לדלג לתוכן

מיצוי נוגדני של כרומטין – הבדלי גרסאות

מתוך ויקיפדיה, האנציקלופדיה החופשית
תוכן שנמחק תוכן שנוסף
מאין תקציר עריכה
Maor nn (שיחה | תרומות)
אין תקציר עריכה
 
(33 גרסאות ביניים של 18 משתמשים אינן מוצגות)
שורה 1: שורה 1:
[[קובץ:CHIP.png|ממוזער|מיצוי נוגדני של כרומטין]]
[[קובץ:CHIP.png|ממוזער|מיצוי נוגדני של כרומטין]]
'''מיצוי נוגדני של כרומטין''' (ב[[אנגלית]]: '''Chromatin Immunoprecipitation'''{{כ}}; ב[[ראשי תיבות]]: ChIP) הוא שיטה המיישמת מיצוי נוגדני הבוחנת אינטראקציות בין חלבונים ל[[חומצות גרעין]] בתאים. מטרת השיטה היא לזהות [[חלבונים]] מסוימים הבאים במגע עם אתרים מסוימים ב[[גנום]] של התא, כגון [[פקטורי שעתוק]] הבאים במגע עם [[קדם|פרומוטורים]], או אתרי קישור DNA אחרים, והגדרה של ציסטרומים (cistromes){{כ}}<ref name="pmid21859476">{{cite journal
'''מיצוי נוגדני של כרומטין''' (ב[[אנגלית]]: '''Chromatin Immunoprecipitation'''{{כ}}; ב[[ראשי תיבות]]: ChIP) הוא שיטה הבוחנת אינטראקציות בין חלבונים ל[[חומצות גרעין]] בתאים, באמצעות הליך הנקרא [[מיצוי נוגדני]]. מטרת השיטה היא לזהות [[חלבונים]] מסוימים הבאים במגע עם אתרים מסוימים ב[[גנום]] של התא, כגון [[פקטורי שעתוק]] הבאים במגע עם [[קדם|פרומוטורים]] או אתרי קישור DNA אחרים, והגדרה של ציסטרומים (cistromes{{ביאור|ציסטרומים מוגדרים כקבוצת אתרי המטרה על אותו רצף ה-DNA (אתרים הנמצאים ב-cis) של פקטורים הנקשרים ל-DNA.}}){{כ}}{{הערה|שם=pmid21859476|{{cite journal
| author= Liu, Tao.
| author= Liu, Tao.
| author2= Ortiz, Jorge A.
| author2= Ortiz, Jorge A.
שורה 8: שורה 8:
| issue =8
| issue =8
| pages =R83
| pages =R83
| year = 2011
| pmid = 21859476
| pmid = 21859476
| doi = 0.1186/gb-2011-12-8-r83
<!--| doi = 0.1186/gb-2011-12-8-r83-->

}}</ref>
|date= 2011}}}}
. כמו כן מיצוי נוגדני של [[כרומטין]] משמש לזיהוי אתרים ספציפיים בגנום שבהם בוצעו עריכות [[היסטון|היסטונים]] (histone remodeling), ומציינים את אתרי המטרה של חלבונים עורכי היסטונים.<ref name="pmid20077036">{{cite journal
. כמו כן מיצוי נוגדני של [[כרומטין]] משמש לזיהוי אתרים ספציפיים בגנום שבהם בוצעו עריכות [[היסטון|היסטונים]] (histone remodeling), ולזיהוי אתרי המטרה של חלבונים עורכי היסטונים{{הערה|שם=pmid20077036|{{cite journal
| author = Collas, Philippe.
| author = Collas, Philippe.
| title = The Current State of Chromatin Immunoprecipitation
| title = The Current State of Chromatin Immunoprecipitation
שורה 19: שורה 19:
| issue =1
| issue =1
| pages =87–100
| pages =87–100
| year = 2010
| month = January
| pmid = 20077036
| pmid = 20077036
| doi = 10.1007/s12033-009-9239-8
| doi = 10.1007/s12033-009-9239-8
}}</ref>


|date= January 2010}}}}.
בקצרה, השיטה מתבצעת כדלהלן: [[חלבונים]] ו[[כרומטין]] נמצאים בקישור זמני במיצוי תאים, גדילי הDNA נחתכים ותלכיד החלבון – DNA הקשורים לחלבונים ספציפיים מושקעים על ידי שימוש ב[[נוגדנים]] ספציפיים להם, גדילי DNA אלו מנוקים ונבדקים ולעתים מרוצפים. ניתן להסיק שרצפי DNA אלו באים במגע עם החלבון הנבדק בתוך התא (''in vivo'').

בקצרה, השיטה מתבצעת כדלהלן: [[חלבונים]] ו[[כרומטין]] נמצאים בקישור זמני במיצוי תאים, גדילי הDNA נחתכים ותלכיד החלבון – DNA הקשורים לחלבונים ספציפיים מושקעים על ידי שימוש ב[[נוגדנים]] ספציפיים להם, גדילי DNA אלו מנוקים ונבדקים ולעיתים מרוצפים. ניתן להסיק שרצפי DNA אלו באים במגע עם החלבון הנבדק בתוך התא (''in vivo'').


== מיצוי נוגדני של כרומטין טיפוסי ==
== מיצוי נוגדני של כרומטין טיפוסי ==
ישנן שתי שיטות עיקריות של מיצוי נוגדני של כרומטין, והשלב השונה ביניהן הוא הכנת מיצוי התאים וצורת חיתוך גדילי הDNA. הראשונה משתמשת בטכניקת [[קשר צולב|הצלבה]] הפיכה וחיתוך גדילי הDNA באמצעות סונקציה ונקראת מיצוי נוגדני של כרומטין בקיבוע מוצלב ( (XChIP. בעוד השיטה השנייה אינה מבצעת הצלבה ובה חיתוך הDNA מבוצע באמצעות [[נוקלאז|אנזימים המעכלים DNA ]] המופקים מחיידקי ה[[מיקרוקוס]].
ישנן שתי שיטות עיקריות של מיצוי נוגדני של כרומטין, והשלב השונה ביניהן הוא הכנת מיצוי התאים וצורת חיתוך גדילי ה-DNA. הראשונה משתמשת בטכניקת [[קשר צולב|הצלבה]] הפיכה וחיתוך גדילי ה-DNA באמצעות סוניקציה ונקראת מיצוי נוגדני של כרומטין בקיבוע צולב (XChIP), בעוד השיטה השנייה אינה מבצעת הצלבה ובה חיתוך ה-DNA מבוצע באמצעות [[נוקלאז|אנזימים המעכלים DNA]] המופקים מחיידקי ה[[מיקרוקוס|מיקרוקוקוס]].


===מיצוי נוגדני של כרומטין בקיבוע מוצלב (XChIP)===
===מיצוי נוגדני של כרומטין בקיבוע צולב (XChIP)===
מיצוי נוגדני של כרומטין בקיבוע מוצלב היא שיטה למפות אתרי קישור של פקטורי שעתוק, וחלבונים קושרי כרומטין אחרים על גבי הDNA. חומרי המוצא שלו הוא מיצוי תאים שעבר קיבוע [[קשר צולב|הצלבה]] הפיך. קיבוע זה נעשה באמצעות [[פורמלדהיד]]<ref name="pmid569554">{{cite journal
מיצוי נוגדני של כרומטין בקיבוע צולב היא שיטה למפות אתרי קישור של פקטורי שעתוק, וחלבונים קושרי כרומטין אחרים על גבי ה-DNA. חומרי המוצא שלו הוא מיצוי תאים שעבר קיבוע [[קשר צולב|הצלבה]] הפיך. קיבוע זה נעשה באמצעות [[פורמלדהיד]]{{הערה|שם=pmid569554|{{cite journal
|author=Jackson, Vaughn
|author=Jackson, Vaughn
|title=Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent
|title=Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent
שורה 38: שורה 37:
|issue=3
|issue=3
|pages=945–54
|pages=945–54
|year=1978
|month=November
|pmid=569554
|pmid=569554
|doi=10.1016/0092-8674(78)90278-7
|doi=10.1016/0092-8674(78)90278-7
שורה 45: שורה 42:
|issn=
|issn=
|accessdate=2010-03-13
|accessdate=2010-03-13

}}</ref> או [[על-סגול|קרינה אולטרה סגולית]] (UV)<ref name="pmid3018544">{{cite journal
|date= November 1978}}}} או [[על-סגול|קרינה אולטרה סגולית]] (UV){{הערה|שם=pmid3018544|{{cite journal
|author=Gilmour DS, Lis JT
|author=Gilmour DS, Lis JT
|title=In vivo interactions of RNA polymerase II with genes of ''Drosophila melanogaster''
|title=In vivo interactions of RNA polymerase II with genes of ''Drosophila melanogaster''
שורה 52: שורה 50:
|issue=8
|issue=8
|pages=2009–18
|pages=2009–18
|year=1985
|month=August
|pmid=3018544
|pmid=3018544
|pmc=366919
|pmc=366919
שורה 60: שורה 56:
|issn=
|issn=
|accessdate=2010-03-13
|accessdate=2010-03-13

}}</ref>.
|date= August 1985}}}}.


