on the data, only on annotation of sub-
space parameters. Such layouts cannot be computed when plots arise from more
complicated NLDR. Tatu et al. also used a similarity based on the percentage of
agreement within k-NN lists, but not for laying out plots, only for grouping them.
Unlike [Tatu et al (2012]), the approach we propose creates data-driven layouts of
plots. Binary neighborhoods such as k-NN lists (where each point is or is not a
neighbor) only change if a point enters or leaves the neighborhood, that is, if the set
of neighbors changes; thus such binary neighborhoods do not reflect more nuanced
changes, such as changes in the order of the neighbors within the neighborhood
(which neighbor is nearest to the central point), changes in distances of neighbors
from the central point, or changes in the order or distances of the non-neighbors
outside the neighborhood. Our approach is based on probabilistic neighborhoods
where the continuous-valued probabilities of neighbors can take into account such
nuances.

For the task of constructing a single scatter plot visualization, a common ap-
proach is to apply a NLDR method to reduce data to a two-dimensional represen-
tation and plot the result. Numerous NLDR methods have been proposed. Many
NLDR methods are designed for manifold learning, that is, the methods aim to
find an underlying lower-dimensional manifold of the data embedded in the high-
dimensional space and then unfold the manifold. Many successful manifold learning
methods exist including Isomap [Tenenbaum et all (2000)), Locally Linear Embed-
ding (LLE; [Roweis and Saul|[2000), Laplacian Eigenmap (LE; Belkin and Niyogi
2002), Maximum Variance Unfolding (MVU; Weinberger and Saul 2006) and sev-
eral others. Several recent NLDR approaches have been based on the concept of
neighbor embedding , including Stochastic Neighbor Embedding (SNE; [Hinton and
Roweis||2003)), t-distributed SNE (t-SNE; van der Maaten and Hinton|[2008) and
others. See, for example [Venna and Kaski (2007)), van der Maaten et al| (2009),
and Wismiller et al| (2010) for extensive reviews and comparisons of nonlinear di-
mensionality reduction approaches. Some dimensionality reduction methods aim
to find a sparse linear mapping, in order to make computation of low-dimensional
representations efficient and easier to interpret, and to potentially reduce overfit-
ting in further predictive tasks; for example a manifold elastic net (Zhou et al|2011))
can be used for this purpose. Some recent works have aimed to unify dimensionality
reduction algorithms, for example several spectral analysis based dimensionality
reduction methods have been unified in a patch alignment based framework [Zhang
et all (2009)); Guan et al| (2011]).

Several manifold learning approaches have had difficulties in low-dimensional
information visualization (Venna and Kaski|2007)), as they have been designed to
find and unfold a manifold but not to compress the data below the intrinsic di-
mensionality of the manifold. In a low-dimensional visualization, all original data
properties cannot be represented perfectly on the output display, and being able
to define and quantify the goodness of the representation is crucial. [Venna et al
(2010) proposed a recent well-performing NLDR approach for visualization, where
visualization by scatter plots is formalized as an information retrieval task: origi-
nal neighbors of data points are retrieved from the display, and the visualization
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is optimized to minimize retrieval errors, which can be quantified by informa-
tion retrieval measures precision and recall. The approach has yielded state of the
art performance in visualization (Venna et al|2010). The approach was proposed
only for creating a single plot of data; analyzing several plots was not consid-
ered. In this paper, we take an information retrieval perspective to formalize the
meta-visualization task of organizing a set of several scatter plots. Our formaliza-
tion also involves information retrieval concepts such as retrieval errors and the
precision and recall goodness measures, but unlike |Venna et al (2010) we bring
the information retrieval perspective and concepts to solve the needs of the new
meta-visualization setting, in particular for quantifying differences between plots
and for quantifying the goodness of a meta-visualization display containing an
arrangement of several plots.

Note that NLDR is often applied in other data transformation tasks than
visualization. Using the lower-dimensional NLDR output data can reduce com-
putational complexity of further processing and reduce memory and disk space
needed for data storage. The lower-dimensional representation may also be bene-
ficial in predictive tasks; for example, |Chang et al (2004)) used LLE as part of an
image super-resolution task, |Patwari and I1I| (2004) used several manifold learning
algorithms including Isomap, LLE, and Hessian LLE (HLLE; Donoho and Grimes
2003) for sensor localization in wireless sensor networks, Nguyen and Worring
(2008) integrated SNE into the visualization stage of a content-based image re-
trieval (CBIR) engine, and van der Maaten| (2009) proposed a fine-tuning method
based on t-SNE for a stack Restricted Boltzmann Machine. In this paper we focus
on the task of information visualization, in particular on meta-visualization.

The method we propose in this paper is the first neighbor embedding method
organizing plots onto a meta-visualization.

3 The Method: Information Retrieval Approach to Meta-Visualization

We optimize meta-visualizations for analysts studying data through neighborhood
relationships. From each scatter plot, the analyst visually retrieves neighborhood
relationships of samples. Given many plots the analyst retrieves which plots show
similar neighborhoods as a plot she is interested in, vs. which ones show different
information.

Let {x;}YY, be a set of input data samples. Let there be M different low-
dimensional scatter plots of the data set; in the mth plot the samples have posi-
tions {Ym,i}i]il on the plot. The different plots might arise from different features
or similarity metrics for the data, different NLDR methods, or different parame-
ters within an NLDR method. Since a low-dimensional plot cannot represent all
features of the high-dimensional data, each plot will show different data aspects; in
particular, each plot will show different neighborhood relationships between data.
In the mth plot, let each data point ¢ have a probabilistic output neighborhood,
defined as a distribution ¢, = {gm(j|i)} over the possible neighbors j # i, where
gm(j]?) is the probability that an analyst starting from point ¢ on the display would
retrieve point j as an interesting neighbor for further study.

The output neighborhood. The ¢ (j]7) should depend on positions of data
on the mth plot, so that samples j close to ¢ are more likely to be retrieved as
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neighbors. We set

-1
am (i) = eXp(nym,i —Ym,j H2/072n,i) ’ <Z exp(nym,i - Ym,kuz/o'?n,i)) (1)
k#i

where UTQM controls how quickly gm (j|i) falls off with distance. If more accurate
user models are available, e.g. estimated from eye tracking, they can be plugged
in place of Eq. . We set oy, ; to half of the maximum pairwise distance between
points in m. Alternatively o, ; can be set to a value according to the “perplexity”
of point ¢ in visualization m (Hinton and Roweis||2003; Venna et al/2010). But the
first simple choice already worked well in experiments.

3.1 Information Retrieval View of Comparing Neighborhoods between Plots

In visual information retrieval an analyst looking at a scatter plot retrieves neigh-
bors for each data point. When several plots are available for the data, the analyst
can compare the neighborhoods between plots. If two plots show similar neighbor-
hoods, findings from them support each other; if they show different neighbor-
hoods, they reveal different data aspects.

Suppose the analyst studied plot m, and now studies plot m’. As the plots have
different data arrangements, when the analyst tries to retrieve the neighborhoods
visible in m from m’, two kinds of differences arise. For each query point i, some
points 7 that used to be neighbors of 7 in plot m (having high probability gm (j]7)) no
longer look like neighbors in plot m’ (low g,,,/ (j]1)); they are missed when neighbors
are retrieved from m’. Conversely, some points j that were not neighbors of i in
plot m (low gm(j|i)) look like neighbors in plot m’ (high ¢, (j|i)); they are nowvel
neighbors when neighbors are retrieved from m’. Figure [1] illustrates the setup.
The concept is symmetric: if plot m’ misses a neighbor that was visible in plot m,
equivalently m yields the neighbor as a novel neighbor compared to m’.

Cost of differences. In information retrieval literature, if an analyst is trying
to retrieve a set of items (here the set of neighbors previously seen in plot m) and
instead retrieves another set of items (here the set of neighbors seen in plot m’),
the differences between the sets are called “retrieval errors”. Since we formulate
the comparison of plots as information retrieval, we will temporarily use the term
“retrieval errors” to denote the differences between plots, but we stress that in
our setting the “errors” are actually natural differences between plots of data
arising for example from different feature sets used to create the plots, and the
analyst will ultimately want to analyze such differences using a well-organized
meta-visualization.

If the analyst has found interesting relationships from plot m but fails to find
them in m’, each difference (each missed neighbor or novel neighbor) can have a
cost to the analyst; for example such cost could arise in terms of time and atten-
tion spent on locating the corresponding neighbors in both plots. The difference
measure between plots arising from the information retrieval task is the total cost
of information retrieval errors when retrieving the neighbor relationships in m from
m’. The total cost can be shown to be a sum of Kullback-Leibler divergences D,
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Scatter plot visualization 1 Scatter plot visualization 2

miss novel neighbors

Fig. 1: Differences between plots in visual information retrieval. We consider a
query point i, and try to retrieve the neighbors seen in one scatter plot (left)
from a second plot (right). Q% denotes points with high neighborhood probability
q1(j]7) in the first plot, Q4 denotes points with high g2(j]i) in the second plot.
Missed neighbors have high qi(j]¢) but low ¢2(j]¢); an analyst looking at the second
plot would miss them. Nowvel neighbors have low g1 (j|i) but high g2(j|7); they were
not apparent in the first plot. Note that this figure is similar to Fig. 1 of|Venna et al
(2010) as both figures represent retrieval situations, but their setting is different.
The figure above illustrates a meta-visualization setting where the left-hand side
and right-hand side are two low-dimensional scatter plots of the same data set; the
figure represents differences that arise when the analyst compares neighborhood
relationships between the plots. In contrast, the figure of [Venna et all (2010) repre-
sents retrieval of neighborhoods from a single plot compared to high-dimensional
ground truth neighborhoods of data.

between neighborhood distributions. In detail, if ¢}, and q,"n, are “nearly discrete”
$0 gm(j|i) is uniformly high for a small number of neighbors j and very small for
other points, and similarly for m’, then Dy (¢in,q’,) ~ Const - (N%ff,s’l/rfn)

MISS,i

where r?, is the total number of neighbors of i in m and N." 5" is the number of

m,m
those neighbors missed when retrieving the neighbors from visualization m’. We
thus use Dk, to measure the cost of misses around query point i between plots

m and m/. The total amount of misses between two plots is

P . gm(Jli
Diont = 3. Do) = 3 a1 log 2L ¥
3 1,574

Similarly, it can be showrﬂ the total cost of novel neighbors for each query point ¢
is equivalent to Dgr, (qfn,,qfn), we could use >, D L(qfn,, ¢%,) to measure the cost
of novel neighbors between m and m’. However, the only difference between this
and Eq. is that roles of m and m’ have been swapped, thus the cost of novel
neighbors comparing m’ to m is the same as the cost of misses comparing m to

1 As in an earlier paper [Venna et al| (2010) but in a meta-visualization retrieval setting.
Although the steps are similar,Venna et al|(2010)) is about traditional NLDR and not applicable
in meta-visualization.

