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Improved methods are presented for learning metrics that measure only important dis-
tances. It is assumed that changes in primary data are relevant only to the extent that
they cause changes in auxiliary data, available paired to the primary data. The metrics
are here derived from estimators of the conditional density of the auxiliary data, and
computational approximations of the distances are used. We apply learning metrics to
improve the performance of Self-Organizing Maps (SOMs). A new performance indicator
is presented that measures the accuracy of SOMs in preserving the distribution of the
auxiliary data. The SOM in learning metrics is compared with the traditional SOM and
the supervised SOM, and learning metrics are found to improve the accuracy of maps in
this sense.

1 INTRODUCTION

Variable selection or feature extraction is a pressing problem for all exploratory data
analysis. The results of exploration methods such as clustering and visualization methods
are largely determined by the selected variables.

The goal of variable selection is to find a representation of data that reveals the in-
teresting aspects underlying the data set. Data sets usually contain unimportant mea-
surements, and the relevance of the features is highly dependent on the specific task on
hand. To fight these problems, the variable selection is often done by a specialist of the
application field.

The selected variables are often used for distance computation, i.e. to measure whether
two samples are similar. Therefore, an alternative approach to the same problem is to
choose a suitable metric for the data space.

Here we present one solution, based on the learning metrics principle [6, 7, 11], for the
choice of the metric. The metric is scaled locally to measure distances only in important
directions, where importance is obtained from auxiliary data.

2 THEORY OF LEARNING METRICS

Assume that there exist auxiliary data c paired with the primary data x. Here x is a
real-valued vector and c is categorical, i.e. it has finite number NC of possible values. We
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are interested in studying the primary data, but the changes in x are assumed relevant
only to the extent they cause changes in c.

An example situation would be to examine companies based on their financial state-
ments. By choosing the knowledge of whether a company has gone bankrupt as the
auxiliary variable, we can study what financial indicators affect the risk of bankruptcy
in different situations.

The relevance information contained in the auxiliary data is taken into use by defining
a metric that corresponds with the changes in the conditional distribution of c. We define
the distance in learning metrics locally, between two close-by points x and x + dx of the
primary data space, by

d2(x,x + dx) ≡ DKL(p(c|x), p(c|x + dx)) = dxTJ(x)dx . (1)

Here DKL is the Kullback-Leibler divergence and J(x) is the Fisher information matrix

J(x) = Ep(c|x)

[

(∇
x
log p(c|x)) (∇

x
log p(c|x))T

]

(2)

parameterized by x.
The global distances are measured by integrating (1) over the path that produces the

smallest value. In this paper, we discuss an approach where the distances are calculated
explicitly by approximations of the global distance. Alternatively, the learning metrics
principle can be used by incorporating the metric into the cost function. This has been
studied for example in [11] and is not considered here. The connections between the two
approaches to the principle are discussed in [6].

3 SELF-ORGANIZING MAPS IN LEARNING METRICS

Learning metrics can in principle be used with any method involving distance calculations.
Here we use it with the Self-Organizing Map (SOM) [8]. Self-Organizing Maps in learning
metrics have earlier been studied in [7, 10].

A SOM is a regular lattice of units. Each unit i contains a model vector mi, which
represents particular kinds of data in the data space. The model vectors are trained with
an iterative algorithm to follow the data. At the same time, the SOM organizes so that
the units close to each other in the lattice have similar model vectors.

The SOM training algorithm iterates two steps, winner search and adaptation. At
each iteration t, an input sample x(t) is picked at random from the data, and a winner
unit w(t) is selected by finding the model vector closest to the sample by

w(t) = arg min
i
d2(x(t),mi(t)) . (3)

Here d2 can be any distance function. Traditionally the distance has been either in the
Euclidean or inner product metrics. In our case it is in the learning metric derived from
the auxiliary data. For brevity, we call a SOM trained in learning metrics SOM-L and a
SOM trained in Euclidean metrics SOM-E.

Once the winner has been selected, the model vectors are all adapted towards the
input sample in the steepest descent direction. In Euclidean metrics, the direction is
given by the gradient and in learning metrics by the natural gradient [1].



For a local distance approximation used in this paper, the natural gradient leads to
the update rule

mi(t+ 1) = mi(t) + α(t)hwi(t)(x(t) −mi(t)) , (4)

which is the familiar SOM adaptation rule. Here α(t) is the learning rate and hwi(t)
is the neighborhood function, a decreasing function of the distance between units i and
w(t) on the SOM lattice. In this paper, a Gaussian neighborhood was used.

In order to use SOM-L in practice, we need to make two approximations. Firstly, the
local metric is computed from an estimate of the conditional auxiliary distribution p(c|x).
Secondly, the global distances between samples x and model vectors m are approximated.