====תיאור השיטה====
====תיאור השיטה====
מצוי תאים עובר תהליך של קיבוע הצלבה הפיכה באחת השיטות המוזכרות לעיל.
מצוי תאים עובר תהליך של קיבוע הצלבה הפיכה באחת השיטות המוזכרות לעיל.
לאחר קיבוע ההצלבה גדילי הDNA מפורקים בדרך כלל על ידי סונקציה, תהליך המותיר שברים באורך של בין 300-1000 [[זוג בסיסים|בסיסים חנקניים]].
לאחר קיבוע ההצלבה גדילי ה-DNA מפורקים בדרך כלל על ידי סוניקציה, תהליך המותיר מקטעים באורך של בין 300–1000 [[זוג בסיסים|בסיסים חנקניים]].
שברים באורכים של בין 400-500 בסיסים מתאימים ביותר לזיהוי מוטיבים של קישור מאחר שהם באורך קורלטיבי למספר [[נוקלאוזום|נוקלאוזומים]] בודד ומאפשרים הסקה של קישור על פי מבנה מרחבי.
מקטעים באורכים של בין 400–500 בסיסים מתאימים ביותר לזיהוי מוטיבים של קישור מאחר שהם באורך קורלטיבי למספר [[נוקלאוזום|נוקלאוזומים]] בודד ומאפשרים הסקה של קישור על פי מבנה מרחבי.
שאר מיצוי התא מופרד מהתמיסה בהשקעה, ותלכידי חלבון-DNA מושקעים בהשקעה באמצעות נוגדנים ספציפיים לחלבון הנבדק. נוגדנים אלו בדרך כלל מחוברים לחומר המאפשר הפרדה פשוטה, כגון : [[אגרוז]], ספרוז או חלקיקים מגנטיים. התלכיד נוגדני המושקע (ז"א, החלקיק-הנוגדן-חלבון המטרה-הDNA) נאספים ונשטפים על מנת להפריד כרומטין שנקשר בצורה לא ספציפית. תלכידים אלו מעוכלים ב[[פרוטאז K]] , על מנת לשחרר את הDNA להמשך אבחון.
שאר מיצוי התא מופרד מהתמיסה בהשקעה, ותלכידי חלבון-DNA מושקעים בהשקעה באמצעות נוגדנים ספציפיים לחלבון הנבדק. נוגדנים אלו בדרך כלל מחוברים לחומר המאפשר הפרדה פשוטה, כגון : [[אגרוז]], ספרוז או חלקיקים מגנטיים. התלכידים הנוגדניים המושקעים (כלומר, החלקיק-ה[[נוגדן]]-חלבון המטרה-ה-DNA) נאספים ונשטפים על מנת להפריד כרומטין שנקשר בצורה לא ספציפית. תלכידים אלו מעוכלים ב[[פרוטאז K]], על מנת לשחרר את ה-DNA להמשך אבחון.
גרסאות מתויגות של החלבון הנבדק או ביוטינילציה <ref>Viens A et al. "Use of protein biotinylation in vivo for chromatin immunoprecipitation" (2004) ''Analytical Biochemistry'' '''325'''(1):68-76 [http://www.ncbi.nlm.nih.gov/pubmed/14715286]</ref> של החלבון יכולים לשמש במקום נוגדנים ספציפיים לחלבון ולאפשר להפרידו ביעילות גבוהה ובעלות נמוכה משעולה לייצר נוגדן חד שבטי.
גרסאות מתויגות של החלבון הנבדק או ביוטינילציה{{הערה|Viens A et al. "Use of protein biotinylation in vivo for chromatin immunoprecipitation" (2004) ''Analytical Biochemistry'' '''325'''(1):68-76 [http://www.ncbi.nlm.nih.gov/pubmed/14715286]}} של החלבון יכולים לשמש במקום נוגדנים ספציפיים לחלבון ולאפשר להפרידו ביעילות גבוהה ובעלות נמוכה משעולה לייצר נוגדן חד שבטי.
ניתן לזהות את גדיל הDNA שהופרד מהתלכיד במספר שיטות, כגון : ריאקציית PCR , שבב, ריצוף מולקולרי, ריצוף מהיר-עיבוד.
ניתן לזהות את גדיל ה-DNA שהופרד מהתלכיד במספר שיטות, כגון: ריאקציית [[PCR]], שבב, ריצוף מולקולרי, ריצוף מהיר-עיבוד.


===מיצוי נוגדני של כרומטין בתנאים טבעיים (NChIP)===
===מיצוי נוגדני של כרומטין בתנאים טבעיים (NChIP)===
שיטה זו בעיקר משמשת למיפוי אתרי מטרה של חלבונים עורכי היסטונים. חומר המוצא הוא מיצוי תאים טבעי ללא טיפולים. הDNA במצבו הטבעי מלופף סביב ההיסטונים ליצירת הנוקלוזומים. חותכים את הDNA באמצעות אנזימים המעכלים DNA המופקים מחיידקי המיקרוקוס, אשר חותכים DNA בין הנוקלאוזומים ומשאירים את הנוקלוזומים שלמים, חלקי הDNA נעים באורכים בין 200 בסיסים (נוקלואוזם בודד), עד לכ1000 בסיסים (חמישה נוקלוזומים).
שיטה זו בעיקר משמשת למיפוי אתרי מטרה של חלבונים עורכי היסטונים. חומר המוצא הוא מיצוי תאים טבעי ללא טיפולים. ה-DNA במצבו הטבעי מלופף סביב ההיסטונים ליצירת הנוקלאוזומים. חותכים את ה-DNA באמצעות אנזימים המעכלים DNA המופקים מחיידקי המיקרוקוקוס, אשר חותכים DNA בין הנוקלאוזומים ומשאירים את הנוקלוזומים שלמים, מקטעי ה-DNA נעים באורכם בין 200 בסיסים (נוקלאוזום בודד), עד לכ-1000 בסיסים (חמישה נוקלאוזומים).
שאר הטכניקה זהה למה שתואר במיצוי מוצלב (XChIP) , בנוגע לניקוי, מיצוי, הפקה ואנליזה של DNA מופרד.
שאר הטכניקה זהה לזו המתוארת במיצוי הכרומטין בקיבוע הצולב (XChIP), בנוגע לניקוי, מיצוי, הפקה ואנליזה של DNA מופרד.


===השוואה בין שתי שיטות המיצוי===
===השוואה בין שתי שיטות המיצוי===
היתרון העיקרי בתנאים טבעיים הוא הספציפיות של הנוגדנים. חשוב להבין שנוגדנים הספציפיים להיסטונים ערוכים, הם ספציפיים לעריכות קטנות בחלבון, בעוד לאחר הקיבוע המוצלב בפורמלדהיד הקיבוע פוגע במבנה החלבונים ופוגע במבנה של אתרי המטרה של הנוגדנים בחלבונים אלו. זה גם מסביר את היעילות הנמוכה של מיצוי נוגדנים בקיבוע מוצלב לעומת בתנאים טבעיים.
היתרון העיקרי בתנאים טבעיים הוא ספציפיות הנוגדנים. הנוגדנים החד שבטיים בהם נעשה שימוש מתוכננים לזהות רצפים חלבוניים סינתטיים קצרים, ולאחר קיבוע צולב בפורמלין תיתכן פגיעה במבנה החלבון ואתרי המטרה של נוגדנים אלו. אתרי המטרה פגיעים במיוחד לשינויים בחומצת האמינו ליזין בקצה החנקני. עובדה זו מסבירה את היעילות הנמוכה של מיצוי נוגדנים בקיבוע צולב לעומת בתנאים טבעיים.
אך המטרות של שתי השיטות הן שונות כך שהיתרונות של שיטה אחת על האחרת הם יחסיים. קיבוע מוצלב משמש לזיהוי אתרי פעילות של פקטורי שעתוק וחלבונים קושרי כרומטין אחרים, בעוד מיצוי בתנאים טבעיים בוחן עריכות להיסטונים (ראה טבלה 1).
אך המטרות של שתי השיטות הן שונות כך שהיתרונות של שיטה אחת על האחרת הם יחסיים. קיבוע צולב משמש לזיהוי אתרי פעילות של פקטורי שעתוק וחלבונים קושרי כרומטין אחרים, בעוד מיצוי בתנאים טבעיים בוחן עריכות להיסטונים.