2 Again similarly to [Venna et al| (2010), but in our meta-visualization setting.
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m'. Costs of novel neighbors are thus are already included in the M x M matrix
of pairwise miss costs between plots.

Discussion of the divergence measure. Eq. measures how the different
plots contribute differences in an information retrieval task of the analyst, that
is, how different the neighborhoods retrieved from each plot are. This has useful
properties: 1) The measure is data-driven and applies between any scatter plots
of the data set, whether they arose from pairs of data features or from NLDR.
Moreover, Eq. only needs the plots, the original data {x;} are not needed.
2) It can be seen from Eq. that neighborhood probabilities are invariant to
translation, rotation, and mirroring of plots, thus also Eq. is invariant to them.
3) The measure considers all local information, not only a global shape of data; this
is important especially when individual samples are meaningful to the analyst. In
Section we see cases where the overall shape of plots can be deceptively similar
but neighborhoods are very different, our measure and meta-visualization reveals
this.

3.2 Mapping the Visualizations onto the Meta-Visualization

Given M plots of a data set, we use Eq. between each pair of plots m and m/, to
compute a matrix of divergences D,, ,,,. The matrix could be used to order plots:
at simplest, pick a plot m of interest then place other plots m’ on a line in order
of the D,, ,/; such ordering is based on one row of the matrix. We go further
and create meta-visualizations based on the whole matrix. The matrix encodes
desired properties of a meta-visualization: plots with small divergence are similar
and should be close-by, and plots with large divergence large should be far-off. It
remains to lay out the plots onto the meta-visualization based on the divergences;
we introduce a meta-visualization NLDR method for this task.

Information retrieval approach for meta-visualization. Given a scatter plot
of interest, the analyst may wish to find other plots for inspection containing
similar neighborhoods. On a meta-visualization such plots should be nearby, so
the analyst does not have to scan the entire meta-visualization to find similar
plots. We formalize this as an information retrieval task on the meta-visualization;
we then and optimize the ability of the meta-visualization to serve the information
retrieval. The divergence in Eq. measures how similar information two plots
give to the analyst; we use it to define a true neighborhood for each plot m. The true
neighborhood is defined as a neighborhood distribution um, = {u(m’|m)}, which
tells the probability that after the analyst has inspected plot m, the neighboring
plot m’ would be chosen for inspection next:

-1
u(m'|m) = exp(—Diymr [207,) - ( Z exp(fD,mm/chfn)) (3)

m#m

where o2, controls the falloff rate of the probability and is set as in (Hinton and
Roweis|[2003; [Venna et al[[2010) to have a desired effective amount of neighbors
k around each plot, where k is a rough upper bound for the number of relevant
neighbors set by the userEI We next define neighborhoods on the meta-visualization

3 In detail, the entropy of the neighborhood distribution u,, around plot m is smallest when
om approaches zero and hence only the nearest other plot has high neighborhood probability;
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display, based on the on-screen locations of plots. Let each plot m have a location
zm on the meta-visualization display, e.g. as a small “mini-plot” drawn inside the
meta-visualization. We define physical neighborhood distributions vp, = {v(m’|m)}
for plots by their locations on the meta-visualization:

-1

ol m) = exp(llam ~ 2l */205) - (3 exp(llam—2al/208)) @)

m#m

where ||zm — z,,/|| is the Euclidean distance between the plot locations. The phys-
ical neighborhood probabilities v(m’|m) represent which nearby plot m’ the an-
alyst is likely to look at next after looking at plot m on the meta-visualization,
based on physical locations of the plots. In other words, the physical neighborhood
probabilities represent which other plots m’ the analyst retrieves from the meta-
visualization as neighbors of plot m based on their physical locations: the retrieval
is done stochastically, so that the analyst retrieves for each plot m a neighboring
plot m’, and the closer the plot m’ is to the central plot m, the higher the probabil-
ity v(m/|m) is that plot m’ will be retrieved as a neighbor. The um = {u(m'|m)} and
vm = {v(m/|m)} are neighborhoods between entire plots in a meta-visualization,
instead of neighborhoods of data within one plot like Eq. ; we call uy, and v,
meta-level neighborhoods.

Information retrieval cost in retrieval of plots from the meta-visualization.
Suppose the analyst studied plot m and wants to retrieve similar plots from the
meta-visualization. If plots are not well arranged on the meta-visualization, re-
trieval may yield two kinds of errors: missed neighbor plots (which could also be
called false negative plots) and false neighbor plots (which could also be called false
positive plots). The difference between these two kinds of errors is that missed
neighbor plots (false negative plots) are plots that are similar to plot m according
to the comparison measure of Section but are not physically close-by to m on
the meta-visualization display, whereas false neighbor plots (false positive plots)
are plots that are close-by to m on the meta-visualization display but are not sim-
ilar to m according to the comparison measure. The setup is illustrated in Figure
the setup is similar to Figure[I] but instead of comparing data points retrieved
from two plots, we retrieve entire plots from the meta-visualization and compare
them to true neighborhoods of plots.

Suppose each missed plot (false negative plot) or false neighbor plot (false pos-
itive plot) has a cost to the analyst; a good meta-visualization should minimize
the total meta-visualization information retrieval cost: the smaller the cost, the less
errors there are, and the better the meta-visualization shows the relationships
between plots. In Appendix [A] we show that the total cost of errors can be repre-
sented using the information retrieval measures precision and recall, and further
show that in the case of probabilistic neighborhoods the cost can be generalized
as a sum of two types of Kullback-Leibler divergences:

E({zm}) =AY Dcp(um,vm) + (1= A) Y Der,(vm, um) - (5)

correspondingly the entropy is largest when o,, approaches infinity and hence the neighborhood
probability is spread uniformly over all other plots m’. The entropy of u,, can thus be controlled
simply by increasing oy, from a near-zero initial value until the entropy is at the desired level.
If the neighborhood probability would be uniformly spread over k plots, the entropy of the
distribution would be log k. Therefore, to reach an effective number of neighbors k around each
visualization m, we adjust oy, until the entropy of u., is logk.
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True neighborhood Neighborhood of plot m on the
meta—visualization display

missed  false neighbor plots
neighbor
plot

Fig. 2: Errors in visual information retrieval from a meta-visualization, when neigh-
bor plots of a query plot m are retrieved from the meta-visualization display. In
this illustration the scatter plots are shown as colored squares where each plot
shows a slightly different arrangement of data (shown as dots). The true neigh-
borhood of the query plot is represented on the left; the query plot (gray square)
is at the center and its true neighbor plots (green squares) are the other plots m’
that contain similar information about data and thus achieve high neighborhood
probability u(m’|m). Here Uy, denotes the plots having high true neighborhood
probability. The other plots that have low neighborhood probability u(m'|m) are
shown as red squares. The true neighborhoods of the plots arise from a compar-
ison measure between plots as discussed in Section [3.1} to represent the high-
dimensional nature of these neighborhoods as well as the fact that they are the
“ground truth” neighborhoods, the borders of this subfigure are shown as wavy
lines. The meta-visualization display is represented on the right, where zy,, is
the location of the query plot on the display; the plots close to m on the dis-
play achieve high neighborhood probability v(m’|m), and V;, denotes the plots
having high neighborhood probability on the display. The neighborhoods of the
plots are physical neighborhoods that arise from the physical locations of plots on
the meta-visualization display; to represent the low-dimensional physical nature
of these neighborhoods, the borders of this subfigure are shown as straight lines.
Missed neighbor plots (false negative plots) have high u(m’|m) but low v(m'|m); an
analyst looking at the meta-visualization display would miss them. False neighbor
plots (false positive plots) have low u(m/|m) but high v(m/|m); they could be falsely
picked as neighbors of m based on the meta-visualization display. The performance
of meta-visualization can be quantified as the total cost of both kinds of errors.

Here Dy (um,vm) is a generalization of the total cost of missed neighbor plots
from plot m (false negative plots; that is, plots that are similar to m according
to the comparison measure of Section but are physically far-off on the meta-
visualization). Similarly, Dg 1 (vm,um) is a generalization of the total cost of false
neighbor plots retrieved for plot m (false positive plots; that is, plots that are not
similar to m but are physically close-by). Note that the cost is a function of the
locations z,, of plots m on the meta-visualization since the distributions vy, are
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defined based on the z,, according to Eq. . To optimize the meta-visualization,
one can minimize the cost in Eq. with respect to the locations z,, of the plots.

Trade-off between costs of misses and false neighbors. In Eq. the sum
> Drr(um,vm) is the total cost of missed neighbor plots (false negative plots)
from all plots. Optimizing the meta-visualization to minimize this sum term would
try to keep the neighbors of each plot physically close to the plot, to minimize the
cost of misses and thus to maximize the recall of retrieving the similar plots from
the meta~visualization. Similarly, D (vm,um) is the total cost of false neighbor
plots retrieved for plot m (false positive plots; that is, plots that are dissimilar but
are physically close-by), and the sum Y = Dy (vm,um) is the total cost of false
neighbor plots (false positive plots) for all plots. Optimizing the meta-visualization
to minimize this sum term would try to keep non-neighbors of each plot physically
away from the plot, to minimize the cost of false neighbors and thus to maximize
the recall of retrieving the similar plots from the meta-visualization. There is then a
trade-off between minimizing the cost of misses versus the cost of false neighbors;
the optimal meta-visualization for minimizing misses versus false neighbors can
differ as illustrated in Figure |3} In Eq. A controls the trade-off between costs
of missed plots (false negative plots) and false neighbor plots (false positive plots)
desired by the analyst: all A give good visualization, large A avoids misses and
small A\ avoids false neighbor plots, we use A\ = 0.5 to emphasize both kinds of
errors equally.

Since high-dimensional neighborhood relationships between plots typically can-
not be perfectly preserved on a two-dimensional meta-visualization display, formu-
lating the objective function in terms of minimizing the total cost of errors provides
a rigorous quantitative objective for meta-visualization.