4 ESTIMATING THE AUXILIARY DISTRIBUTION

In practice, we do not know the conditional probability density p(c|x). In order to use
SOM-L, we must estimate the density from the data. Here we discuss three parametric
density estimation methods, all based on Gaussian kernels and used earlier in [10].

The conditional probabilities p(c|x) can be obtained by estimating the joint density
p(c,x) and deriving the conditional probabilities from it, or by directly estimating the
conditional distribution. As the metric is based on the matrix J(x) computed from the
conditional distribution, estimating p(c|x) directly should provide better results.

Here we use one estimator of the joint density, a version of Mixture Discriminant Anal-
ysis (MDA2) [3], and two estimators that directly estimate the conditional probabilities
p(c|x). The first is a kind of mixture of experts [5], where the experts are distribu-
tions ψj = [ψj1...ψjNC

] constant with respect to x, and the gating network is formed of
Gaussian functions yj(x). The density estimate has the form

p̂(ci|x) =
NU
∑

j=1

yj(x)ψji . (5)

Here NU is the number of components, yj(x) are multivariate Gaussians with covariance
matrix σ2I, normalized so that

∑NU

j=1 yj(x) = 1, and ψji tells the probability of class i
given component j.

The other estimator is a simple product of experts [4], defined by

p̂(ci|x) =
1

Z(x)

NU
∏

j=1

exp (yj(x) logψji) , (6)

where the yj and ψji are defined as before and the sum of probabilities is normalized to
one by the function Z(x) =

∑NC

i=1

∏NU

j=1 exp (yj(x) logψji) .
The MDA2 is fitted to data by maximizing the joint log-likelihood by the EM algo-

rithm. For the other two models, the mean conditional log-likelihood of the auxiliary data
is maximized by conjugate gradient algorithms. The variance σ2 of the Gaussians is not
learned by the training algorithms, but chosen to maximize the performance of SOM-L
on a validation set. This is because the tests done so far have shown that the optimal
variance for SOM-L training is often different from what is best for density estimation.



5 APPROXIMATING THE DISTANCE

The true global distance between a sample x and a model vector m is a minimum path
integral of (1). As the matrix J(x) (2) depends on the x in a complex, non-linear way,
accurate computation of the distance would be prohibitive.

A simple way of approximating the distance, introduced in [7], is to assume that J(x)
is constant. In that case, the local distance measure at a point x can be extended to
global distances to points m, leading to the approximation

d̂2
1(x,m) = (m− x)TJ(x)(m− x) . (7)

We call d̂1 the 1-point distance approximation since it requires evaluating the local metric
at one point x. It is accurate when the model vectors are close to the sample x. In SOM
training, we need to find the closest model vector, and only the order of the model
vectors is interesting, not the distances as such; therefore the inaccurate distances may
be sufficient for training.

The smoothness of the auxiliary probability estimate affects the validity of the as-
sumption of J(x) being constant. We noticed that SOM-L with the 1-point distance
approximation requires far smoother estimates (larger values of dispersion parameter σ)
than what would optimally describe the data in the sense of maximizing the likelihood
of the probability estimates. If the estimate of p(c|x) changes rapidly, the distance (7)
is determined solely by the local properties of data which might not reflect the global
distances well. Using smoother estimates helps, but the smaller details of the data are
inevitably lost.

A more accurate but still computationally feasible approximation to the distance is
obtained by assuming that the shortest path is a straight line between the sample x and
the model vector m. That is, the shortest path in learning metrics equals the shortest
path in Euclidean metrics. The difference from the 1-point distance approximation is
that the metric is allowed to change along the line.

The global distance can then be computed by dividing the connecting line evenly into
T segments and evaluating the local metric at the start of each segment, resulting in

d̂2
T (x,m) =

1

T 2

(

T
∑

t=1

(

(m − x)T J

(

x +
t− 1

T
(m − x)

)

(m − x)
)1/2

)2

. (8)

The T -point distance approximation d̂T was first introduced in [10].
Unfortunately, the T -point distance approximation is computationally very demand-

ing. The computational complexity of a single SOM-L training iteration with the T -point
approximation is O(NDIMNCNUNSOMT ) for NSOM model vectors with dimensionality
NDIM , NC classes, and NU mixture components. By comparison, the complexity of the
1-point approximation is O(NDIMNC(NU +NSOM)).

In many cases, the computational cost is too high. Since we are only interested in
finding the closest model vector, it is unnecessary to compute the precise distances to the
model vectors that are likely to be far from x. Therefore we first make rough estimates
of the distances and compute the T -point distance approximation only to the W model
vectors that are closest according to the rough estimates. We call this procedure win-
nowing and use the 1-point distance approximation to make the rough estimates. This
reduces the computational complexity to O(NDIMNC(NUWT +NSOM)).