'''טבלה 1 הייתרונות והחסרונות של מיצוי נוגדני של כרומטין בקיבוע מוצלב ובתנאים טבעיים '''
{| class="wikitable"
{| class="wikitable"
|+ היתרונות והחסרונות של מיצוי נוגדני של כרומטין בקיבוע צולב ובתנאים טבעיים
|-
!
!
! '''מיצוי בקיבוע מוצלב'''
! '''מיצוי בקיבוע צולב'''
! '''מיצוי בתנאים טבעיים'''
! '''מיצוי בתנאים טבעיים'''
|-
|-
שורה 96: שורה 92:
|
|
*מיצוי פחות של כרומטין עקב פגיעה באתרי הקישור של הנוגדנים.
*מיצוי פחות של כרומטין עקב פגיעה באתרי הקישור של הנוגדנים.
*יכול לתת תשובה שגוייה כאשר יש קיבוע של חלבונים חולפים לכרומטין.
*יכול לתת תשובה שגויה כאשר יש קיבוע של חלבונים חולפים לכרומטין.
*מקטעי DNA בגדלים שונים עקב החיתוך האקראי של הDNA.
*מקטעי DNA בגדלים שונים עקב החיתוך האקראי של הDNA.
|
|
*אינו יעיל על חלבונים מלבד היסטונים מאחר שהוא מחייב חלבונים בעלי קישור חזק לDNA{{כ}}.
*אינו יעיל על חלבונים מלבד היסטונים מאחר שהוא מחייב חלבונים בעלי קישור חזק לDNA{{כ}}.
*לעתים נוקלאוזומים משתנים במהלך החיתוך.
*לעיתים נוקלאוזומים משתנים במהלך החיתוך.
|}
|}


==ההיסטוריה של טכניקות מיצוי נוגדני של כרומטין==
==ההיסטוריה של טכניקות מיצוי נוגדני של כרומטין==


בשנת 1984 [[ג'ון ליס]] (John T. Lis) וחוקר במעבדתו [[דוד גילמור]] (David Gilmour), השתמשו בקרינה אולטרה סגולית על מנת לעשות קיבוע מוצלב של חלבונים לDNA בתאי חיידקים חיים. לאחר מיצוי תכולת התאים הם השקיעו באמצעות נוגדנים כנגד RNA פולימראז חיידקי, את הDNA שהושקע הם בדקו עם גלאים לאזורים שונים בגנום החיידק כדי לזהות פיזור וצפיפות של RNA פולימראז באזורי הגנים השונים.
בשנת 1984 [[ג'ון ליס]] (John T. Lis) וחוקר במעבדתו [[דוד גילמור]] (David Gilmour), השתמשו בקרינה אולטרה סגולית על מנת לעשות קיבוע צולב של חלבונים ל-DNA בתאי חיידקים חיים. לאחר מיצוי תכולת התאים הם השקיעו באמצעות נוגדנים כנגד RNA פולימראז חיידקי, את ה-DNA שהושקע הם בדקו עם גלאים לאזורים שונים בגנום החיידק כדי לזהות פיזור וצפיפות של [[RNA פולימראז]] באזורי הגנים השונים.
ב-1985 הם השתמשו באותה השיטה רק הפעם לבדיקת [[RNA פולימראז II|RNA פולימראז 2]] באוקריוים בתאי [[זבוב הפירות]], ובדיקה של גלאים של גני עקת חום.
ב-1985 הם השתמשו באותה השיטה רק הפעם לבדיקת [[RNA פולימראז II|RNA פולימראז 2]] באוקריוים בתאי [[זבוב הפירות]], ובדיקה של גלאים של גני עקת חום.
עבודות אלו מוגדרות כפריצות הדרך של עבודה עם מיצוי נוגדני של כרומטין.<ref>[http://www.ncbi.nlm.nih.gov/pubmed/6379641 Detecting protein-DNA interactions ... [Proc Natl Acad Sci U S A. 1984&#93; - PubMed - NCBI<!-- בוט יוצר כותרת -->]</ref><ref>[http://www.ncbi.nlm.nih.gov/pubmed/3018544 In vivo interactions of RNA polymerase II with... [Mol Cell Biol. 1985&#93; - PubMed - NCBI<!-- בוט יוצר כותרת -->]</ref>
עבודות אלו מוגדרות כפריצות הדרך של עבודה עם מיצוי נוגדני של כרומטין{{הערה|[http://www.ncbi.nlm.nih.gov/pubmed/6379641 Detecting protein-DNA interactions ... [Proc Natl Acad Sci U S A. 1984&#93; - PubMed - NCBI]{{כותרת קישור נוצרה על ידי בוט}}}}{{הערה|[http://www.ncbi.nlm.nih.gov/pubmed/3018544 In vivo interactions of RNA polymerase II with... [Mol Cell Biol. 1985&#93; - PubMed - NCBI]{{כותרת קישור נוצרה על ידי בוט}}}}.
מיצוי נוגדני של כרומטין בקיבוע מוצלב שופר ופותח על ידי [[אלכסנדר ורשבסקי]] (Alexander Varshavsky) ושותפים, שבדקו את הנוכחות של היסטון H4 על גני עקת חום, במקום להשתמש בקרינה אולטרה סגולית הם השתמשו בפורמלדהיד על מנת לקבע<ref name="pmid18708349">{{cite journal
מיצוי נוגדני של כרומטין בקיבוע צולב שופר ופותח על ידי [[אלכסנדר ורשבסקי]] (Alexander Varshavsky) ושותפים, שבדקו את הנוכחות של היסטון H4 על גני עקת חום, במקום להשתמש בקרינה אולטרה סגולית הם השתמשו בפורמלדהיד על מנת לקבע{{הערה|שם=pmid18708349|{{cite journal
| author = Varshavsky A
| author = Varshavsky A
| title = Discovery of cellular regulation by protein degradation
| title = Discovery of cellular regulation by protein degradation
שורה 115: שורה 111:
| issue = 50
| issue = 50
| pages = 34469–89
| pages = 34469–89
| year = 2008
| month = December
| pmid = 18708349
| pmid = 18708349
| doi = 10.1074/jbc.X800009200
| doi = 10.1074/jbc.X800009200
| url = http://www.jbc.org/cgi/pmidlookup?view=long&pmid=18708349
| url = http://www.jbc.org/cgi/pmidlookup?view=long&pmid=18708349
| issn =
| issn =
| accessdate = 2010-03-06
| accessdate = 2010-03-06
| date = December 2008
}}</ref><ref name="pmid2454748">{{cite journal
| archive-date = 2020-06-09
| archive-url = https://web.archive.org/web/20200609113749/https://www.jbc.org/content/283/50/34469.long
|url-status=dead}}}}{{הערה|שם=pmid2454748|{{cite journal
| author = Solomon, Mark J; Larsen Pamela L; Varshavsky, Alexander.
| author = Solomon, Mark J; Larsen Pamela L; Varshavsky, Alexander.
| title = Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene
| title = Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene
שורה 129: שורה 126:
| issue = 6
| issue = 6
| pages = 937–47
| pages = 937–47
| year = 1988
| month = June
| pmid = 2454748
| pmid = 2454748
| doi =10.1016/S0092-8674(88)90469-2
| doi =10.1016/S0092-8674(88)90469-2
שורה 136: שורה 131:
| issn =
| issn =
| accessdate = 2010-03-06
| accessdate = 2010-03-06

}}</ref>.
|date= June 1988}}}}.
טכניקות אלו שופרו ופותחו מאוד מאז<ref name="pmid10694875">{{cite journal
טכניקות אלו שופרו ופותחו מאוד מאז{{הערה|שם=pmid10694875|{{cite journal
| author = Orlando V
| author = Orlando V
| title = Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation
| title = Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation
שורה 144: שורה 140:
| issue = 3
| issue = 3
| pages = 99–104
| pages = 99–104
| year = 2000
| month = March
| pmid = 10694875
| pmid = 10694875
| doi =10.1016/S0968-0004(99)01535-2
| doi =10.1016/S0968-0004(99)01535-2
שורה 151: שורה 145:
| issn =
| issn =
| accessdate = 2010-03-14
| accessdate = 2010-03-14