Repulsion to avoid overlap of plots on the meta-visualization display.
Minimizing the cost Eq. makes the meta-visualization informative in the sense
that physically neighboring plots yield similar neighborhood information of data
samples. However, the meta-visualization must also be readable by the analyst. We
address one simple aspect of readability: if plots are placed physically too close-by
they will overlap, making it hard to see the data in individual plots. To preserve
readability of the meta-visualization, we add a repulsion term to the cost, which
gives an additional cost for any pair of plots closer on the meta-visualization than
a desired distance threshold. Optimization then tends to keep plots further apart
than this threshold, and plots do not overlap when drawn with a size smaller than
the threshold. Minimizing the final cost then optimizes information retrieval perfor-
mance of the meta-visualization, under a readability constraint of non-overlappingness;
to optimize the meta-visualization we minimize the final cost with respect to the
locations zn, of plots m on the meta-visualization. The final cost is

B({zm}) =AY Dict (tm.vm) +(1=N) 3. Dicr (vmywm) +1 S 9(2m,z) (6)

m m m;ém’

where the last sum term is the repulsion term, p controls importance of repulsion,

2 2
B P

and g is a simple shrinkage Gaussian function: g(zm, =
if ||Zm — Zp||? < T and zero otherwise. Here t = 0.95 and o2 = —T/log(t) where
T is the desired threshold; the value of ¢ is chosen empirically since it performs
well; each repulsion term yields zero cost if plots are further apart than 7" and cost

one if plots fully overlap. The threshold T is set by the analyst according to how
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Fig. 3: Nllustration of minimizing missed neighbor plots (false negative plots) ver-
sus false neighbor plots (false positive plots) in meta-visualization. Suppose we
have a set of scatter plots of a data set, such that for this data the true neigh-
borhoods of plots have a simple form: they can be represented by drawing the
plots onto the surface of a three-dimensional sphere. Top: The original neighbor-
hoods of the plots. Here plots are represented by colored squares whose colors
correspond to their locations on the three-dimensional sphere. Since the neigh-
borhoods of the plots form a three-dimensional sphere, they cannot be perfectly
represented on a two-dimensional meta-visualization display, but the display can
be optimized to minimize the resulting errors. Bottom left: A two-dimensional
meta-visualization optimized to minimize false neighbor plots (false positive plots)
on the display. The optimized meta-visualization ‘cuts open’ the sphere, so that for
each plot all physically nearby plots on the display are true neighbors, but some
original neighbors are missed across the cuts. Bottom right: A two-dimensional
meta-visualization optimized to minimize missed plots (false negative plots). The
resulting meta-visualization ‘flattens’ the sphere so that there are no cuts and all
true neighbors remain physically close-by, but some false neighbor plots are intro-
duced from the opposite side of the sphere. Both kinds of meta-visualizations are
useful for different needs of the analyst, depending on whether avoiding missed
neighbor plots (false negative plots) or false neighbor plots (false positive plots)
is more crucial. In general, meta-visualization can be optimized for any trade-off
between minimizing missed neighbor plots and false neighbor plots; we focus on
both kinds of errors equally. (Note that to concentrate on illustrating the trade-off,
repulsion between plots is not used in this illustration.)
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large plots are needed on the display. We use simple data-driven choices: after an
initial optimization we set T to an average (squared) distance to nearest plots,
and p to make the repulsion term have the same overall weight (times a constant)
as the information retrieval terms. To help find good local minima, we increase p
iteratively during optimization from zero to the final value.

As shown in Appendix minimizing Eq. corresponds to minimizing the
total cost of information retrieval errors; therefore, minimizing Eq. @ corresponds
to minimizing the total cost of information retrieval errors plus a penalty term
(repulsion term) for overlapping visualizations. We will demonstrate the effect of
the repulsion term in Section [4.3]

Optimization of the meta-visualization. The cost Eq. @ is our final mea-
sure of meta-visualization quality, in terms of performance in the information re-
trieval task and readability; the smaller the cost, the better the meta-visualization
is. To optimize the meta-visualization we directly minimize the cost with respect
to the coordinates z,,. Note that the final cost in Eq. @ is a continuous func-
tion of the plot locations z,, since the neighborhood distributions v,, on the
meta-visualization are smooth functions of the z,, as defined in Eq. , and the
repulsion term in Eq. @ is also a continuous function defined based on the z,.
To optimize the meta-visualization, we minimize Eq. @ with respect to all the
zm by conjugate gradient descent. The optimization yields a meta-visualization
optimized for information retrieval: physical neighborhoods of plots on the meta-
visualization are optimized under the readability constraint for minimal retrieval
errors compared to true neighborhoods of the plots, which in turn are defined based
on neighborhoods of data in the plots. Thus the entire process of meta-visualization,
from comparing the individual plots to placing them on the meta-visualization, is
based on an information retrieval formulation.

Theoretical connections. Preservation of neighborhood information has been
used as a cost function for NLDR of data points onto a single scatter plot by
neighbor embedding (NE; see, e.g., Hinton and Roweis| (2003); |Venna et al| (2010))).
Such NE methods are unsuitable for meta-visualization as they do not trivially
have available a measure to compare visualizations; moreover, they are designed to
embed simple data points as dots onto a scatter plot and do not consider overlap
of larger objects. Our comparison measure D,, ,,,/ is similar to a stochastic neigh-
bor embedding (SNE) cost function (Hinton and Roweis|2003), but SNE and other
NE methods only used such costs to compare a visualization to a high-dimensional
ground truth, whereas we have turned it into a pairwise difference measure where
no single visualization is a “ground truth”. Our approach takes advantage of the-
ory, bounds and optimization tools inherited from NE, but brings it into the do-
main of meta-visualization, with three novelties: 1) the meta-visualization setting,
2) an information retrieval based distance measure between visualizations, and
3) an NLDR method that optimizes both information retrieval performance and
readability of the meta-visualization.

A precursor of readability was used in a limited setting by [Vesanto| (1999))
to arrange component planes of a Self-Organizing Map, by a glyph placement
method where overlapping component planes were moved to next-best-matching
units. This could be seen as a precursor of our cost which preserves readability
(non-overlappingness) as part of optimization. Glyph positioning approaches are
not typical in meta-visualization of two-dimensional scatter plots. The method of
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Vesanto| (1999)) uses global correlation of one-dimensional component planes and
does not apply to two-dimensional plots.

Using and interpreting the meta-visualization. Plots physically close-by
on the meta-visualization (for example, a tight cluster of plots) have similar data
neighborhoods. Plots physically far away from each other (for example, separated
clusters of plots) show different neighborhood information about the data, i.e.,
different aspects of the data. The arrangement of plots reveals the different aspects
of data as groups of plots, and relationships between data aspects by closeness of
groups and by plots in-between groups.

Meta-visualization lessens the workload of the analyst compared to analyzing
an unordered set of plots: instead of analyzing each plot separately, the analyst
can see which plots provide similar information, and can notice different aspects of
the data shown by the plots. Insights about shown similarities and differences can
be made: for example, two plots might show similar information because they are
based on separate but redundant feature sets. Section 4] shows benefits of meta-
visualization in different analysis scenarios. As an example, one of the scenarios is
a bioinformatics case study where the data points are gene expression experiments
of different healthy-vs-disease comparisons, several scatter plot visualizations are
created by plotting the data along different subsets of active gene pathways, and
meta-visualization is used to study the plots. The arrangement of plots on the
meta-visualization then reveals how the ability to discriminate the different dis-
eases varies between the plots: plots that are close-by on the meta-visualization
have a similar ability to discriminate the diseases. Several groups of plots with
similar discriminative ability are found, and the biological properties of the active
pathways in each group can then be analyzed.

Computational aspects. Our meta-visualization arranges multiple scatter
plots, which can be created in parallel; the computational complexity of creating
each plot is determined by the complexity chosen method. If the plots are simple
plots of pairs of original data features, the time needed to create each plot is simply
linear with respect to the number of data points. If the plots are created by more
advanced data-driven mappings, the complexity may depend both on the data
and the original dimensionality; we describe selected examples. If a plot is created
by a Principal Component Analysis (PCA) projection, computing the projection
with a standard eigenvector decomposition approach takes O(N D? + D3) time for
N data samples with original dimensionality D; some more efficient approaches
have been proposed, see for example |Sharma and Paliwal| (2007). Many nonlinear
dimensionality reduction (NLDR) approaches work based on the distance matrix
without requiring knowledge of the original feature values: for example Sammon’s
Mapping (Sammon; [Sammon|[1969)), Stochastic Neighbor Embedding (SNE; |Hin-
ton and Roweis| 2003), t-distributed SNE (t-SNE; van der Maaten and Hinton
2008), and Neighbor Retrieval Visualizer (NeRV; Venna et al[2010) are all based
on a matrix of Euclidean distances between data points; computing the matrix
takes O(N2D) time, and the remaining iterative computation of the methods takes
O(N?) time per iteration and is independent of the original dimensionality D. For
some NLDR methods faster variants have been created; for example, Maximum
Variance Unfolding (MVU; |Weinberger and Saul|2006) involves semidefinite pro-
gramming and a faster variant called Landmark MVU (LMVU; Weinberger et al
2005) has been created to improve scaling to larger data sets. For neighbor embed-
ding approaches, a fast computation approach was recently proposed (Yang et al
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2013)), based on approximating distances to far-off points by distances to means of
clusters in a quad-tree, yielding with O(N log(N)) complexity; see [Peltonen and
Georgatzis| (2012)); [Vladymyrov and Carreira-Perpinan| (2014) for related speedup
approaches.

Optimizing the meta-visualization first computes pairwise distances between
plots in O(N?M?) time for N data samples and M plots. The iterative NLDR
optimization of the meta-visualization has O(M 2) complexity per iteration. To
avoid local minima, the method can be run in parallel from several initializations,
taking the result with the smallest cost. In most cases the method yielded good
results from a single random initialization. The fast approximate computation
approach that was proposed for neighbor embedding by (Yang et al|2013) can also
be used in meta-visualization, but we did not implement such approximations as
the method was fast enough without approximation.

3.3 Alternative Approaches

As seen in Section [2] the related work has either not considered the task of how to
automatically relate and arrange numerous plots, or has done so on an annotation-
driven basis only rather than a data-driven basis, and our approach is the first
neighbor embedding method organizing plots onto a meta-visualization. Out of
the earlier methods we will provide a quantitative comparison to the most well-
known one, the scatter plot matrix, in Section [4.1

In this section we introduce two new alternative approaches that represent
alternative ways how data-driven meta-visualization could be attempted without
following our information retrieval principle. We will compare to these methods
in Section to demonstrate the benefit of the rigorous information retrieval
approach.

An alternative approach needs to carry out the same two subtasks as our
approach, distance measurement between plots and subsequent arrangement. We
consider two alternatives for the first subtask.

As the first alternative, one can compare several plots of a data set by com-
paring the actual data coordinates shown in the plots directly. Let {Ym,i}£i1 and
{ym/’i}f\il denote locations of N data points in visualization m and m' respectively.
We can define a distance measure between plots as

N
s =3 ym.i — Yl - (7)
1=1

This metric is simple to compute and is data-driven; however, it is easy to show
that such a metric is not invariant under transformations such as translation and
rotation. While simple invariance could be added by measuring the minimal dis-
tance under affine transformations, the metric would remain non-invariant to local
transformations and other nonlinear transformations. Nevertheless, the metric a
useful first baseline for a data-driven comparison.

As a second alternative, we consider comparing the apparent shapes of data
seen in different visualizations. To characterize data features like shapes that an
analyst may be interested in, one can build a representation of the data shape in
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a plot by concatenating different orders of moments of the data point coordinates
as a feature vector for the plot. For plot m, let

N N 8
fm,a,ﬁ = Z {ygﬂ [yfi)z} (8)
=1

(1) )y

i Ymi) - We can then define the feature vector for plot m and

where y.,,; = (y
the corresponding distance measure between plots m and m’ as

T
fm = (fm,1,0, fm,0,1, fm,2,0, fm,1,1, fm,0,2, fm 3,0, fm,2,1, fm,1,2, fm,0,3) 9)
DR = |l fm = for |l » (10)

that is, we will use a vector of moments computed up to the third order as the
features of a plot, and norm of the difference between the moment vectors as the
distance between plots. Note that moments up to any higher order can naturally
be considered in the same way.