The values T and W can be tuned to compromise between the accuracy of the dis-
tance approximation and the computational cost. Here both values are set to ten, and
all experiments with the T -point distance approximation are done with the winnowing
procedure.

6 ALTERNATIVE METHODS

SOM-E is an established method for visualizing multidimensional data sets. We have
previously [10] compared SOM-L with SOM-E as they can be used for the same task. In
fact, SOM-E can be replaced with SOM-L if a suitable auxiliary variable is available.

It is intuitively clear that a method that is able to utilize more information performs
better. Another method applicable to improving SOM training in the presence of extra
information is the supervised Self-Organizing Map [8], originally proposed for improving
the classification accuracy.

With supervised Self-Organizing Maps (here denoted SOM-S for brevity) we have
vector-valued auxiliary data y paired with each data sample x. The extra information
is used in training by concatenating x with y, that is, the SOM-S is fitted to data [x y].
For test data, the extra components corresponding to y are treated as missing values,
meaning that only the components corresponding to x are used to find the winner units.

The extra information is such that the vector y is the same for samples from the same
class, and different for samples from different classes; the SOM-S then enhances class
separation on the map.

Here we need vector-valued auxiliary data while our original setting was that the
auxiliary data is categorical. We encode the auxiliary variable c into a vector y by so-
called 1-out-of-N coding. For a sample (x, c) with c = j, the SOM-S input vector will
be [x y], where y is a vector of length NC whose jth component is set to s and other
components to zero.

The value s governs the importance of the auxiliary data for winner selection, and is
here chosen to maximize the performance of SOM-S on a validation set. Small values of
s mean that the auxiliary data has little effect; winners are mostly selected by primary
features x. If the value is very large, the map is based almost solely on the auxiliary data
and the structure of the primary data is lost.

7 ACCURACY OF SELF-ORGANIZING MAPS

Previously [10] we have measured the performance of SOMs by computing the conditional
likelihood of the auxiliary data at the winner units of test samples. A problem with this
measure is that a density estimator is required also for evaluating the accuracy of the
traditional methods (SOM-E and SOM-S) that do not use such estimators in training.
Thus different results are obtained for the same SOM with different estimators.

Here we present a new way for measuring the accuracy of a SOM in the context of
learning metrics. The auxiliary data describes what is interesting in the data, and it is
important to preserve relevant aspects of the data in the SOM projection.

We postulate that a good projection should not mix concentrations of auxiliary values
more than is necessary. We measure this by computing, in a sense, how ’pure’ the
auxiliary distributions of test samples are in each SOM unit. The measure is smoothed
over neighboring units in order to also measure the homogeneity of auxiliary distributions.



Table 1: The Data Sets

Data set Dimensions Classes Samples
Landsat Satellite Data * 36 6 6435
Letter Recognition Data * 16 26 20000
Phoneme Data from LVQ_PAK [9] 20 14 3656
TIMIT Data from [12] 12 41 14994
* from the UCI Machine Learning Repository [2]

To be precise, the accuracy of a SOM is computed as the logarithmic conditional like-
lihood of NTEST test samples {xi, ci}

NTEST

i=1 , based on smoothed proportions of auxiliary
values of the test samples projected onto the map. We define

Accuracy =
NTEST
∑

i=1

log

∑NSOM

j=1 ajwi

Njci

Nj

∑NSOM

j=1 ajwi

, (9)

where Nji denotes the number of test samples whose winner unit is j and whose auxiliary
variable has value c = i, and Nj is the total number of samples with winner unit j. The
winner unit of the ith sample is denoted by wi and the corresponding auxiliary variable
value is ci.

The projected distributions Njci
/Nj are smoothed over neighboring SOM units by

weights ajwi
computed as products of Gaussian kernels and the number of samples Nj ,

i.e. we set

ajwi
= exp

(

−D2(j, wi)/2λ
2
)

Nj . (10)

Here D(j, wi) is the distance between unit j and the winner unit wi on the SOM lattice.
The parameter λ governs the smoothness of the densities and therefore defines how local
the smoothed conditional distributions are. We used the value λ = 1 which equals the
radius of the neighborhood function at the end of SOM training. The weights ajwi

are
affected by the number of samples in order to emphasize the more reliable estimates.

Both indicators aim to measure how well the SOM represents changes in the auxiliary
distributions. The indicator we used previously, the likelihood at the winner units, gives
high values if the auxiliary distributions of test samples are similar to the estimated
conditional distributions at the winner units. The indicator (9) presented here measures
the homogeneity (with respect to the auxiliary data) of test samples projected close to
each other on the SOM.

According to empirical tests (not shown in this paper), both indicators measure the
accuracy quite similarly; parameter and method validation produces similar choices with
both indicators.