}}</ref>.
|date= March 2000}}}}.
מיצוי נוגדני של כרומטין בתנאים טבעיים (NChIP) תואר לראשונה על ידי מעבדתו של הביס (Hebbes) ב-1988<ref name="pmid3409869">{{cite journal
מיצוי נוגדני של כרומטין בתנאים טבעיים (NChIP) תואר לראשונה על ידי מעבדתו של הביס (Hebbes) ב-1988{{הערה|שם=pmid3409869|{{cite journal
| author = Hebbes, Tim R; Thorne, Alan W; Crane-Robinson C.
| author = Hebbes, Tim R; Thorne, Alan W; Crane-Robinson C.
| title = A direct link between core histone acetylation and transcriptionally active chromatin
| title = A direct link between core histone acetylation and transcriptionally active chromatin
שורה 159: שורה 154:
| issue = 5
| issue = 5
| pages = 1395–402
| pages = 1395–402
| year = 1988
| month = May
| pmid = 3409869
| pmid = 3409869
| pmc = 458389
| pmc = 458389
| doi =
| doi =
| issn =
| issn =
| accessdate = 2010-03-06
| accessdate =

}}</ref>, וגם שיטה זו פותח ושופרה רבות לשימוש נפוץ<ref name="pmid12893176">{{cite journal
|date= May 1988}}}}, וגם שיטה זו פותח ושופרה רבות לשימוש נפוץ{{הערה|שם=pmid12893176|{{cite journal
| author = O'Neill, Laura P; Turner, Bryan M
| author = O'Neill, Laura P; Turner, Bryan M
| title = Immunoprecipitation of native chromatin: NChIP
| title = Immunoprecipitation of native chromatin: NChIP
שורה 173: שורה 167:
| issue = 1
| issue = 1
| pages = 76–82
| pages = 76–82
| year = 2003
| month = September
| pmid = 12893176
| pmid = 12893176
| doi =10.1016/S1046-2023(03)00090-2
| doi =10.1016/S1046-2023(03)00090-2
שורה 180: שורה 172:
| issn =
| issn =
| accessdate = 2010-03-14
| accessdate = 2010-03-14

}}</ref>.
|date= September 2003}}}}.
שיטת המיצוי המקורית לוקחת כ 4-5 ימים ודורשת כ10<sup>6</sup>- 10<sup>7</sup> תאים. שיטות חדשות מאפשרות לבצע את התהליך תוך יום אחד ודורשות הרבה פחות תאים כ100-1000.
שיטת המיצוי המקורית לוקחת כ 4–5 ימים ודורשת כ10<sup>6</sup>- 10<sup>7</sup> תאים. שיטות חדשות מאפשרות לבצע את התהליך תוך יום אחד ודורשות הרבה פחות תאים כ-100–1000.


===מיצוי נוגדני של כרומטין באמצעות נשא - (Carrier ChIP (CChIP===
===מיצוי נוגדני של כרומטין באמצעות נשא - (Carrier ChIP (CChIP===
שיטה זו יכולה להיות יעילה גם בשימוש של רק כ100 תאים, על ידי הוספה של תאי זבוב פירות (Drosophila) ככרומטין נשא, ובכך להפחית את אובדן הכרומטין הנבדק בהשקעה, על ידי הטיית שיווי המשקל של ההשקעה. אך כמובן הוא דורש גלאים ספציפיים שיוכלו לזהות את הDNA הנבדק על גבי הרקע של הכרומטין הנשא, שיטה זו לוקחת כיומיים שלושה.<ref name="pmid16767102">{{cite journal
שיטה זו יכולה להיות יעילה גם בשימוש של רק כ-100 תאים, על ידי הוספה של תאי זבוב פירות (Drosophila) ככרומטין נשא, ובכך להפחית את אובדן הכרומטין הנבדק בהשקעה, על ידי הטיית שיווי המשקל של ההשקעה. אך כמובן הוא דורש גלאים ספציפיים שיוכלו לזהות את הDNA הנבדק על גבי הרקע של הכרומטין הנשא, שיטה זו לוקחת כיומיים שלושה{{הערה|שם=pmid16767102|{{cite journal
| author = O'Neill, Laura P; VerMilyea, Matthew D; Turner, Bryan M
| author = O'Neill, Laura P; VerMilyea, Matthew D; Turner, Bryan M
| title = Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations
| title = Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations
שורה 191: שורה 184:
| issue = 7
| issue = 7
| pages = 835–41
| pages = 835–41
| year = 2006
| month = July
| pmid = 16767102
| pmid = 16767102
| doi = 10.1038/ng1820
| doi = 10.1038/ng1820
| url =
| url =
| issn =
| issn =
| accessdate = 2010-03-14
| accessdate =

}}</ref>
|date= July 2006}}}}.


===מיצוי מהיר נוגדני של כרומטין - (Fast ChIP (qChIP===
===מיצוי מהיר נוגדני של כרומטין - (Fast ChIP (qChIP===
שיטה זו מאיצה את התהליך על ידי האצה של שני שלבים במהלך המיצוי :
שיטה זו מאיצה את התהליך על ידי האצה של שני שלבים במהלך המיצוי :
1. אמבט אולטראסוני מאיץ את תהליך הקשירה של הנוגדנים לחלבוני המטרה ובכך מאיץ את תהליך ההשקעה.
1. אמבט אולטראסוני מאיץ את תהליך הקשירה של הנוגדנים לחלבוני המטרה ובכך מאיץ את תהליך ההשקעה.
2. פרוטוקול מבוסס שרף (Chelex-100) להפרדת DNA מקצר את הפקת הDNA והיפוך הקיבוע המוצלב.
2. פרוטוקול מבוסס שרף (Chelex-100) להפרדת DNA מקצר את הפקת הDNA והיפוך הקיבוע הצולב.
הניצולת של תהליך זה אינה גבוהה ולכן צריך תמצית תאים המופקת מכמות תאים רבה (כ10<sup>6</sup>~ 10<sup>7</sup>)<ref name="pmid16397291">{{cite journal
הניצולת של תהליך זה אינה גבוהה ולכן צריך תמצית תאים המופקת מכמות תאים רבה (כ10<sup>6</sup>~ 10<sup>7</sup>){{הערה|שם=pmid16397291|{{cite journal
| author = Nelson, Joel D; Denisenko, Oleg; Sova, Pavel; Bomsztyk, Karol
| author = Nelson, Joel D; Denisenko, Oleg; Sova, Pavel; Bomsztyk, Karol
| title = Fast chromatin immunoprecipitation assay
| title = Fast chromatin immunoprecipitation assay
שורה 211: שורה 203:
| issue = 1
| issue = 1
| pages = e2
| pages = e2
| year = 2006
| pmid = 16397291
| pmid = 16397291
| pmc = 1325209
| pmc = 1325209
שורה 217: שורה 208:
| url =
| url =
| issn =
| issn =
| accessdate = 2010-03-14
| accessdate =

}}</ref><ref name="pmid17406230">{{cite journal
|date= 2006}}}}{{הערה|שם=pmid17406230|{{cite journal
| author = Nelson, Joel D; Denisenko, Oleg; Bomsztyk, Karol
| author = Nelson, Joel D; Denisenko, Oleg; Bomsztyk, Karol
| title = Protocol for the fast chromatin immunoprecipitation (ChIP) method
| title = Protocol for the fast chromatin immunoprecipitation (ChIP) method
שורה 225: שורה 217:
| issue = 1
| issue = 1
| pages = 179–85
| pages = 179–85
| year = 2006
| pmid = 17406230
| pmid = 17406230
| doi = 10.1038/nprot.2006.27
| doi = 10.1038/nprot.2006.27
| url =
| url =
| issn =
| issn =
| accessdate = 2010-03-14
| accessdate =

}}</ref>. ניתן לייצר באמצעות שיטה זו עד 24 מקטעי DNA מוכנים לPCR בתוך 5 שעות, שיטה זו מאפשרת בדיקה של פעילות מספר פקטורי שעתוק בו זמנית ולהסתכל על שינויים באוכלוסיות תאים לאורך זמן<ref name="pmid19588084">{{cite journal
|date= 2006}}}}. ניתן לייצר באמצעות שיטה זו עד 24 מקטעי DNA מוכנים לPCR בתוך 5 שעות, שיטה זו מאפשרת בדיקה של פעילות מספר פקטורי שעתוק בו זמנית ולהסתכל על שינויים באוכלוסיות תאים לאורך זמן{{הערה|שם=pmid19588084|{{cite journal
| author = Nelson J, Denisenko O, Bomsztyk K
| author = Nelson J, Denisenko O, Bomsztyk K
| title = The fast chromatin immunoprecipitation method
| title = The fast chromatin immunoprecipitation method
שורה 238: שורה 230:
| issue =
| issue =
| pages = 45–57
| pages = 45–57
| year = 2009
| pmid = 19588084
| pmid = 19588084
| doi = 10.1007/978-1-60327-414-2_3
| doi = 10.1007/978-1-60327-414-2_3
| url =
| url =
| issn =
| issn =
| accessdate = 2010-03-14
| accessdate =

}}</ref>.
|date= 2009}}}}.