For both of these two alternatives, given the pairwise distances computed be-
tween visualizations, rather than using our information retrieval based layout an
alternative simple approach would be to feed the distances into an off-the-shelf
dimensionality reduction algorithm; here we consider giving the distances as input
to one of the most well-known NLDR methods, Metric Multidimensional Scaling
(MDS; see Borg and Groenen||2005). We will compare these two proposed alter-
native methods with our meta-visualization approach in Section

Note that to our knowledge, no previous approaches to arrange plots onto a
meta-visualization in a data-driven way exist; the closest method we are aware
of is the method of |Tatu et al| (2012) which also used MDS as proposed above,
but applied to Tanimoto similarities which were only based on an annotation of
subspace parameters and not on the data. Thus the two alternative approaches
proposed in this section already represent new approaches in that they are data-
driven. In principle, other NLDR methods could be used in place of MDS; the
choice of MDS is here reasonable as our proposed alternative methods can then
be interpreted as data-driven variants to Tatu et al| (2012]).

4 Experiments

We demonstrate the meta-visualization in case studies. We use a benchmark S-
curve data set, Olivetti faces data (400 face images of 40 persons, 64 x 64 pixels
each) from http://www.cs.nyu.edu/~roweis/data.html, Face Pose data (images of
15 persons from 63 angles) from |Gourier et all (2004)), and a collection of gene
expression experiments.

4.1 Meta-visualization of Feature Pairs, versus a Scatter Plot Matrix

We first show the ability of the meta-visualization to reveal to the analyst which
plots are similar. At the same time we perform a simple quantitative comparison
to the most well-known traditional meta-visualization method, the scatter plot
matrix.


http://www.cs.nyu.edu/~roweis/data.html

18 Jaakko Peltonen, Ziyuan Lin

Consider analyzing a multivariate data set based on plots of each feature pair,
where scatter plot matrix is a popular tool for such a task. Suppose some pairs
actually provide the same information as other pairs; then this should be revealed
to the analyst. Relationships between different feature pairs can be hard to see
from a simple scatter plot matrix, but a well-optimized meta-visualization can
reveal them.

We create a data set where each individual feature is unique, but some feature
pairs contain the same neighborhood information as other pairs; we create a scatter
plot of each feature pair, and show meta-visualization arranges the known-to-be
similar pairs close-by.

In detail, we take a 5-dimensional face image data (a subset of 405 images
from the Face pose data, each image rescaled to 16 x 16 pixels and projected to
the 5 largest PCA components of the data set). We then add 20 new features: the
original data has 10 feature pairs, and from every such pair [z, y] we add two new
features [cos(w/4)x — sin(w/4)y, sin(n/4)x + cos(m/4)y| as a 45-degree rotation of
the original features. The resulting 25-dimensional data contains 25 - 24/2 = 300
feature pairs to be visualized. Each of the 10 pairs of original features contains
the same information as its rotated version, but noticing the 10 pairs and their
matching other pairs without meta-visualization would be arduous.

Figure [4] (left) shows the meta-visualization. It reveals an interesting grouping
of feature pairs, with several major groups which are further split into subgroups;
such structure will be analyzed in later experiments, here we concentrate on ana-
lyzing the known ground-truth pairings of plots. Visually, the meta-visualization
is very readable: as desired, optimizing the readability cost (repulsion) has kept
plots at a distance so that they do not overlap. Note that in an interactive system
the meta-visualization can be combined with focus+context techniques such as
further enlargement of selected plots.

The 10 matching plot pairs we are interested in are shown with colored borders
(same color for both plots in each pair). The meta-visualization placed the plots
of the matching pairs close to one another as desired, which is intuitive as they
contain the same information.

We compare the result to the widely used scatter plot matrix. Figure [4] (right)
shows the same plots in a 25 x 25 scatter plot matrix. We colored the 10 original
feature pairs and their 10 rotated versions with corresponding background colors.
Unlike our meta-visualization, the 10 matching pairs of plots are now essentially
in arbitrary positions which depend on the order of feature indices. It would be
difficult to notice correspondence between a pair and its match from the scatter
plot matrix; in contrast our meta-visualization finds the correspondence and shows
it by plot locations on the meta-visualization.

We measure the performance difference between our method and the scatter
plot matrix quantitatively by a retrieval measure, recall of matching pairs, by
evaluating the 8-neighborhoods of the 10 feature pairs: on the meta-visualization,
each of the plots of the 10 feature pairs has its matching rotated version as one
of the 5 nearest neighboring plots, whereas in the scatter plot matrix, none of the
10 plots of feature pairs has the matching pair in the 8 nearest neighbors on the
matrix. Thus the meta-visualization is more faithful to the data than the scatter
plot matrix is.

The standard way to create a scatter plot matrix is to simply order the rows and
columns according to the feature indices, and the scatter plot matrix we evaluated
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Fig. 4: Left: Meta-visualization of face pose image data. Each of the 300 mini-
plots shows an individual feature pair. 10 plots m have a matching other plot m’
where both plots show the exact same information up to rotation. For each of the
10 matches the meta-visualization placed the matching plots (colored mini-plot
borders; corresponding colors are matches) close to each other. In each mini-plot,
faces are shown as dots colored by person identity. Right: The same set of plots
as a traditional scatter plot matrix. (Each plot in row 4, column j also has a trivial
match in the transposed cell, row j, column 3.) The nontrivial matching plots are
shown with background in the same color; it would be very difficult to notice the
non-trivial matches from the scatter plot matrix. (A higher-resolution image of
the matrix is available in supplementary material at http://metavis.github.io/
acml13.)

above was based on this standard ordering. It turns out that even a more advanced
data-driven ordering would not help the performance of the scatter plot matrix:
in Appendix [B] we propose a reordering method where feature indices of a scatter
plot matrix are reordered to keep the highly correlated features in close-by rows
and columns of the scatter plot matrix. We show that even with such an advanced
reordering, the scatter plot matrix nevertheless cannot keep the matching pairs of
scatter plots nearby, thus providing even stronger evidence for the benefit of our
meta-visualization approach.

The meta-visualization can also be used in cases where plots do not originate
from feature pairs and thus an ordered scatter plot matrix cannot be trivially
constructed; Section shows meta-visualizations for such cases.

4.2 Comparison of Our Meta-visualization Approach to Alternative Approaches

The scatter plot matrix, which we compared our method to in the previous section,
does not consider data-driven relationships between plots, but simply enumerates
plots for each feature pair and arranges them into a grid. In this section, to fur-
ther demonstrate the advantage of our data-driven information retrieval based
meta-visualization approach, we quantitatively compare it with two alternative
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data-driven methods introduced in Section which represent alternative ways
of computing similarities between plots and then arranging the plots according to
similarities.

We compare the methods on a series of meta-visualization scenarios, where
several plots of a data set are available, the plots differ in nonlinear ways created
by local transformations, and a ground truth is available to evaluate which plots
should be placed nearby in a meta-visualization.

We create 10 data sets, each of which consists of a mixture of several Gaus-
sian clusters, where the data points arise from several ground truth classes which
will be used as held-out information for performance evaluation. For each data
set, several plots will be where the clusters are in different positions; the crucial
difference between plots is then which of the ground truth classes overlap in each
plot. We arrange the plots so that in each plot, some of the classes overlap each
other so that they appear as a single Gaussian cluster, whereas other classes are
shown as separated Gaussian clusters. Two plots where the same classes overlap
are essentially similar in terms of the ground truth information, and should be
shown nearby in a meta-visualization. We will show that our meta-visualization
approach is capable of capturing the similarities between the plots so that the
resulting display corresponds well to the underlying ground truth similarities. We
also compare our results with the alternative approaches presented in section [3.3}

In detail, to create the plots corresponding to a data set, we generate 500 data
points divided equally into 5 classes. We first create a 2D arrangement for the
data points within each class, denoted as y1,1,---,¥1,100," - ,¥5,100 € R2, where
vij ~N(0,I2), and i = 1,--- ,5 is the index of the class and j = 1,---,100 is the
index of the data point within the class. We then create 20 plots with different
configurations of the classes, to be arranged by meta-visualization: for each plot k,
we choose 2 < nj, < 5 randomly as the number of distinct Gaussian clusters visible
in the plot, and locations for the clusters centroids from the standard 2-dimensional
uniform distribution; we then normalize the locations of the centroids so that the
bounding boxes of the centroids are squares of the same size across different data
sets. We then assign each class of data points to one of the clusters, by moving
the origin of data points y; ; from that class to the centroid of the cluster that
the class was assigned to (see figure [5)). Under this setting, the number of clusters
is smaller than or equal to the number of classes, therefore some classes would
probably be assigned to the same cluster and overlap on the plot as we hope.

Given each of the 10 data sets, we compute a meta-visualization with our
approach and with the two alternative approaches from Section [3.3] We first show
an example result and then perform the full quantitative comparison.

Example meta-visualizations for one of the data sets. Figure [f] shows the
result for one of the 10 data sets. The three mini-plots shown with red frames are
examples of visualizations where the same ground-truth classes overlap in each
visualization, thus these three plots are examples of plots that should be kept
nearby in a good meta-visualization. We can clearly see the highlighted mini-plots
are clearly closer in the meta-visualization produced by our approach (top sub-
figure in Figure @ than in the meta-visualizations produced by the two alternative
methods which are based on MDS layout of distances computed from data coordi-
nate comparisons (bottom left sub-figure in Figure@ and from comparison of data
shape by moments of the distribution (bottom right sub-figure in Figure |§[) sub-
figure in Figure[f] While our meta-visualization approach successfully arranged the
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Fig. 5: Two examples of the scatter plots to be arranged in our quantitative com-
parison between meta-visualization methods. Two scatter plot visualizations of the
same data set are shown, with different class overlap visible in both plots. In the
left-hand plot the dark-red and dark-blue classes overlap at bottom center, and
the orange and light-blue classes overlap at top right, whereas in the right-hand
plot the orange and dark-red classes overlap at center left and other classes do not
overlap.

highlighted similar plots, in the alternative methods the highlighted plots are not
only located apart, but other non-similar plots have also been placed in-between
them, potentially misleading the analyst. We next concretize the advantage of our
approach by a quantitative evaluation of the comparison experiment over all 10
data sets. We perform the quantitative evaluation using two different performance
measures.

Quantitative comparison of meta-visualization performance, part 1: com-
parison of information retrieval performance. The aim of our proposed meta-
visualization approach is to make the physical neighborhoods (visual distance
based neighborhoods) of the different plots on the meta-visualization consistent
with the content-based neighborhoods (data-driven neighborhoods based on the
content of the plots) in the sense of good information retrieval performance. We
now measure the information retrieval performance for all the compared methods.