8 EMPIRICAL TESTS

We tested the methods on four real world data sets (Table 1). On each data, the class
labels were used as the auxiliary information c, and the data sets were preprocessed by
removing classes with only a few samples.



Table 2: The p-values of the paired t-tests. Each entry means that the method on that row
is on average better than the method on that column. Significant differences (p < 0.01)
are underlined for convenience.

Letter Landsat
1-point SOM-S SOM-E 1-point SOM-S SOM-E

T -point 6 × 10−8 10−9 < 10−10 T -point 4 × 10−4 10−5 3 × 10−8

1-point - 2 × 10−8 < 10−10 1-point - 0.04 8 × 10−5

SOM-S - - < 10−10 SOM-S - - 10−4

LVQ_PAK TIMIT
T -point SOM-E 1-point SOM-S 1-point SOM-E

SOM-S 0.98 0.008 0.10 T -point 2 × 10−5 3 × 10−6 3 × 10−9

T -point - 0.014 0.03 SOM-S - 0.02 2 × 10−5

SOM-E - - 0.21 1-point - - 0.004

The significance of the difference between SOM-L and the traditional methods was
tested using a 10-fold cross-validation. The parameters σ and s were validated anew for
each fold by finding the values that provided the most accurate maps on a validation set
separated from each training set. The accuracy (9) for the best SOM was then computed
on the corresponding test set.

For SOM-L, we made preliminary runs with the 1-point distance approximation to find
the best density estimation method for each data set. We used 10, 30, and 100 kernels
in the density estimation phase and selected the estimation method that produced the
SOM-L with the best likelihood. Thanks to this (suboptimal) choice, we did not have
to validate over the density estimation methods during the cross-validation. For the T -
point distance approximation, we fixed the number of kernels to 30 to further reduce
computation time.

9 RESULTS

We tested the significance of the differences between the methods by paired t-tests. The
resulting p-values are collected in Table 2.

On three of four data sets, SOM-L attains improved results. With the T -point distance
approximation, SOM-L is significantly better than both of the traditional methods. SOM-
S is also significantly better than SOM-E. The latter is to be expected since SOM-S uses
auxiliary information, while SOM-E does not. From another viewpoint, this shows that
the new accuracy measure detects the difference between SOM-S and SOM-E as it should.

With the 1-point distance approximation, SOM-L is significantly better than SOM-
E on the same three data sets. Compared with SOM-S, only one of the differences is
significant in favor of SOM-L. The 1-point distance approximation is thus inadequate.
Notice additionally that the T -point distance approximation is significantly better than
the 1-point distance approximation.

On the fourth data set, the LVQ_PAK data, SOM-L is almost significantly better
than SOM-E (p = 0.014) and comparable to SOM-S. SOM-S is again significantly better
than SOM-E. SOM-L with the 1-point distance approximation performs on average worse
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Figure 1: Accuracy (9) of the methods on the TIMIT data, averaged over the 10-fold
validation sets. The T -point distance approximation is clearly superior to the 1-point
distance approximation and to the traditional methods. SOM-L results are shown as a
function of the dispersion parameter σ of the conditional probability estimate. SOM-S is
here depicted for the value s that produced the best average accuracy. Note that SOM-E
equals SOM-S with s = 0, so the SOM-E line presents the lowest value of SOM-S.

than either of the traditional SOMs, but the differences are not significant.
The mixture of experts (5) was the best density estimator on three data sets and the

product of experts (6) was best on the LVQ_PAK data. It seems that the methods that
directly estimate the conditional density outperform the joint density estimator MDA2
as density estimation methods for learning metrics.

The results are illustrated for one data set in Figure 1. With the T -point distance ap-
proximation, SOM-L is superior to the traditional methods on a wide range of smoothing
parameter values. SOM-S is at least equal to SOM-E regardless of the length s of the
subvectors for the auxiliary data.

10 DISCUSSION

We have shown that on most data sets, the Self-Organizing Map in learning metrics is
able to preserve the relevant aspects of the data better than traditional methods, the
Self-Organizing Map and the supervised Self-Organizing Map. We measured this by an
indirect indicator that measures how well the auxiliary information is retained in the
SOM projection.

Using more accurate distance approximations instead of the previously used local ap-
proximation is necessary for good results. Computing the T -point distance approximation
is computationally intensive. A heuristic speedup was presented, and the experiments
showed that the maps were accurate even with the speedup.

The accuracy measure presented in this paper seems reasonable as it is able to reveal



the difference between SOM-S and SOM-E on every data set. It is computable based
only on the winner units and does not otherwise require knowledge of the metric.

There is still room for improvement in both the density estimation and the distance
approximation. The current distance approximation relies heavily on density evaluations.
This means that more complex estimators would increase the computation time. On the
other hand, the time taken by fitting the density estimator is small compared with the
SOM-L training time. Therefore the importance of quick estimator fitting is low.
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