

### Welcome to TTIC!









### What is TTIC?

#### A COMPUTER SCIENCE GRADUATE INSTITUTE



Affiliated with the University of Chicago

Supported by an endowment provided by TTI-Japan and Toyota



#### A COMPUTER SCIENCE GRADUATE INSTITUTE

#### What does that mean?

- We are a single-department university with one program: a PhD in Computer Science (with a Master's within the PhD). Currently  $\approx$ 40 PhD students.
- Tenure-track faculty who conduct research, advise students, teach classes. Research focused on Machine Learning, Theoretical Computer Science, NLP, Speech, Computer Vision, Robotics, and Computational Biology.
- Closely affiliated with the University of Chicago. Students can (and do) take classes across and can be co-advised across.
- Also have 3-year Research Assistant Professors (RAPs) who add to the research environment.

A research-focused mini-university of Machine Learning, AI, Theory, and applications, closely affiliated with the University of Chicago.

### Where are we?





## Campus of the University of Chicago





Here

## Our building

















### What makes TTIC great (for students)?

- Top faculty, comparable to the best universities in computer science in the world.
- Well-funded. Every student gets a competitive stipend, funded by internal TTIC funds or faculty research grants. Plus equipment funds, travel funds. Students only TA one or two quarters out of their entire PhD.
- Personal attention. 4:1 student-to-faculty ratio. Plus mechanisms to ensure every student has the best shot possible and no student "falls through the cracks".
- Caring, engaged staff with TTIC's goals of excellence in mind.
- Highly active research environment: colloquium speakers, reading groups, workshops,
  Research Assistant Professors, visiting/adjoint faculty, postdocs, and more



### What makes TTIC great (for faculty)?

- Fantastic faculty colleagues and a friendly atmosphere, plus excellent folks nearby at UChicago, Northwestern, UIC, and more. [See <a href="RAP testimonials">RAP testimonials</a>]
- Strong TTIC PhD students, with the ability to also seamlessly work with UChicago PhD,
  Masters, and Undergraduate students.
- Teaching load is only 1 course/year (tenure-track faculty) or 0 courses/year (RAPs)
- Well-funded, with significant internal research funds in addition to external grants
- Caring, engaged staff with TTIC's goals of excellence in mind.
- Highly active research environment: colloquium speakers, reading groups, workshops,
  Research Assistant Professors, visiting/adjoint faculty, postdocs, and more



#### TTIC Alumni

- Faculty at Cornell, UIUC, Tsinghua University, U Edinburgh, Yale, U Waterloo
- Postdocs at top universities/labs (MIT, IAS, ETH, Brown, Caltech, Columbia, IBM)
- Researchers at top labs and startups (Google, Microsoft, Meta, Amazon, Adobe, Tesla, Genentech, Toyota, Zendar, Waymo)
- Two graduates named Sloan Research Fellows. 2020 International Society of Computational Biology (ISCB) Overton Prize.



#### Recent Student Awards

- Best Paper Award at the 34<sup>th</sup> Annual Conference on Learning Theory (COLT 2021) and both Best Student Paper awards at COLT 2019.
- Best Short Paper award at the 4th Workshop on Computational Models of Reference, Anaphora, and Coreference, 2021.
- 2019, 2020, 2021 Google PhD Fellowships
- 2017, 2019, 2021 NSF Fellowships
- 1<sup>st</sup> Place at Max Planck Institute for Intelligent Systems Real Robot Challenge. EUR 3500 cash prize ©

### TTIC Tenure-Track Faculty







(on leave)



Avrim Blum Julia Chuzhoy Kevin Gimpel Shiry Ginosar Zhiyuan Li



(joining Fall 2024) (joined Fall 2023)



Karen Livescu



<u>Yury</u> Makarychev



**David McAllester** 



Greg Shakhnarovich



**Nathan Srebro** 



**Madhur** <u>Tulsiani</u>



**Matthew** <u>Turk</u>



**Matthew** <u>Walter</u>



<u>Jinbo</u> <u>Xu</u>

### TTIC Research Assistant Professors (RAPs)



**Siddharth Bhandari** 



<u>Anand</u> **Bhattad** 



Sam **Buchanan** 





Emily Diana Jungo Kasai



**Hongyuan** Mei



Theodor **Misiakiewicz** 



**Derek** Reiman



Liren Shan



Saeed Sharifi-Malvajerdi



Ohad **Trabelsi** 



<u>Ali</u> <u>Vakilian</u>



Santhoshini **Velusamy** 



**Lingxiao** Wang



<u>Jiawei</u> (Joe) Zhou

#### Research Directions



#### **Avrim Blum**



- Mathematical analysis of machine learning (Machine Learning Theory)
- Fairness, adversarial robustness

$$\mathcal{L}_{S'}(\text{STOP}) = (\text{stop}, \text{CERTIFICATE})$$

Game-theoretic / incentive-aware algorithms





### Julia Chuzhoy



- Approximation algorithms for combinatorial optimization problems
- Network design and routing, dynamic graph algorithms (e.g., APSP), flow and cut problems, other graph algorithms
- Limits of approximation



### **Kevin Gimpel**



- Natural Language Processing
- Automatically generating paraphrases, summarizing text
- Systems that can understand text the way people do and answer questions about it
- Methods for representing text and world knowledge



(a) Probing model for twospan tasks. This model can be used to decide whether two spans (here [1, 2] and [4, 4]) are coreferent or not.