We use the standard mean precision-mean recall curve from the information
retrieval field to quantitatively evaluate performance of the methods: the mean
precision—mean recall curve plots the mean value of precision and recall (mean
over queries) as the size of the retrieved set is varied.

In detail, for each plot m, m = 1,..., M, let Un(r) denote the neighborhood
of m containing the r plots m’ (other than m itself) that are most similar to m
according to the measure D,, ,» defined in Eq. . Similarly, for each plot m, let
Vi (k) denote the physical neighborhood of m containing the k plots m’ (other
than m itself) that are closest to m according to the on-screen coordinates z;, of
all the plots. The precision and recall for plot m are defined as

N

precision(m;r, k) = % (11)
N

recall(m; r, k) = —m (12)

T
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Fig. 6: Comparison of our meta-visualization approach to two MDS-based alterna-
tives. The data comes from underlying classes shown by colors in each mini-plot;
class labels are used as a held-out ground truth to compare meta-visualizations.
In the ground truth, two scatter plots are similar if the same classes overlap in
both plots. Three example plots where the same classes overlap are highlighted
with a red border: in a good meta-visualization they should be nearby. Top: The
result from our meta-visualization approach corresponds well to the ground truth:
nearby plots show similar overlap of classes and far-off plots show different overlap,
as desired. The three highlighted similar plots are nearby as desired. Bottom left:
The result from MDS with locations of each data point in a plot used as features
of the plot. The method overemphasizes simple changes of individual data point
locations between plots, and the resulting display does not correspond well to the
ground truth; for example the three highlighted plots are not nearby. Bottom
right: The result from MDS with moment features (moments of the data distribu-
tion on each plot) for plots. The method overemphasizes shape of the distribution
instead of noticing local similarities between plots. The result does not correspond
well to the ground truth; for example the three highlighted plots are not nearby.
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Fig. 7: Information retrieval performance of our proposed meta-visualization
method and the two comparison methods (here denoted as “Data point coordinate
features + MDS” and “Moment features + MDS”) over the 10 Gaussian-cluster
data sets, shown by the average (over the data sets) mean precision—mean recall
curve with r = 4. High values of precision and recall mean that the visualiza-
tions that provide similar information to the analyst are placed nearby on the
meta-visualization: high precision means few false neighbor plots (few false pos-
itive plots) and high recall means few missed neighbor plots (few false negative
plots).Our meta-visualization approach clearly outperforms the alternative meth-
ods, achieving better precision and recall.

where Nrp,, = |Vin N Um| is the number of true positive neighbors, that is, the
number of plots that are neighbors both according to Vi, (that is, according to the
physical distances on the meta-visualization display) and according to Uy, (that is,
according to the ground-truth similarity of the plots). The mean precision is the
average of precision(m;r, k) over m and mean recall is the average of recall(m;r, k)
over m. The mean precision—mean recall curve is plotted by fixing r (here we set
r = 4) and varying the number of retrieved neighbor plots k between 1 and the
maximum M — 1.

We plot the average of the mean precision—mean recall curve over the 10 arti-
ficial data sets for the three methods. The result is shown in Fig.[7] As shown in
the figure, the mean precision—mean recall curve shows clearly better performance
for our approach than for the two alternative approaches: we achieve clearly bet-
ter mean precision at each value of mean recall. Our proposed meta-visualization
approach has successfully arranged the plots according to their neighborhood re-
lationships and thus has achieved good information retrieval performance.
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Quantitative comparison of meta-visualization performance, part 2: com-
parison based on ground truth class labels. Since a ground truth classification
is available for each of the 10 data sets, we can additionally measure the perfor-
mance of the three methods by the average class overlap mismatch. The essential
underlying difference between plots of that data set is which classes overlap in
each plot, for each data set we evaluate the performance of meta-visualization ap-
proaches in arranging the plots by average mismatch of class overlaps between a plot
and its neighbor plots. We define the performance measure as follows.

For classes C; and C; in the same scatter plot visualization V, let

1 if C; and C; overlap (13)
0 otherwise

Dy (C;,Cj) = {
so that the class overlaps present in visualization V' can be described by the set
of values Dy (C;,Cy) for all ¢ and j. Using this definition, we can define a ground
truth metric between two scatter plot visualizations, say, Vi, and V,,/, as

D(Vin, Vo) = 3 |Dy,,, (Ci,C;) = Dy, , (Ci, Cy)| (14)
Ci,Cj

which simply evaluates the class overlap mismatch by counting how many class
pairs overlap differently between the two scatter plots (that is, the number of class
pairs where the pair overlaps in one plot but not in the other).

Using the above definition we can measure the performance of a meta-visualization
arrangement of plots by the average class overlap mismatch between plots and their
neighbors, as

Cost = k.lnd > > D(Vin, Vi) (15)
Vin | Vi €Nk (Vin)

where ng = 20 is the number of data sets, and Ny (Vi) denotes the plots in a

k-nearest neighborhood of plot V;, on the meta-visualization display; we again use

k = 4 for each experiment. The smaller the average mismatch is, the better the

meta-visualization arrangement is.

We repeat the experiment for all 10 data sets. Table [I] shows the average and
the standard deviation of the costs. We can see the performance of the coordi-
nate features + MDS method is similar to the performance of the moment-based
features + MDS method. And our meta-visualization approach not only achieves
clearly lower average mismatch, but also has smaller standard deviation, which
means our approach performs better and more stable.

Discussion. In this section we compared our meta-visualization approach to
our suggested alternative methods. Note that we are not aware of other published
data-driven methods to arrange plots on a meta-visualization display: the closest
published method we are aware of is that of |Tatu et al (2012) which is not data-
driven. Therefore for the purposes of this comparison we used the novel alternative
methods suggested in Section [3.3] which are the data-driven nearest equivalents
to the method of | Tatu et all (2012]).

Our meta-visualization approach yielded clearly better performance than the
comparison methods, both in terms of information retrieval performance (precision-
recall curve) and in terms of a performance measure based on the ground truth
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Our meta-visualization | Data point coordinate features | Moment-based features
approach + MDS + MDS

Cost 1.861 £ 0.307 3.128 +0.433 3.165 + 0.541

Table 1: The average mismatch of class overlaps between a plot and its neighbors
as measured by Eq. across 10 data sets, for meta-visualizations created by
our approach and by two alternative approaches here denoted as “Data point
coordinate features + MDS” and “Moment-based features + MDS”. Our meta-
visualization approach achieves clearly better arrangements (smaller mismatch)
than the other approaches.

class labels of data. The main reason for the better performance of our approach
is likely that in the alternative methods, the similarity measure between the plots
(based on comparison of data point coordinates between plots, or comparison of
moment features between plots) is not able to capture the neighborhood relation-
ship content in the plots as well as our proposed method where similarity of plots
is measured based on an information retrieval approach. For example our infor-
mation retrieval approach can notice similarity between plots that show the same
clusters and the same neighborhood relationships, even if the locations of clus-
ter centroids differ somewhat between the plots, and hence our meta-visualization
arranges such plots close-by; in contrast, the alternative methods based on data
coordinates or moments might be more strongly affected by the changes in the
cluster centroid locations.

The good experimental performance suggests that our information retrieval
approach is a promising approach for meta-visualization.

4.3 Effect of the Repulsion Term in Meta-visualization

To improve readability, our meta-visualization approach keeps the mini-plots non-
overlapping on the display by including a Gaussian repulsion term in the objective
function, Eq. @ We here briefly demonstrate how different repulsion magnitudes
will affect the meta-visualization.

We create a setting where we have a ground-truth clustering of the available
plots for a data set. We create several plots of the Olivetti face image data set to
be arranged by meta-visualization. In each plot, the Olivetti faces are arranged by
NLDR based on similarity of a subpart of the image, and each plot uses a different
subpart to arrange the faces. Thus each plot represents the identifying information
among faces visible in a different subpart.

In detail, the Olivetti face images are each 64 x 64 pixels. To create a two-
dimensional plot of the image set, we take a 32 x 32 sub-window from the same
location in all images, compute distances between images as average mean-squared
distance of the pixel values in the window, and give the resulting distance matrix
to MDS which then embeds the face images onto a two-dimensional plot. To create
several plots of the face image data set, we take the sub-windows from different
locations each time: we take 9 sub-windows near the top-left corner, 9 near the
top-right corner, 9 near the bottom-left corner, and 9 near the bottom-right corner,
yielding 36 plots in total for the meta-visualization. The plots corresponding to
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sub-windows near the same corner will naturally be similar, thus each of the four
corners will yield a cluster of 9 plots in the meta-visualization.

Figure |8 shows the meta-visualizations by our method created with different
repulsion coefficients p; the figure shows the results with coefficient values 0, 5,
20, and 30; behavior with intermediate values is similar. The method behaves in
a reasonable and expected manner with respect to the repulsion; from top-left to
bottom-right, we can see the meta-visualizations show the ground-truth cluster
structure in the plots correctly, and the mini-plots arrangement changes smoothly
from an strongly clustered layout where repulsion is not used, to a more evenly
spread layout where mini-plots are mostly non-overlapping but still preserve the
cluster structure. The analyst can thus choose the amount of repulsion according to
how important the non-overlappingness is for the particular data, and the result-
ing meta-visualizations can of course be combined with standard focus+context
techniques for further investigation. In conclusion, our repulsion coefficient works
in a reliable way to improve the readability of meta-visualization.

4.4 Case Study: Meta-visualization of Hyperparameter Influence on NLDR

In this subsection and the following two subsections we provide case studies of using
our meta-visualization approach for data analysis in three different scenarios. We
first analyze hyperparameter influence on a prominent NLDR method.

Besides analyzing data by feature pairs or simple projections, NLDR is often
used to map high-dimensional data onto a two-dimensional plot, hoping to capture
essential data structure. NLDR cannot preserve all properties of high-dimensional
data in one low-dimensional plot (Venna and Kaski|[2007; [Venna et al/|2010); an
NLDR method implicitly chooses some aspect of the data to show, with trade-offs
such as global vs. local preservation, trustworthiness vs. continuity, and others. A
single NLDR result is thus insufficient to analyze a data set and multiple NLDR
results should be created. To create multiple NLDR results one can (1) run mul-
tiple NLDR methods, or (2) run variants of an NLDR method by e.g. adjusting
parameters to emphasize different data aspects. We treat the first case in Section
4.5] in this section we treat the second case. We create multiple plots with one
NLDR method, and use meta-visualization to study the results. Besides the differ-
ent views of data given by the NLDR method, meta-visualization can give insight
into behavior of the NLDR method.