===מיצוי נוגדני של כרומטין מהיר וכמותי (Quick and quantitative ChIP (Q<sup>2</sup>ChIP===
===מיצוי נוגדני של כרומטין מהיר וכמותי (Quick and quantitative ChIP (Q<sup>2</sup>ChIP===
שיטה זו משתמשת בחומר מוצא מיצוי של 10<sup>5</sup> תאים, ומאפשרת בדיקה של 1000 היסטונים או 100 פקטורי שעתוק. בשיטה זו דוגמאות כרומטין רבות יכולות להיות מוכנות במקביל ולהיבדק במקביל. אורך הבדיקה הוא כיום<ref name="pmid17272500">{{cite journal
שיטה זו משתמשת בחומר מוצא מיצוי של 10<sup>5</sup> תאים, ומאפשרת בדיקה של 1000 היסטונים או 100 פקטורי שעתוק. בשיטה זו דוגמאות כרומטין רבות יכולות להיות מוכנות במקביל ולהיבדק במקביל. אורך הבדיקה הוא כיום{{הערה|שם=pmid17272500|{{cite journal
| author = Dahl, John Arne; Collas, Philippe
| author = Dahl, John Arne; Collas, Philippe
| title = Q<sup>2</sup>ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells
| title = Q<sup>2</sup>ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells
שורה 254: שורה 246:
| issue = 4
| issue = 4
| pages = 1037–46
| pages = 1037–46
| year = 2007
| month = April
| pmid = 17272500
| pmid = 17272500
| doi = 10.1634/stemcells.2006-0430
| doi = 10.1634/stemcells.2006-0430
| url =
| url =
| issn =
| issn =
| accessdate = 2010-03-14
| accessdate =

}}</ref>
|date= April 2007}}}}
.
.


===מיקרו מיצוי נוגדני של כרומטין (MicroChIP (µChIP===
===מיקרו מיצוי נוגדני של כרומטין (MicroChIP (µChIP===
שיטה זו בדרך כלל משתמשת במיצוי מכ1000 תאים, ומאפשרת לבצע 8 תהליכי מיצוי ללא שימוש בנשא. שיטה זה יכולה להיעשות גם ממיצוי 100 תאים בלבד אך תהליך מיצוי בודד. כמו כן ניתן להשתמש ברקמת ביופסיה של 1 ממ</sup>3<sup> . שיטה זו מבוצעת תוך יום אחד<ref name="pmid18536650">{{cite journal
שיטה זו בדרך כלל משתמשת במיצוי מכ-1000 תאים, ומאפשרת לבצע 8 תהליכי מיצוי ללא שימוש בנשא. שיטה זה יכולה להיעשות גם ממיצוי 100 תאים בלבד אך תהליך מיצוי בודד. כמו כן ניתן להשתמש ברקמת ביופסיה של 1 ממ</sup>3<sup> . שיטה זו מבוצעת תוך יום אחד{{הערה|שם=pmid18536650|{{cite journal
| author = Dahl, John Arne; Collas, Philippe
| author = Dahl, John Arne; Collas, Philippe
| title = A rapid micro chromatin immunoprecipitation assay (microChIP)
| title = A rapid micro chromatin immunoprecipitation assay (microChIP)
שורה 272: שורה 263:
| issue = 6
| issue = 6
| pages = 1032–45
| pages = 1032–45
| year = 2008
| pmid = 18536650
| pmid = 18536650
| doi = 10.1038/nprot.2008.68
| doi = 10.1038/nprot.2008.68
| url =
| url =
| issn =
| issn =
| accessdate = 2010-03-14
| accessdate =

}}</ref><ref name="pmid19588085">{{cite journal
|date= 2008}}}}{{הערה|שם=pmid19588085|{{cite journal
| author = Dahl, John Arne; Collas, Philippe
| author = Dahl, John Arne; Collas, Philippe
| title = MicroChIP: chromatin immunoprecipitation for small cell numbers
| title = MicroChIP: chromatin immunoprecipitation for small cell numbers
שורה 285: שורה 276:
| issue =
| issue =
| pages = 59–74
| pages = 59–74
| year = 2009
| pmid = 19588085
| pmid = 19588085
| doi = 10.1007/978-1-60327-414-2_4
| doi = 10.1007/978-1-60327-414-2_4
| url =
| url =
| issn =
| issn =
| accessdate = 2010-03-14
| accessdate =

}}</ref>.
|date= 2009}}}}.


===מיצוי נוגדני של כרומטין במיקרו-פלטה - Matrix ChIP===
===מיצוי נוגדני של כרומטין במיקרו-פלטה - Matrix ChIP===
שיטה זו מאפשרת רמה גבוהה יותר של עבוד ומפשטת את התהליך, כל תהליך מבוצע במיקרו-פלטה ומאפשר את הפוטנציאל של אוטומציה. בתהליך זה ניתן לעשות 96 מיצויים במקביל, וכל התהליך לוקח יום בודד<ref name="pmid18203739">{{cite journal
שיטה זו מאפשרת רמה גבוהה יותר של עיבוד ומפשטת את התהליך, כל תהליך מבוצע במיקרו-פלטה ומאפשר את הפוטנציאל של אוטומציה. בתהליך זה ניתן לעשות 96 מיצויים במקביל, וכל התהליך לוקח יום בודד{{הערה|שם=pmid18203739|{{cite journal
| author = Flanagin, Steve ; Nelson, Joel D; Castner, David G; Denisenko, Oleg; Bomsztyk, Karol
| author = Flanagin, Steve ; Nelson, Joel D; Castner, David G; Denisenko, Oleg; Bomsztyk, Karol
| title = Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events
| title = Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events
שורה 301: שורה 292:
| issue = 3
| issue = 3
| pages = e17
| pages = e17
| year = 2008
| month = February
| pmid = 18203739
| pmid = 18203739
| pmc = 2241906
| pmc = 2241906
שורה 308: שורה 297:
| url =
| url =
| issn =
| issn =
| accessdate = 2010-03-14
| accessdate =

}}</ref>.
|date= February 2008}}}}.


מיצוי נוגדני של כרומטין נעשה גם על גנום שלם באמצעות טכנולוגיית "מיצוי נוגדני של כרומטין על שבב" (ChIP-on-chip) או טכנולוגיית ריצוף DNA חדשניות (Chip-Sequencing). כמו כן ניתן לשלב שיטה זו עם טכניקת "ריצוף קצוות מזווגים מתויגים" (paired end tags sequencing) בשיטה הנקראת "בחינת אינטראקציות כרומטין באמצעות ריצוף קצוות מזווגים" Chromatin Interaction Analysis using Paired End Tag sequencing (ChIA-PET), שיטה שנועדה לבחינה של אינטראקציות של כרומטין במבנה מרחבי של יצורים אוקריוטים<ref name="pmid20069536">{{cite journal
מיצוי נוגדני של כרומטין נעשה גם על גנום שלם באמצעות טכנולוגיית "מיצוי נוגדני של כרומטין על שבב" (ChIP-on-chip) או טכנולוגיית [[ריצוף DNA]] חדשניות (Chip-Sequencing). כמו כן ניתן לשלב שיטה זו עם טכניקת "ריצוף קצוות מזווגים מתויגים" (paired end tags sequencing) בשיטה הנקראת "בחינת אינטראקציות כרומטין באמצעות ריצוף קצוות מזווגים" Chromatin Interaction Analysis using Paired End Tag sequencing (ChIA-PET), שיטה שנועדה לבחינה של אינטראקציות של כרומטין במבנה מרחבי של יצורים אוקריוטים{{הערה|שם=pmid20069536|{{cite journal
| author = Fullwood, Melissa J; Han, Yuyuan; Wei, Chia-Lin; Ruan, Xiaoan; Ruan, Yijun
| author = Fullwood, Melissa J; Han, Yuyuan; Wei, Chia-Lin; Ruan, Xiaoan; Ruan, Yijun
| title = Chromatin interaction analysis using paired-end tag sequencing
| title = Chromatin interaction analysis using paired-end tag sequencing
שורה 318: שורה 308:
| issue =
| issue =
| pages = Unit 21.15.1–25
| pages = Unit 21.15.1–25
| year = 2010
| month = January
| pmid = 20069536
| pmid = 20069536
| doi = 10.1002/0471142727.mb2115s89
| doi = 10.1002/0471142727.mb2115s89
| url =
| url =
| issn =
| issn =
| accessdate = 2010-03-14
| accessdate =