(b) Probing model for single-span tasks. This model can be used to decide whether a span (here [1,3]) refers to a constituent or not.

### **Shiry Ginosar**

(joining Fall 2024)



- Computer perception, including vision, audio, and other sensory modalities
- Artificial social intelligence, including social learning, Human-Human, and Human-Al interaction
- Gesture recognition, learning to respond like a good listener





### Zhiyuan Li



- Machine Learning Theory
- Analysis of Deep Learning
- Computational and sample efficiency of optimization methods





Figure 1: SGD+WD optimizes the scale invariant training loss of SIBERT robustly for all initialization scales, and thus for loss scalings and different learning rates (with  $\lambda\eta$  fixed). Here the default initialization for parameters in SIBERT encoder is a truncated normal distribution with standard deviation equal to 0.02 (the same as BERT).

#### Karen Livescu



- Speech and language processing, speech recognition, acoustic+semantic representations of words and text.
- Statistical modeling techniques that can take advantage of both data and prior knowledge.
- Connections with computer vision, including sign language recognition, semantic speech retrieval



### Yury Makarychev



- Combinatorial optimization
- Non-worst-case analysis of algorithms
- High-dimensional geometry
- Clustering and dimensionality reduction





#### David McAllester



- AI: automated reasoning and knowledge representation
- Machine learning
- Natural language processing
- Deep networks and big questions



### **Greg Shakhnarovich**



- Computer vision and machine learning
- Automatic understanding of visual scenes
- Self-supervision
- Vision and language, sign language recognition



A photo of a laughing young person with long curly hair.



A photo of a young person with long curly hair.



A photo of a laughing young person with long curly hair wearing glasses.



Figure 1. Examples of text-driven face image synthesis by our proposed method Fast text2StyleGAN. The text prompts are increasingly more detailed. Each image takes about 0.09s to produce. See https://github.com/duxiaodan/Fast\_text2StyleGAN.git

#### Nati Srebro



- Statistical machine learning algorithms
- Understanding implicit bias of optimization methods
- ML algorithms that satisfy fairness, non-discrimination
- Scalable / distributed learning





#### Madhur Tulsiani



- Error-correcting codes. E.g., locally-decodable error-correcting codes for high noise rates
- Solvability of constraint satisfaction problems
- Analysis of semidefinite programming techniques
- High-dimensional expanders and their algorithmic applications



#### Matthew Turk



- Computer vision and machine learning
- Augmented and mixed reality
- Societal/ethical concerns in AI (e.g., facial recognition systems)
- TTIC president



#### Matthew Walter



 Developing intelligent, perceptually aware robots that are able to work effectively with and alongside people in unstructured environments

- Robot-human interaction
  - Deciding What to Talk About & How
- Jointly optimizing design and control







### Jinbo Xu



Machine learning and data-driven methods for computational biology

First successful deep learning algorithm for protein folding / protein

structure prediction (RaptorX)

Convex optimization for protein-protein interaction network alignment



### Courses (all PhD-level)

#### Autumn 2023

TTIC 31230 - Fundamentals of Deep Learning (CMSC 31230) - Instructor: David McAllester

TTIC 31080 - Approximation Algorithms (CMSC 37503) - Instructor: Julia Chuzhoy

TTIC 31150 - Mathematical Toolkit (CMSC 31150) - Instructor: Madhur Tulsiani

TTIC 31190 - Natural Language Processing - Instructor: Jiawei Zhou and Freda Shi

#### Winter 2024

TTIC 31010 - Algorithms (CMSC 37000) - Instructor: Yury Makarychev

TTIC 31020 - Introduction to Machine Learning - Instructor: Nati Srebro

TTIC 31070 - Convex Optimization (...) - Instructor: Zhiyuan Li

TTIC 31050 - Introduction to Bioinformatics and Computational Biology - Instructor: Jinbo Xu

#### Spring 2024

TTIC 31260 - Algorithmic Game Theory - Instructor: Avrim Blum

TTIC 31180 - Probabilistic Graphical Models - Instructor: Matt Walter

#### **Activities**

- External talks, including <u>colloquium</u> and <u>distinguished lecture</u> series
- Internal <u>Research@TTIC talk</u> + lunch every Friday
- Reading groups
- Workshops (usually 4 each summer on ML / AI / Theory topics, plus various during the year)
- Variety of outreach activities













More information at <a href="http://www.ttic.edu">http://www.ttic.edu</a>