As a case study we create a meta-visualization of Olivetti faces data, where
20 different plots are created by the NLDR method Neighbor Retrieval Visualizer
(NeRV; [Venna et al| (2010))), which has performed well in recent comparisons of
NLDR methods. NeRV has a precision-recall trade-off hyperparameter A between 0
and 1; we vary it with values in [0,0.04,...,0.96]. With A near 0 NeRV emphasizes
precision and avoids false neighbors; with A near 1 NeRV emphasizes recall and
avoids misses. It has been shown [Venna et al| (2010) that emphasizing precision
or recall yields different plots; we use our method to meta-visualize the trade-off.
Figure [J] shows the result. The hyperparameter values yield a smooth continuum
of plots; as an interesting discovery, the difference in results between close-by A
values is small at the recall-emphasizing end (X near 1; green plot border) but at
the precision-emphasizing end (X near 0; dark plot border) differences are larger,
indicating that the trade-off parameter X is not linear w.r.t. the actual trade-off
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Fig. 8: Results with different repulsion coefficients x. Small values of the coefficient
yield visualizations highly informative of the similarities of the plots, at the expense
of possible overlappingness of the plots. Higher values of the coefficient spread out
the natural clusters of plots to improve readability (non-overlappingness). All val-
ues of the repulsion coefficient yield good meta-visualizations; the coefficient allows
tuning of the importance of non-overlappingness in meta-visualization according
to the preference of the analyst.

between precision and recall, thus care must be taken to set the A when the ana-
lyst wants a trade-off mostly emphasizing precision. Thus our meta-visualization
revealed insights into roles of the hyperparameters that would have been hard to
find in a non-data-driven way, and would have been hard to see from one plot or
an unorganized set of plots.
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Fig. 9: Meta-visualization of the influence of the precision-recall trade-off hyper-
parameter A on the NeRV method. 20 visualizations are shown for the Olivetti
faces data, created by NeRV with different values A € [0,0.04,...,0.96]. Inten-
sity of green color = value of A. The meta-visualization arranges the plots as a
continuum where changes between successive A\ values are larger at the precision
end. Mini-plots show the face visualizations; for simplicity faces are shown as dots
colored by identity of the person.

4.5 Case Study: Differences between Nonlinear Embedding Methods

We apply our meta-visualization method to visualize similarities between results
of several state of the art linear and nonlinear dimensionality reduction meth-
ods on two data sets. Results of numerous NLDR methods, arranged by a meta-
visualization, allow a more comprehensive understanding of a data set than the
result of one NLDR method; such results can also yield insights into relationships
of the NLDR methods themselves. An NLDR method implicitly chooses what as-
pect of data to show, based on their cost function or algorithm; what aspect each
NLDR method will show can be hard to see from the mathematical formulation of
the method; moreover, relationships between NLDR methods can be hard to an-
alyze in a non-data-driven manner as the mathematical approaches vary greatly
from generative models to spectral approaches to distance preservation criteria
and others. For example, a developer of a new NLDR method might be interested
to use meta-visualization to analyze how similar results of the new method are to
results of established methods.

We use two data sets: a simple three-dimensional benchmark data set “S-
curve” (points distributed along an S-shaped sheet) and the real-world Olivetti



Information Retrieval Approach to Meta-visualization 29

face data set. We create plots of the data sets with 19 methods: Principal Compo-
nent Analysis (PCA; Hotelling|1933), Kernel PCA (Scholkopt et al|[1999), Prob-
abilistic PCA (ProbPCA; [Tipping and Bishop||1999), Factor Analysis (see |Child
2006, Gaussian Process Latent Variable Model (GPLVM; [Lawrence2004)), Metric
Multidimensional Scaling (MDS; see|Borg and Groenen|2005), Sammon’s Mapping
(Sammon; [Sammon|(1969)), Curvilinear Distance Analysis (CDA; Lee et al [2004),
Stochastic Proximity Embedding (SPE; |Agrafiotis|2003]), Locally Linear Embed-
ding (LLE; [Roweis and Saul|2000), Hessian LLE (HLLE; |Donoho and Grimes
2003), Laplacian Eigenmap (LE; |Belkin and Niyogi [2002), Diffusion Maps (Lafon
and Lee|[2006)), Maximum Variance Unfolding (MVU; Weinberger and Saul 2006)),
Landmark MVU (LMVU; |Weinberger et al||2005), Stochastic Neighbor Embed-
ding (SNE; [Hinton and Roweis|2003), Symmetric SNE (s-SNE; van der Maaten
and Hinton|2008)), t-distributed SNE (t-SNE; [van der Maaten and Hinton|2008)),
Neighbor Retrieval Visualizer (NeRV; [Venna et al 2010). We briefly discuss the
methods below.

Principal Component Analysis finds a linear projection where the “vari-
ance”, or the sum of squared distances of the projected data points from their
mean, is maximized. Kernel PCA is a kernelized extension of PCA. Probabilis-
tic PCA builds a Gaussian noise model for the latent projection, and solves it via
maximum likelihood. Factor Analysis is similar to Probabilistic PCA but does
not estimate the level of the isotropic Gaussian noise from the likelihood. Instead,
it estimates the noise level for each component directly from the data. The Gaus-
sian Process Latent Variable Model is a non-linear extension for Probabilistic
PCA via Gaussian processes. Metric Multidimensional Scaling tries to preserve
the high-dimensional pairwise distances as much as possible in the low-dimensional
space. Sammon’s Mapping can be seen as an variant of MDS, which gives more
importance to preserving the smaller distances. Curvilinear Distance Analy-
sis improves Sammon’s Mapping with a more sophisticated weighting for small
distances. It also substitutes geodesic distances for Euclidean distances. Stochastic
Proximity Embedding has a similar goal as MDS, but does the task in a different
iterative way. Locally Linear Embedding finds a local linear representation for
each data point based on its neighbors. Laplacian Eigenmap constructs a neigh-
borhood graph for the data where each data point is a vertex. An edge between
a point pair is formed if and only if one point is within the k-nearest neighbor-
hood of another. The lower dimensional representation can be obtained by the
first non-trivial eigenvectors of the Laplacian of the graph. Hessian LLE is similar
to Laplacian Eigenmap, where the Laplacian is replaced with the Hessian, which
captures “curviness” characteristics of the data. Diffusion Maps, on the other
hand, defines diffusion distances for the point pairs of the data set, and then sim-
ilarly gives lower dimensional embedding by eigen-analysis. Maximum Variance
Unfolding “unfolds” the manifold by finding a Gram matrix which maximizes
the distances between points that are not connected in the neighborhood graph
by semidefinite programming. Landmark MVU is a variant of MVU which in-
creases speed by using representative landmark data points, at the cost of accuracy.
The Neighbor Embedding family, including Stochastic Neighbor Embedding,
Symmetric SNE, and t-distributed SNE, first defines neighborhood distribu-
tions for both input space and output space, and then minimizes some metric, e.g.,
Kullback-Leibler divergence, between the two distributions. Neighbor Retrieval
Visualizer is a recent dimensionality reduction approach based on information
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retrieval. It formalizes visualization as minimization of two kinds of errors — false
neighbors and misses during retrieval of data points.

To simulate a realistic situation where the analyst does not spend equal amounts
of time optimizing every visualization, we optimized parameters of CDA, Lapla-
cian Eigenmap, LLE, HLLE, MVU, LMVU, and NeRV to maximize a F-measure
of smoothed rank-based precision and recall within each visualization as described
in [Venna et al (2010) — we maximize F = 2(P- R)/(P + R) where P and R are the
two Kullback-Leibler divergences as in Eq. (], but only the u(m’|m) and v(m/|m)
are replaced by the ranks of the nearest neighbors. For the other methods we used
implementations in a recent software packag(—ﬂ with default parameters. To avoid
sensitivity to initialization, each method is performed several times.

S-curve benchmark data set. Figure (top) shows the result of meta-
visualization of the S-curve benchmark data. Notably, among the 19 methods
there seem to be several alternative ways to arrange the data: PCA, GPLVM,
MDS, and Diffusion Maps have each found an essentially linear projection of the
S-curve along its major two directions, and are arranged close together. ProbPCA
is similar but has rotated the data. LLE and HLLE are related methods and are
shown close-by; they have unfolded the S-curve in a slightly more nonlinear fash-
ion. Sammon’s mapping, SPE and CDA are shown close-by, they have unfolded
the data non-linearly except for some remaining curled parts near the ends of the
S. NeRV and MVU, shown near to each other, have both found a clean-looking
unfolding of the S-curve manifold. SNE and t-SNE are two methods from the same
family and are shown close-by; they have unfolded the manifold at the expense
of some twisting and tearing. Kernel PCA, LMVU and Laplacian Eigenmap have
all found a U-shaped curve based visualization. An outlier is s-SNE which has
yielded a curious ball shaped arrangement. The meta-visualization arrangement
has thus revealed prominent groups of typical NLDR results, which are related to
underlying theoretical similarities of the methods.

Olivetti faces data set. Figure[10] (bottom) shows the result of meta-visualization
of the Olivetti faces data. Among the 19 methods there are again several alterna-
tive ways to arrange the data, but whereas on the S-curve several methods found
essentially the same embedding, on this more complicated data there are more dif-
ferences visible between methods. ProbPCA, Factor Analysis, and GPLVM have
again found a similar embedding, and NeRV is also similar to them, but MDS
now differs from them with slightly less outliers and is instead close to Sammon’s
mapping. On this more difficult high-dimensional face data data t-SNE finds a
clearly different embedding than normal SNE, which is intuitive since the use of
the t-distribution in t-SNE was specifically designed to help with embedding of
higher-dimensional data sets; t-SNE is here close to CDA, and SPE is an interme-
diate method between the CDA/t-SNE type result, the Sammon’s mapping type
result, and the essentially linear result seen e.g. in PCA. MVU and LLE have found
embeddings with prominent outlier clusters, and Laplacian Eigenmap again finds a
somewhat U-shaped arrangement. Here Diffusion Maps, Kernel PCA, and HLLE
all yield very scattered embeddings with strong outliers. SNE and s-SNE both
yield spherical arrangements but closer inspection reveals that the arrangements
are dissimilar, in particular s-SNE has a more regular arrangement of the points.

4 MATLAB toolbox for dimensionality reduction 0.8.1b, Laurens van der Maaten 2013
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Fig. 10: Top: Meta-visualization of linear and nonlinear dimensionality reduction
algorithms operating on the s-curve data set. The red-green-blue color components
of each data point shows the original three-dimensional coordinates of the point.
Border colors of the plots simply indicate the different NLDR methods. Bottom:
Meta-visualization of the dimensionality reduction algorithms operating on the
Olivetti face data set. Data points are colored according to the identity of the

person. Border colors of plots again indicate the different NLDR, methods.
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Overall, the meta-visualization again yielded a helpful arrangement of plots, which
revealed interesting behavior of the NLDR methods.