}}</ref><ref name="pmid20181287">{{cite journal
|date= January 2010}}}}{{הערה|שם=pmid20181287|{{cite journal
| author = Li, Guoliang; Fullwood, Melissa J; Xu, Han; Mulawadi, Fabianus Hendriyan; Velkov, Stoyan; Vega, Vinsensius; Ariyaratne, Pramila Nuwantha; Mohamed, Yusoff Bin; Ooi, Hong-Sain; Tennakoon, Chandana; Wei, Chia-Lin; Ruan, Yijun; Sung, Wing-Kin
| author = Li, Guoliang; Fullwood, Melissa J; Xu, Han; Mulawadi, Fabianus Hendriyan; Velkov, Stoyan; Vega, Vinsensius; Ariyaratne, Pramila Nuwantha; Mohamed, Yusoff Bin; Ooi, Hong-Sain; Tennakoon, Chandana; Wei, Chia-Lin; Ruan, Yijun; Sung, Wing-Kin
| title = ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing
| title = ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing
שורה 332: שורה 321:
| issue = 2
| issue = 2
| pages = R22
| pages = R22
| year = 2010
| month = February
| pmid = 20181287
| pmid = 20181287
| doi = 10.1186/gb-2010-11-2-r22
| doi = 10.1186/gb-2010-11-2-r22
| url =
| url =
| issn =
| issn =
| accessdate = 2010-03-14
| accessdate =
| pmc = 2872882
| pmc = 2872882

}}</ref><ref name="ScienceDaily-ChIA-PET">{{cite web|url=http://www.sciencedaily.com/releases/2009/11/091104132700.htm|title=ChIA-PET: Novel Method For 3-D Whole Genome Mapping Research |date=2009-11-08|work=ScienceDaily|publisher=[[Agency for Science, Technology and Research]] (A*STAR), Singapore.|accessdate=14 March 2010}}</ref>.
|date= February 2010}}}}{{הערה|שם=ScienceDaily-ChIA-PET|{{cite web|url=http://www.sciencedaily.com/releases/2009/11/091104132700.htm|title=ChIA-PET: Novel Method For 3-D Whole Genome Mapping Research |date=2009-11-08|work=ScienceDaily|publisher=[[Agency for Science, Technology and Research]] (A*STAR), Singapore.|accessdate=14 March 2010}}}}.


==הגבלות של מיצוי נוגדני של כרומטין==
==הגבלות של מיצוי נוגדני של כרומטין==
שורה 352: שורה 340:
* [[ChIP-exo]] שיטה המוסיפה נוקלאזות לתהליך ומקטינה את תוצרי ההפקה למקטעים הקושרים.
* [[ChIP-exo]] שיטה המוסיפה נוקלאזות לתהליך ומקטינה את תוצרי ההפקה למקטעים הקושרים.
* [[ChIP-on-chip]] שילוב של שיטת המיצוי עם טכנולוגיית המעבדה על שבב.
* [[ChIP-on-chip]] שילוב של שיטת המיצוי עם טכנולוגיית המעבדה על שבב.
* [[ChIP-seq]]
* [[היברידיזציה פלואורסצנטית באתר|FISH]] - עוד שיטה לצביעת RNA

==קישורים חיצוניים==
==קישורים חיצוניים==
{{ויקישיתוף בשורה|Category:Chromatin immunoprecipitation}}
{{ויקישיתוף בשורה|Category:Chromatin immunoprecipitation}}

==ביאורים==
{{ביאורים}}


== הערות שוליים ==
== הערות שוליים ==

גרסה אחרונה מ־16:43, 20 במאי 2024

מיצוי נוגדני של כרומטין

מיצוי נוגדני של כרומטיןאנגלית: Chromatin Immunoprecipitation‏; בראשי תיבות: ChIP) הוא שיטה הבוחנת אינטראקציות בין חלבונים לחומצות גרעין בתאים, באמצעות הליך הנקרא מיצוי נוגדני. מטרת השיטה היא לזהות חלבונים מסוימים הבאים במגע עם אתרים מסוימים בגנום של התא, כגון פקטורי שעתוק הבאים במגע עם פרומוטורים או אתרי קישור DNA אחרים, והגדרה של ציסטרומים (cistromes[א])‏[1] . כמו כן מיצוי נוגדני של כרומטין משמש לזיהוי אתרים ספציפיים בגנום שבהם בוצעו עריכות היסטונים (histone remodeling), ולזיהוי אתרי המטרה של חלבונים עורכי היסטונים[2].

בקצרה, השיטה מתבצעת כדלהלן: חלבונים וכרומטין נמצאים בקישור זמני במיצוי תאים, גדילי הDNA נחתכים ותלכיד החלבון – DNA הקשורים לחלבונים ספציפיים מושקעים על ידי שימוש בנוגדנים ספציפיים להם, גדילי DNA אלו מנוקים ונבדקים ולעיתים מרוצפים. ניתן להסיק שרצפי DNA אלו באים במגע עם החלבון הנבדק בתוך התא (in vivo).

מיצוי נוגדני של כרומטין טיפוסי

[עריכת קוד מקור | עריכה]

ישנן שתי שיטות עיקריות של מיצוי נוגדני של כרומטין, והשלב השונה ביניהן הוא הכנת מיצוי התאים וצורת חיתוך גדילי ה-DNA. הראשונה משתמשת בטכניקת הצלבה הפיכה וחיתוך גדילי ה-DNA באמצעות סוניקציה ונקראת מיצוי נוגדני של כרומטין בקיבוע צולב (XChIP), בעוד השיטה השנייה אינה מבצעת הצלבה ובה חיתוך ה-DNA מבוצע באמצעות אנזימים המעכלים DNA המופקים מחיידקי המיקרוקוקוס.

מיצוי נוגדני של כרומטין בקיבוע צולב (XChIP)

[עריכת קוד מקור | עריכה]

מיצוי נוגדני של כרומטין בקיבוע צולב היא שיטה למפות אתרי קישור של פקטורי שעתוק, וחלבונים קושרי כרומטין אחרים על גבי ה-DNA. חומרי המוצא שלו הוא מיצוי תאים שעבר קיבוע הצלבה הפיך. קיבוע זה נעשה באמצעות פורמלדהיד[3] או קרינה אולטרה סגולית (UV)[4].

תיאור השיטה

[עריכת קוד מקור | עריכה]

מצוי תאים עובר תהליך של קיבוע הצלבה הפיכה באחת השיטות המוזכרות לעיל. לאחר קיבוע ההצלבה גדילי ה-DNA מפורקים בדרך כלל על ידי סוניקציה, תהליך המותיר מקטעים באורך של בין 300–1000 בסיסים חנקניים. מקטעים באורכים של בין 400–500 בסיסים מתאימים ביותר לזיהוי מוטיבים של קישור מאחר שהם באורך קורלטיבי למספר נוקלאוזומים בודד ומאפשרים הסקה של קישור על פי מבנה מרחבי. שאר מיצוי התא מופרד מהתמיסה בהשקעה, ותלכידי חלבון-DNA מושקעים בהשקעה באמצעות נוגדנים ספציפיים לחלבון הנבדק. נוגדנים אלו בדרך כלל מחוברים לחומר המאפשר הפרדה פשוטה, כגון : אגרוז, ספרוז או חלקיקים מגנטיים. התלכידים הנוגדניים המושקעים (כלומר, החלקיק-הנוגדן-חלבון המטרה-ה-DNA) נאספים ונשטפים על מנת להפריד כרומטין שנקשר בצורה לא ספציפית. תלכידים אלו מעוכלים בפרוטאז K, על מנת לשחרר את ה-DNA להמשך אבחון. גרסאות מתויגות של החלבון הנבדק או ביוטינילציה[5] של החלבון יכולים לשמש במקום נוגדנים ספציפיים לחלבון ולאפשר להפרידו ביעילות גבוהה ובעלות נמוכה משעולה לייצר נוגדן חד שבטי. ניתן לזהות את גדיל ה-DNA שהופרד מהתלכיד במספר שיטות, כגון: ריאקציית PCR, שבב, ריצוף מולקולרי, ריצוף מהיר-עיבוד.

מיצוי נוגדני של כרומטין בתנאים טבעיים (NChIP)

[עריכת קוד מקור | עריכה]

שיטה זו בעיקר משמשת למיפוי אתרי מטרה של חלבונים עורכי היסטונים. חומר המוצא הוא מיצוי תאים טבעי ללא טיפולים. ה-DNA במצבו הטבעי מלופף סביב ההיסטונים ליצירת הנוקלאוזומים. חותכים את ה-DNA באמצעות אנזימים המעכלים DNA המופקים מחיידקי המיקרוקוקוס, אשר חותכים DNA בין הנוקלאוזומים ומשאירים את הנוקלוזומים שלמים, מקטעי ה-DNA נעים באורכם בין 200 בסיסים (נוקלאוזום בודד), עד לכ-1000 בסיסים (חמישה נוקלאוזומים). שאר הטכניקה זהה לזו המתוארת במיצוי הכרומטין בקיבוע הצולב (XChIP), בנוגע לניקוי, מיצוי, הפקה ואנליזה של DNA מופרד.