4.6 Case Study: Meta-Visualization of a Gene Expression Experiment Collection

We use meta-visualization to analyze a collection of human gene expression experi-
ments from the ArrayExpress database |Parkinson et al (2009), containing d = 105
“healthy-vs-disease” comparison experiments. Labels “cancer”, “cancer-related”,
“malaria”, “HIV”, “cardiomyopathy” , or “other” are available for the experiments.
Our interest is how differences between experiments (diseases) are visible in activ-
ity of different sets of gene pathways.

As preprocessing we build on the work of |Caldas et all (2009), who used gene
set enrichment analysis (GSEA) to measure, for each experiment, activities of
w = 385 known gene pathways, from the manually compiled C2-CP collection in
the Molecular Signatures Database. They then trained a data-driven topic model
on pathway activities; the topics are activity profiles of simultaneously active path-
ways across the experiments (Figure shows an diagram telling for 13 selected
topics which experiments the topics were active in and which pathways are active
in each topic). We take the ¢ = 50 topics modeled by |Caldas et al| (2009), and
consider for each topic the subset of most active pathways as a feature set for the
experiment collection. These ¢t = 50 pathway subsets represent different aspects
of biological activity across the experiments; we use each pathway subset to plot
the experiment collection, and use meta-visualization to analyze how differences
between diseases are visible in different pathway subsets. |Caldas et all (2009) had
visualized experiments only as a single plot of overall topic activities, not by de-
tailed activities within pathway subsets; our meta-visualization complements their
work.

In detail, let Y be the d x w matrix of pathway activities (for d experiments
and w pathways), where each element y;; is the activity (size of the leading edge
gene subset) of pathway j in experiment i. Let Z be a ¢t x w matrix inferred from
Y by a topic model, representing t topics active across the experiments (when
topic models are applied in text data Z is the “topic-to-word matrix”): here each
element z,,; is the inferred activity of pathway j in topic m, and 2™ is the vector
of activities of all pathways in topic m.

From each topic m we create a feature set for the experiment collection, rep-
resenting the pathways active in the topic.

To do so, for each topic we take the most active pathways, by taking the
features in Y corresponding to sy largest elements of z". Denote the feature
matrix consisting of the chosen features as Y,,. For each topic the number of
features sy, is chosen by power to discriminate diseases; the highest leave-one-out
accuracy of k-nearest neighbor classification was first determined over k and sy,
and the minimal s, reaching that accuracy was chosen.

For each topic m we plot the experiments as a linear discriminant analysis
projection Vi, = Wy, Yy, where Wiy, = (wij,m)2xs,, is the matrix of the lin-
ear discriminant weights. Each plot shows how much the pathways in the topic
can discriminate the diseases in the collection. We then use meta-visualization to
study how discriminative power varies across pathway subsets. Figure[I2]shows the
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Fig. 11: An diagram of weights in a data-driven topic model on pathway activities,
from |Caldas et al| (2009) with permission. The diagram shows activity of 13 of the
50 topics (small circles in the center). Lines connecting the topics to the left part
of the diagram show which comparison experiments each topic was active in; the
width of the line corresponds to activity of the topic. Lines connecting the topics
to the right part of the diagram show which gene pathways are active in each topic;
the width of the line denotes activity of the pathway in the topic. As many of the
pathways are active in a particular topic, the topics provide interesting different
representations of the gene activity in the experiments, which are well suited to
create individual plots to be analyzed with meta-visualization.

result. Within each mini-plot, experiments are shown as dots colored by the dis-
ease annotation: cancer (cyan), cancer-related (blue), malaria (green), HIV (black),
cardiomyopathy (red), and other (gray).

The meta-visualization finds groups of topics (pathway subsets) with similar
discriminative power, which show different biological aspects of the experiment
collection. We point out main groups. In group A, cancer-related, cancer, and
malaria are discriminated. Cardiomyopathy is partly mixed with cancer and others.
In group B, malaria is discriminated. Cancer-related and cancer have little overlap.
Cardiomyopathy is mixed with cancer. Four plots below the group are similar
to the group but also discriminate cardiomyopathy. In group C, most classes are
heavily mixed, but cancer and cardiomyopathy have trails that spread out from the
central mix. Group D is similar to group C, but with less overlap between cancer-
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related and cancer. In group E, cardiomyopathy and cancer-related are mostly
separated, and cancer-related is mixed with cancer. Malaria is not discriminated
well in most visualizations of the group. Cancer is heavily mixed with others. In
group F, cardiomyopathy and cancer are well separated; cancer-related and cancer
are somewhat separated but cancer has heavy overlap with other. The differences
of discriminative ability shown in the meta-visualization can be analyzed together
with what pathways are active in each group of plots; see |Caldas et al (2009) for
annotations of pathways used in the topics. Table [2| lists for each cluster the top
pathways having high activity within the cluster and being in the discriminative
sets of at least two plots in the cluster. As an example, in group A, some of the most
active pathways are related to apoptosis and to tumor necrosis; it is well known
that apoptosis has a crucial role in cancer development (Lowe and Lin/2000|), and
tumor necrosis factor also has many functions in cancer biology (Waters et al[2013)),
thus the active pathways may explain why cancer and cancer-related diseases are
well discriminated within the group. In group B, the TCR pathway and BCR
Signaling pathway correspond to T-cell receptor and B-cell receptor respectively,
and the FCERI1 pathway is for the high-affinity IgE receptor, where IgE denotes
Immunoglobulin E; an antibody involved in immunity against parasites including
malaria parasites (Porcherie et all[2011); these immune system-related pathways
may account for the discrimination of the malaria experiments in the group. In
group E the active Pitx2 pathway is responsible for some heart diseases (Franco
and Campione|2003), whereas inhibiting the 4-1BB pathway (Cheung et al||2007)
or intravenous galactose (Frustaci et al|2001)) can help with the treatment of heart
diseases; the roles of these active pathways may then explain why cardiomyopathy
is well separated in the group. In group F, the P38 MAPK pathway is a regulator
of cancer progression (Bradham and McClay||2006)), deregulation of elements of
the mTOR pathway have been reported in many types of cancers (Pépulo et al
2012) and the ERK5 pathway has been suggested to be biologically important
in prostate cancer (Ramsay|[2010]); these active pathways may then explain why
cancer is well separated in the group.

Some biologically related topics had different abilities to discriminate diseases,
potentially indicating their discriminative power comes from effects not shared
among the topics, which can be analyzed in follow-up studies.

In summary, meta-visualization yielded insight into how differences between
diseases in the collection are visible across subsets of gene expression pathways.

5 Conclusions and Discussion

We introduced a machine learning approach to meta-visualization; we arrange
scatter plots onto a meta-visualization display so that similar plots are close-by. We
contributed (1) an information retrieval based nonlinear dimensionality reduction
(NLDR) formalization of the meta-visualization task; (2) a data-driven divergence
measure between plots; (3) an information retrieval based NLDR method that
arranges plots onto a meta-visualization.

Our distance measure and NLDR method were both derived from an informa-
tion retrieval task. The similarity of visualizations (scatter plots) was defined by
information retrieval costs in an information retrieval task of the analyst, retrieval
of neighbor points from the plots. Plots are similar if, for each query point, they
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ALANINE_AND_ASPARTATE_METABOLISM
C STRIATED_MUSCLE_CONTRACTION
HSA04950_-MATURITY_ONSET_DIABETES_OF_THE_.YOUNG
TYROSINE_METABOLISM

HDACPATHWAY

BADPATHWAY

D CHREBPPATHWAY
INOSITOL_PHOSPHATE_METABOLISM
CALCINEURINPATHWAY
HSA00052_.GALACTOSE_METABOLISM
GALACTOSE_METABOLISM
PITX2PATHWAY

41BBPATHWAY

ST_P38_MAPK_PATHWAY

ERK5PATHWAY
ST_INTERLEUKIN_4_PATHWAY
MTORPATHWAY

Table 2: Pathways having the highest activities within each cluster in the meta-
visualization of Figure Each plot in the meta-visualization was created based
on a topic (a probability distribution over pathway activities) in a topic model of
the experiment collection, using subset of pathways selected for their power to dis-
criminate diseases. For each cluster we average the pathway activity probabilities
over all topics corresponding to the plots in the cluster, leave out pathways that
are discriminative only in one plot, sort the set of activity probabilities, and list
the pathways having the highest probabilities. Some of the active pathways may
explain disease discrimination capabilities within clusters, see the main text for
discussion.

yield similar retrieved neighbors around the point. The dissimilarity between each
pair of plots is quantified as the total cost of missing neighbors of one plot when
retrieving them from the other plot, which was generalized to a rigorous divergence
measure for probabilistic neighborhoods.

The meta-visualization is then optimized to arrange similar plots close-by, by
minimizing a divergence between meta-level neighborhoods of the plots and cor-
responding neighborhoods of their locations on the meta-visualization, with addi-
tional costs measuring overlap of plots. This optimization has a rigorous interpre-
tation as optimization of a meta-visualization information retrieval task, where the
analyst retrieves similar plots from the meta-visualization.

In experiments the method was shown to have better performance than alter-
native approaches in quantitative comparisons, and it yielded promising results
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cancer
cancer-related
malaria

HIV
cardiomyopathy
other

Fig. 12: Meta-visualization of a gene expression experiment collection from Ar-
rayExpress; each mini-plot is a discriminative plot where disease experiments are
separated based on activity in a subset of gene pathways (different pathway subset
in each plot). Points within a plot are experiments, colored according to disease
annotations. Ellipses and capital letters indicate groups discussed in Section [£.6}
The meta-visualization varies smoothly with respect to hyperparameters, results
at http://metavis.github.io/acml13l

in many tasks: finding visualizations that are equivalent despite using separate
features; analyzing behavior of an NLDR method with respect to its hyperparam-
eters; analyzing relationships of a large number of state of the art NLDR methods;
and analyzing relationships of gene pathway subsets in a collection of gene expres-
sion studies over several disease types. Overall the meta-visualization method is a
promising new approach for analysis of multiple plots of data sets.
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A Proof of the Connection between the Meta-Visualization Cost Function
and Precision and Recall

In Section we introduced a sum of two types of Kullback-Leibler divergences as a cost
function for meta-visualization: the divergences compare neighborhoods uy, of plots according
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to their content to neighborhoods vy, based on physical locations of the plots on the meta-
visualization.

Here we provide the proof of the information retrieval connection: we show that the sum
of divergences is a generalization of the total costs of two types of information retrieval errors,
missed neighbor plots (false negative plots) and false neighbor plots (false positive plots).

In Section we first show that in a simple case of “binary neighborhoods” between
plots the total cost of errors can be written in terms of precision and recall; in Section @We
then show that the Kullback-Leibler divergences reduce to precision and recall. Here “binary
neighborhoods” means that, both according to the original information retrieval distances
between plots and according to physical distances on the meta-visualization display, (i) the
plot being considered has one or more relevant neighbor plots, and all other plots are irrelevant,
and that (ii) the relevant plots are all equally relevant.

A.1 Connection between the Total Cost of Errors and Precision and Recall

Let m be the plot of interest, and let U,, be the set of relevant neighbor plots for plot m
according to the information retrieval based comparison measure discussed in Section@ Unm
can be the set of all plots other than m whose distance from m according to the comparison
measure is smaller than some fixed threshold, or it can be the set having a fixed number of
points nearest to m according to the comparison measure. In either case, let r,, be the size of
Unm.

Similarly, let V,;, be the set of neighbor plots for plot m based on their physical locations
on the meta-visualization display. Again, V;, can be the set of all plots (other than m itself)
whose physical distance to m on the meta-visualization is smaller than some fixed radius, or it
can be the set containing some fixed number of plots nearest to m on the meta-visualization.
In either case, let k;, be the size of Vj,,. Note that the sizes of V;, and Qn, can be different,
that is, km, can be different from 7.

Denote the number of samples that are in both Up, and Vi, by Ntp p, (true positives),
samples that are in V; but not in Up, by Nyp ., (false positives), and samples that are in Up,
but not Vi, by Naiss,m (misses). Assume the user has assigned a cost Cpp for each false
positive and Chyyrss for each miss. The total cost E,, for query m, summed over all plots, then
is

Em = Nrp,mCrp + NMmiss,mCMiss - (16)

This cost bears a close relationship to the traditional measures of information retrieval, pre-
cision and recall. If we let Cyigs be a function of the total number of relevant points 7y,
specifically Cuiss (7m) = Clyigs/Tm, and take the cost per retrieved point by dividing by ki,
the total cost becomes

1 1
E(km,rm) = ?E(T’m) = (Nep,mCrp + Naiss,mCmiss(rm))
m m
— Cop NEP,m n Chrrss Nviss,m
km km Tm

)+ C;\/IISS (1

m

= Cpp (1 — precision(m) —recall(m)) .

The traditional definition of precision for a single query is

isi Ntp,m NFP,m
precision(m) = —1_ 7
km km
and recall is N .
recall(m) = TPom o _ g _ AMISSm
Tm .

Fixing the costs Crp and Cjsrss and minimizing Eq. therefore corresponds to maximizing
a specific weighted combination of precision and recall.

Lastly, to assess performance of the full meta-visualization the cost needs to be averaged
over all plots (queries) m, which yields the mean precision and recall of the meta-visualization.
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A.2 Connection between Precision and Recall and Kullback-Leibler Divergences

We now show that the divergences used in our meta-visualization cost function (Eq. are
generalizations of precision and recall. In detail, we show that in the above-discussed simple
case of “binary neighborhoods” between plots, the divergence D 1, (um, vm) reduces to recall;
the proof that D 1,(vm, um) reduces to precision is similar. Let m again be the plot of interest,
let Un, be the set of relevant neighbor plots m according to the information retrieval based
comparison measure discussed in Section @, let ry, be the size of Uy, let V;, be the set of
neighbor plots based on their physical locations on the meta-visualization display, and let k,
be the size of V,.

In the probabilistic model of neighborhoods between plots, the binary neighborhoods can
be interpreted as follows. We define that the relevant neighbor plots of the plot of interest
m have an equal non-zero probability of being chosen, and all other plots have a near-zero
probability of being chosen. That is, we define

. am = 17";:5 , if plot m/ is in Uy,
u = .
m'|m b = B gy g otherwise.

Here M is the total number of plots, and 0 < § < 0.5 gives the irrelevant plots a very small
probability. Similarly, we define the probability of choosing a neighbor from the visualization
as

dm otherwise.

N {cm = 1k;6 , if plot m/ is in V,,,
v, = m
m/|m

5
M—Fpm—1 "

Consider the Kullback-Leibler divergence Dy, (uf,,vs,) for any fixed m. We now show

that minimizing this divergence is equivalent to maximizing recall where point m is the query.

Yl |m
o

The divergence is a sum over elements u , Im log , thus the sum can be divided into four
m/|m

takes (two possibilities) and which value v* takes

parts depending on which value u}, m!|m

"lm

(two possibilities). We get

Drcr (uny; vim)

= Z (am log Z—:) + Z (am log Z—:)

’ * _ * — ’ * — * —
mIEMUL ) FAmoUE L =Cm mIFEMUL | F U, = dm
bm, bm
+ E (bm log — + E bm log d—
Cm m
m/#mvujn/ ‘m:b'm 77’;/ | m=cm m/#mvpjnl ‘,m:bm 7q:n’/|m/:drn

a
= (a/"L log Cﬂ) NTP,m + (anL log ﬂ) NMISS,m

a
m dm,
bm bm
+ ( bm 10g Ci NFP,m + | bm 10g e NTN,m

m dm

where after the last equality sign the terms inside parentheses are simply constant coefficients.
Here Np ,, is the number of true positives for this query, that is, the number of plots for which
the neighborhood probability is high both according to the comparison measure and according
to physical locations on the meta-visualization. The number of misses, that is, the number of
plots that have a low neighborhood probability according to physical locations on the meta-
visualization even though their neighborhood probability according to the comparison measure
is high, is Num1ss,m. The number of false positives (which have high neighborhood probability
according to physical locations but low probability according to the comparison measure) is
Nyp,m. Lastly the number of true negatives (which have low neighborhood probability both
according to the physical locations and according to the comparison measure) is NN, .-
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It is straightforward to check that if § is very small, then the coefficients for the misses
and false positives dominate the divergence. This yields

b
Drr.(Upm, V) = NMIss,m (am log aﬁ) + NrpP,m (bm log ﬁ)
dm Cm
1-96 M —knyn —1 1-96
= Nwmiss,m (10g ( ) + log ( ))
T 1) Tm

5 5 1-0)
N 1 —1
+ FP’mM—rm—l(ogM—rm—l 8 em )

1-6 M —kmym —1 1-9¢
:NMISS,m " (10g( m )+10g( 5 ))
m

Tm

km 1-6
+ NFp,m log *10g( 5 ))~ 17)

M—rm—l( M—-—ry, —1

Because the terms log[(1 — §)/d] dominate the other logarithmic terms, Eq. further sim-
plifies to

Drcr(uny; vi) = | Nyiss,m —— — NFP,m log ( )
Tm M —1rp—1 1

1— 1-— N;
4 log (1—-90) _ Nmiss,m

T'm § Tm

C

~ NMmiss,m

where C' is a constant that only depends on § and not on m. Hence if we minimized this cost
function, we would be maximizing the recall of the query, since the definition of recall is

N-
recall(m) = TPm g
™m Tm

_ Nuiss,m

We can analogously show that for any fixed ¢, minimizing Dgr (v}, ur,) is equivalent to
maximizing precision of the corresponding query.

Because minimizing D, (v}, uk,) and D (ul,,v),) are equivalent to maximizing preci-
sion and recall respectively, and u,, and vy, can be seen as continuous-valued stochastic gen-
eralizations of u}, and v}, , we interpret D g 1, (Um, um) and Dxr,(um, vm) as generalizations of
precision and recall. In the meta-visualization cost function (Eq. , thesum >, Dgr(vm,um)
over the query plots m then generalizes average precision and the sum >, D1, (tm, vm) gen-
eralizes average recall. Therefore the total cost of information retrieval errors, which was shown
into be equivalent to a weighted sum of precision and recall, is generalized as the weighted
sum of divergences in Eq. .

B Comparison between Our Meta-visualization Approach and an Ordered
Scatter Plot Matrix

In Section |4.1] we compared our meta-visualization approach with a standard scatter plot
matrix, in terms of their ability to keep known matching pairs of scatter plots (plots showing
the same neighborhood relationships) close-by. In Section our meta-visualization approach
clearly outperformed the scatter plot matrix.

The most common way to create scatter plot matrices is to order the rows and columns
of the matrix according to the order of feature indices in the original data. For this reason the
scatter plot matrix in Section uses this common way to order the rows and columns of the
scatter plot matrix.

The locations of plots on the scatter plot matrix depend on the ordering of the rows and
columns of the matrix; in principle, the performance of the scatter plot matrix could suffer
from a poor original ordering of the feature indices as it would yield a poor ordering of the rows
and columns. A data-driven ordering of the rows and columns could in principle yield better
results. To our knowledge, no advanced data-driven ordering methods have been suggested so
far for arranging plots within a scatter plot matrix. However, it could possible to arrange the
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rows (and correspondingly the columns) so that the most related dimensions would be next
to each other. However, this is already a novel method which has not been published to our
knowledge.

In this appendix we now propose a new data-driven method to order the rows and columns
of a scatter plot matrix. We then compare our meta-visualization approach against this new
data-driven ordered scatter plot matrix, using the same data and setting as in Section @
We show that even when such advanced ordering of the rows and columns is used, our meta-
visualization approach still outperforms the scatter plot matrix.

We aim to order the features so that two highly correlated features, that is, two features
whose values are highly positively correlated across the samples in the data set, should be
given close-by feature indices. It turns out that creating such an ordering can be represented
as a dimensionality reduction task from the pairwise matrix of feature-to-feature correlations
to one-dimensional indices of the features.

Given a set of input data samples {xi}f\il we compute the sample Pearson correlation
coefficient between features k and ! in the standard fashion as

S @ik — k) (@i — )
\/Zi‘vzl(xik - Mk)Z\/Z,N:l(Zu —m)?

wh.ere. z;k is the kth feaFure value. of.sample x; and pp = % vazl ;. We then convert the
pairwise feature correlations to pairwise distances between features as

drr = /2(1 — 711) (19)

TR = (18)

where the resulting distances are in the range [0,2] with distance zero indicating the two
features are strongly correlated and distance 2 indicating the features are strongly negatively
correlated

The resulting matrix of the pairwise distances di; between all features can be used for
dimensionality reduction to create an ordering of the features. We apply multidimensional
scaling (MDS) on the pairwise distance matrix to obtain a one-dimensional embedding where
each feature k£ has some one-dimensional embedding coordinate s;. We then order the rows
and columns of the scatter plot matrix in ascending order of si. Since two highly correlated
features k£ and [ have a small distance dg;, the MDS embedding aims to preserve these distances
and gives the features similar one-dimensional embedding coordinates s and s;; thus the two
features are plotted in nearby rows (and columns) in the ordered scatter plot matrix. The
resulting scatter plot matrix has a data driven order where correlated features are shown near
each other.

We create this ordered scatter plot matrix for the face pose image data set of Section @
The result is shown in Fig. As described in Section in this data set there are 10 plots
(feature pairs) that have a matching other plot (feature pair), such that both plots show the
exact same information up to rotation. Although there is some structure visible in the new
scatter plot matrix between the features, the known matching plots are still not shown nearby
on the matrix: none of the matching pairs are in the 8-neighborhood of each other. Thus,
our meta-visualization approach whose result is shown in Fig. 4| (left) achieves better results
compared to the scatter plot matrix, regardless of whether the original order of feature indices
is used or whether the advanced data-driven feature ordering is used.

V = (v1,--- ,vn). Since the ordering of V reflects the correlations between the features to
some extent,
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