השוואה בין שתי שיטות המיצוי

[עריכת קוד מקור | עריכה]

היתרון העיקרי בתנאים טבעיים הוא ספציפיות הנוגדנים. הנוגדנים החד שבטיים בהם נעשה שימוש מתוכננים לזהות רצפים חלבוניים סינתטיים קצרים, ולאחר קיבוע צולב בפורמלין תיתכן פגיעה במבנה החלבון ואתרי המטרה של נוגדנים אלו. אתרי המטרה פגיעים במיוחד לשינויים בחומצת האמינו ליזין בקצה החנקני. עובדה זו מסבירה את היעילות הנמוכה של מיצוי נוגדנים בקיבוע צולב לעומת בתנאים טבעיים. אך המטרות של שתי השיטות הן שונות כך שהיתרונות של שיטה אחת על האחרת הם יחסיים. קיבוע צולב משמש לזיהוי אתרי פעילות של פקטורי שעתוק וחלבונים קושרי כרומטין אחרים, בעוד מיצוי בתנאים טבעיים בוחן עריכות להיסטונים.

היתרונות והחסרונות של מיצוי נוגדני של כרומטין בקיבוע צולב ובתנאים טבעיים
מיצוי בקיבוע צולב מיצוי בתנאים טבעיים
יתרונות
  • מתאים לפקטורי שעתוק, וכל חלבון בעל אינטראקציות חלשות עם כרומטין.
  • יישם בכל אורגניזם כאשר חלבונים בתנאים טבעיים קשים למיצוי.
  • יכולת קישור יותר טובה וספציפיות יותר טובה של נוגדני המיצוי.
  • הפקה גדולה יותר של כרומטין, הנובעת מהספציפיות הרבה יותר של הנוגדנים.
חסרונות
  • מיצוי פחות של כרומטין עקב פגיעה באתרי הקישור של הנוגדנים.
  • יכול לתת תשובה שגויה כאשר יש קיבוע של חלבונים חולפים לכרומטין.
  • מקטעי DNA בגדלים שונים עקב החיתוך האקראי של הDNA.
  • אינו יעיל על חלבונים מלבד היסטונים מאחר שהוא מחייב חלבונים בעלי קישור חזק לDNA‏.
  • לעיתים נוקלאוזומים משתנים במהלך החיתוך.

ההיסטוריה של טכניקות מיצוי נוגדני של כרומטין

[עריכת קוד מקור | עריכה]

בשנת 1984 ג'ון ליס (John T. Lis) וחוקר במעבדתו דוד גילמור (David Gilmour), השתמשו בקרינה אולטרה סגולית על מנת לעשות קיבוע צולב של חלבונים ל-DNA בתאי חיידקים חיים. לאחר מיצוי תכולת התאים הם השקיעו באמצעות נוגדנים כנגד RNA פולימראז חיידקי, את ה-DNA שהושקע הם בדקו עם גלאים לאזורים שונים בגנום החיידק כדי לזהות פיזור וצפיפות של RNA פולימראז באזורי הגנים השונים. ב-1985 הם השתמשו באותה השיטה רק הפעם לבדיקת RNA פולימראז 2 באוקריוים בתאי זבוב הפירות, ובדיקה של גלאים של גני עקת חום. עבודות אלו מוגדרות כפריצות הדרך של עבודה עם מיצוי נוגדני של כרומטין[6][7]. מיצוי נוגדני של כרומטין בקיבוע צולב שופר ופותח על ידי אלכסנדר ורשבסקי (Alexander Varshavsky) ושותפים, שבדקו את הנוכחות של היסטון H4 על גני עקת חום, במקום להשתמש בקרינה אולטרה סגולית הם השתמשו בפורמלדהיד על מנת לקבע[8][9]. טכניקות אלו שופרו ופותחו מאוד מאז[10]. מיצוי נוגדני של כרומטין בתנאים טבעיים (NChIP) תואר לראשונה על ידי מעבדתו של הביס (Hebbes) ב-1988[11], וגם שיטה זו פותח ושופרה רבות לשימוש נפוץ[12]. שיטת המיצוי המקורית לוקחת כ 4–5 ימים ודורשת כ106- 107 תאים. שיטות חדשות מאפשרות לבצע את התהליך תוך יום אחד ודורשות הרבה פחות תאים כ-100–1000.

מיצוי נוגדני של כרומטין באמצעות נשא - (Carrier ChIP (CChIP

[עריכת קוד מקור | עריכה]

שיטה זו יכולה להיות יעילה גם בשימוש של רק כ-100 תאים, על ידי הוספה של תאי זבוב פירות (Drosophila) ככרומטין נשא, ובכך להפחית את אובדן הכרומטין הנבדק בהשקעה, על ידי הטיית שיווי המשקל של ההשקעה. אך כמובן הוא דורש גלאים ספציפיים שיוכלו לזהות את הDNA הנבדק על גבי הרקע של הכרומטין הנשא, שיטה זו לוקחת כיומיים שלושה[13].

מיצוי מהיר נוגדני של כרומטין - (Fast ChIP (qChIP

[עריכת קוד מקור | עריכה]

שיטה זו מאיצה את התהליך על ידי האצה של שני שלבים במהלך המיצוי : 1. אמבט אולטראסוני מאיץ את תהליך הקשירה של הנוגדנים לחלבוני המטרה ובכך מאיץ את תהליך ההשקעה. 2. פרוטוקול מבוסס שרף (Chelex-100) להפרדת DNA מקצר את הפקת הDNA והיפוך הקיבוע הצולב. הניצולת של תהליך זה אינה גבוהה ולכן צריך תמצית תאים המופקת מכמות תאים רבה (כ106~ 107)[14][15]. ניתן לייצר באמצעות שיטה זו עד 24 מקטעי DNA מוכנים לPCR בתוך 5 שעות, שיטה זו מאפשרת בדיקה של פעילות מספר פקטורי שעתוק בו זמנית ולהסתכל על שינויים באוכלוסיות תאים לאורך זמן[16].

מיצוי נוגדני של כרומטין מהיר וכמותי (Quick and quantitative ChIP (Q2ChIP

[עריכת קוד מקור | עריכה]

שיטה זו משתמשת בחומר מוצא מיצוי של 105 תאים, ומאפשרת בדיקה של 1000 היסטונים או 100 פקטורי שעתוק. בשיטה זו דוגמאות כרומטין רבות יכולות להיות מוכנות במקביל ולהיבדק במקביל. אורך הבדיקה הוא כיום[17] .

מיקרו מיצוי נוגדני של כרומטין (MicroChIP (µChIP

[עריכת קוד מקור | עריכה]

שיטה זו בדרך כלל משתמשת במיצוי מכ-1000 תאים, ומאפשרת לבצע 8 תהליכי מיצוי ללא שימוש בנשא. שיטה זה יכולה להיעשות גם ממיצוי 100 תאים בלבד אך תהליך מיצוי בודד. כמו כן ניתן להשתמש ברקמת ביופסיה של 1 ממ3 . שיטה זו מבוצעת תוך יום אחד[18][19].

מיצוי נוגדני של כרומטין במיקרו-פלטה - Matrix ChIP

[עריכת קוד מקור | עריכה]

שיטה זו מאפשרת רמה גבוהה יותר של עיבוד ומפשטת את התהליך, כל תהליך מבוצע במיקרו-פלטה ומאפשר את הפוטנציאל של אוטומציה. בתהליך זה ניתן לעשות 96 מיצויים במקביל, וכל התהליך לוקח יום בודד[20].

מיצוי נוגדני של כרומטין נעשה גם על גנום שלם באמצעות טכנולוגיית "מיצוי נוגדני של כרומטין על שבב" (ChIP-on-chip) או טכנולוגיית ריצוף DNA חדשניות (Chip-Sequencing). כמו כן ניתן לשלב שיטה זו עם טכניקת "ריצוף קצוות מזווגים מתויגים" (paired end tags sequencing) בשיטה הנקראת "בחינת אינטראקציות כרומטין באמצעות ריצוף קצוות מזווגים" Chromatin Interaction Analysis using Paired End Tag sequencing (ChIA-PET), שיטה שנועדה לבחינה של אינטראקציות של כרומטין במבנה מרחבי של יצורים אוקריוטים[21][22][23].

הגבלות של מיצוי נוגדני של כרומטין

[עריכת קוד מקור | עריכה]
  • בדיקה רחבת טווח באמצעות מיצוי נוגדני של כרומטין היא מאתגרת. מאחר שצריך ליצור נוגדן ספציפי לכל פקטור שעתוק, או אורגניזם מהונדס המכיל פקטורי שעתוק מתויגים.
  • חקר דוגמאות ביטוי בשיטה זו מהווה בעיה מאחר שישנם שינויים בביטוי בתאים מסוימים בתנאים שונים לחלונות זמן מאוד קטנים.
  • שיטות אלו מתקשות בהבדלה בין איזופומים שונים של פקטורי שעתוק.
  • RIP-Chip שיטה דומה המנתחת אינטראקציות בין חלבונים ל-RNA
  • DamID שיטה חלופית שאינה דורשת ייצור של נוגדנים ספציפיים
  • ChIP-exo שיטה המוסיפה נוקלאזות לתהליך ומקטינה את תוצרי ההפקה למקטעים הקושרים.
  • ChIP-on-chip שילוב של שיטת המיצוי עם טכנולוגיית המעבדה על שבב.
  • ChIP-seq
  • FISH - עוד שיטה לצביעת RNA

קישורים חיצוניים

[עריכת קוד מקור | עריכה]
  1. ^ ציסטרומים מוגדרים כקבוצת אתרי המטרה על אותו רצף ה-DNA (אתרים הנמצאים ב-cis) של פקטורים הנקשרים ל-DNA.

הערות שוליים

[עריכת קוד מקור | עריכה]
  1. ^ Liu, Tao.; Ortiz, Jorge A. (2011). "Cistrome: an integrative platform for transcriptional regulation studies". Genome Biology. 12 (8): R83. PMID 21859476.
  2. ^ Collas, Philippe. (בינואר 2010). "The Current State of Chromatin Immunoprecipitation". Molecular Biotechnology. 45 (1): 87–100. doi:10.1007/s12033-009-9239-8. PMID 20077036. {{cite journal}}: (עזרה)
  3. ^ Jackson, Vaughn (בנובמבר 1978). "Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent". Cell. 15 (3): 945–54. doi:10.1016/0092-8674(78)90278-7. PMID 569554. נבדק ב-2010-03-13. {{cite journal}}: (עזרה)
  4. ^ Gilmour DS, Lis JT (באוגוסט 1985). "In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster". Molecular and Cellular Biology. 5 (8): 2009–18. PMC 366919. PMID 3018544. נבדק ב-2010-03-13. {{cite journal}}: (עזרה)
  5. ^ Viens A et al. "Use of protein biotinylation in vivo for chromatin immunoprecipitation" (2004) Analytical Biochemistry 325(1):68-76 [1]
  6. ^ Detecting protein-DNA interactions ... [Proc Natl Acad Sci U S A. 1984] - PubMed - NCBI
  7. ^ In vivo interactions of RNA polymerase II with... [Mol Cell Biol. 1985] - PubMed - NCBI
  8. ^ Varshavsky A (בדצמבר 2008). "Discovery of cellular regulation by protein degradation". Journal of Biological Chemistry. 283 (50): 34469–89. doi:10.1074/jbc.X800009200. PMID 18708349. אורכב מ-המקור ב-2020-06-09. נבדק ב-2010-03-06. {{cite journal}}: (עזרה)
  9. ^ Solomon, Mark J; Larsen Pamela L; Varshavsky, Alexander. (ביוני 1988). "Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene". Cell. 53 (6): 937–47. doi:10.1016/S0092-8674(88)90469-2. PMID 2454748. נבדק ב-2010-03-06. {{cite journal}}: (עזרה)תחזוקה - ציטוט: multiple names: authors list (link)
  10. ^ Orlando V (במרץ 2000). "Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation". Trends in Biochemical Sciences. 25 (3): 99–104. doi:10.1016/S0968-0004(99)01535-2. PMID 10694875. נבדק ב-2010-03-14. {{cite journal}}: (עזרה)
  11. ^ Hebbes, Tim R; Thorne, Alan W; Crane-Robinson C. (במאי 1988). "A direct link between core histone acetylation and transcriptionally active chromatin". The EMBO Journal. 7 (5): 1395–402. PMC 458389. PMID 3409869. {{cite journal}}: (עזרה)תחזוקה - ציטוט: multiple names: authors list (link)
  12. ^ O'Neill, Laura P; Turner, Bryan M (בספטמבר 2003). "Immunoprecipitation of native chromatin: NChIP". Methods (San Diego, Calif.). 31 (1): 76–82. doi:10.1016/S1046-2023(03)00090-2. PMID 12893176. נבדק ב-2010-03-14. {{cite journal}}: (עזרה)תחזוקה - ציטוט: multiple names: authors list (link)
  13. ^ O'Neill, Laura P; VerMilyea, Matthew D; Turner, Bryan M (ביולי 2006). "Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations". Nature Genetics. 38 (7): 835–41. doi:10.1038/ng1820. PMID 16767102. {{cite journal}}: (עזרה)תחזוקה - ציטוט: multiple names: authors list (link)
  14. ^ Nelson, Joel D; Denisenko, Oleg; Sova, Pavel; Bomsztyk, Karol (2006). "Fast chromatin immunoprecipitation assay". Nucleic Acids Research. 34 (1): e2. doi:10.1093/nar/gnj004. PMC 1325209. PMID 16397291.{{cite journal}}: תחזוקה - ציטוט: multiple names: authors list (link)
  15. ^ Nelson, Joel D; Denisenko, Oleg; Bomsztyk, Karol (2006). "Protocol for the fast chromatin immunoprecipitation (ChIP) method". Nature Protocols. 1 (1): 179–85. doi:10.1038/nprot.2006.27. PMID 17406230.{{cite journal}}: תחזוקה - ציטוט: multiple names: authors list (link)
  16. ^ Nelson J, Denisenko O, Bomsztyk K (2009). "The fast chromatin immunoprecipitation method". Methods in Molecular Biology. 567: 45–57. doi:10.1007/978-1-60327-414-2_3. PMID 19588084.{{cite journal}}: תחזוקה - ציטוט: multiple names: authors list (link)
  17. ^ Dahl, John Arne; Collas, Philippe (באפריל 2007). "Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells". Stem Cells. 25 (4): 1037–46. doi:10.1634/stemcells.2006-0430. PMID 17272500. {{cite journal}}: (עזרה)תחזוקה - ציטוט: multiple names: authors list (link)
  18. ^ Dahl, John Arne; Collas, Philippe (2008). "A rapid micro chromatin immunoprecipitation assay (microChIP)". Nature Protocols. 3 (6): 1032–45. doi:10.1038/nprot.2008.68. PMID 18536650.{{cite journal}}: תחזוקה - ציטוט: multiple names: authors list (link)
  19. ^ Dahl, John Arne; Collas, Philippe (2009). "MicroChIP: chromatin immunoprecipitation for small cell numbers". Methods in Molecular Biology. 567: 59–74. doi:10.1007/978-1-60327-414-2_4. PMID 19588085.{{cite journal}}: תחזוקה - ציטוט: multiple names: authors list (link)
  20. ^ Flanagin, Steve ; Nelson, Joel D; Castner, David G; Denisenko, Oleg; Bomsztyk, Karol (בפברואר 2008). "Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events". Nucleic Acids Research. 36 (3): e17. doi:10.1093/nar/gkn001. PMC 2241906. PMID 18203739. {{cite journal}}: (עזרה)תחזוקה - ציטוט: multiple names: authors list (link)
  21. ^ Fullwood, Melissa J; Han, Yuyuan; Wei, Chia-Lin; Ruan, Xiaoan; Ruan, Yijun (בינואר 2010). "Chromatin interaction analysis using paired-end tag sequencing". Current Protocols in Molecular Biology. Chapter 21: Unit 21.15.1–25. doi:10.1002/0471142727.mb2115s89. PMID 20069536. {{cite journal}}: (עזרה)תחזוקה - ציטוט: multiple names: authors list (link)
  22. ^ Li, Guoliang; Fullwood, Melissa J; Xu, Han; Mulawadi, Fabianus Hendriyan; Velkov, Stoyan; Vega, Vinsensius; Ariyaratne, Pramila Nuwantha; Mohamed, Yusoff Bin; Ooi, Hong-Sain; Tennakoon, Chandana; Wei, Chia-Lin; Ruan, Yijun; Sung, Wing-Kin (בפברואר 2010). "ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing". Genome Biology. 11 (2): R22. doi:10.1186/gb-2010-11-2-r22. PMC 2872882. PMID 20181287. {{cite journal}}: (עזרה)תחזוקה - ציטוט: multiple names: authors list (link)
  23. ^ "ChIA-PET: Novel Method For 3-D Whole Genome Mapping Research". ScienceDaily. Agency for Science, Technology and Research (A*STAR), Singapore. 2009-11-08. נבדק ב-14 במרץ 2010. {{cite web}}: (עזרה)