אנרגיה קינטית
אֵנֶרְגִּיָּה קִינֵטִית או אנרגיית תנועה (באנגלית: Kinetic energy) היא האנרגיה בה ניחן גוף מתוקף תנועתו, והיא תלויה רק במסת הגוף ובמהירותו. בדינמיקה, השימוש באנרגיה קינטית מקל על החישובים. בהקשר זה, העבודה הכוללת שמושקעת בגוף שווה להפרש בין האנרגיה הקינטית במצב הסופי ובין האנרגיה הקינטית במצב ההתחלתי.
בתורת היחסות הפרטית, השקילות בין מסה לאנרגיה מובילה לזיהוי של אנרגיה קינטית עם גידול במסת הגוף כתוצאה מתנועה במהירות גבוהה. השימוש באנרגיה קינטית נפוץ גם בתחומים אחרים של הפיזיקה, כמו תרמודינמיקה ומכניקת הקוונטים. כך למשל, הטמפרטורה של גוף יכולה להיות מוסברת באמצעות האנרגיה הקינטית של המולקולות של הגוף.
בתהליכים רבים מנסה האדם לבצע המרה של אנרגיה פוטנציאלית לאנרגיה קינטית שאותה ניתן לנצל בצורה הרצויה לו. זה התהליך המתרחש בתחנות הכוח השונות ברחבי העולם, וההבדל בין מקורות אנרגיה שונים, המשמשים להפקת אנרגיה, מתבטא רק בצורתה של האנרגיה הפוטנציאלית. אנרגיה קינטית בתצורתה כאנרגיית רוח משמשת להפעלת טחנות רוח וטורבינות. כל גוף שנמצא בתנועה נושא אנרגיה קינטית, ולכן היא משתתפת בתהליכים בהם אנרגיה עוברת ממקום אחד לשני. כך למשל, הפוטונים המרכיבים את הקרינה האלקטרומגנטית נושאים אנרגיה קינטית.
מקור המילה קינטי במילה היוונית Κίνητικός (קינטיקוס) שמשמעותה "נמצא בתנועה". השימוש הראשון בביטוי "אנרגיה קינטית" מיוחס ללורד קלווין באמצע המאה ה-19.
היסטוריה
עריכההראשון שהבין את החשיבות של מכפלת המסה בריבוע המהירות היה גוטפריד לייבניץ, שבסוף המאה ה-17 הגה את המושג ויס ויוה ("כוח חי")[1]. לייבניץ טען שסכום "הכוחות החיים" עבור כל הגופים במערכת נתונה: , הוא גודל שחל עליו חוק שימור. אף על פי שכיום ידוע שאנרגיה קינטית לא בהכרח נשמרת, היה בכך ניסיון ראשוני לנסח את חוק שימור האנרגיה. עבודתו של לייבניץ עוררה התנגדות מצד אייזק ניוטון שטען, בעקבות רנה דקארט, כי התנע הוא גודל יסודי וחוק שימור התנע אמור להיות עיקרון מנחה במכניקה. ניוטון ותומכיו בהמשך המאה ה-18 סברו שלמושג "ויס ויוה" אין משמעות פיזיקלית.[דרוש מקור]
תומאס יאנג, בהרצאה שנשא בשנת 1807, היה הראשון שהשתמש במונח "אנרגיה" בהקשר של הגודל אולם, היו אלה גספאר גוסטב קוריוליס וז'אן-ויקטור פונסלה שהחלו להבין את הקשר בין עבודה מכנית לגודל , שנקרא בפי קוריוליס "כמות של עבודה" (בצרפתית: quantité de travail) ובפי פונסלה "עבודה מכנית" (travail mécanique). בעבודתם שהתפרסה על פני שני עשורים החל מ-1819, הם היו הראשונים שהשתמשו בחישובי אנרגיה ועבודה עבור יישומים הנדסיים. הדבר סלל את הדרך לשימוש בשיקולי אנרגיה גם בחישובים תרמודינמיים ולהתקדמות בתחום התאוריה הקינטית של הגזים, שנועדה להסביר את התכונות המקרוסקופיות של גזים תוך שימוש בשיקולי תנועה מולקולרית. כך למשל, לפי אחת ההגדרות של הטמפרטורה, גודלה יחסי לאנרגיה הקינטית הממוצעת של המולקולות או של האטומים המרכיבים את הגז.
הקשר בין עבודה לאנרגיה קינטית
עריכה- ערך מורחב – משפט עבודה-אנרגיה
במערכת מכנית, העבודה הכוללת הנעשית לאורך דרך מסוימת, על ידי כל הכוחות הפועלים על גוף, שווה להפרש בין האנרגיה הקינטית של הגוף במצבו הסופי לאנרגיה הקינטית במצבו ההתחלתי. אם העבודה מסומנת ב- והאנרגיה הקינטית ב- , אז:
משוואה זו יכולה לשמש כהגדרה של אנרגיה קינטית, ולהצטרף בכך להגדרה לפיה אנרגיה קינטית היא צורת אנרגיה הנובעת מתנועה בלבד. משוואה זו, המכונה עקרון עבודה-אנרגיה (Work-Energy principle), מאפשרת להבין את חשיבותה של האנרגיה הקינטית בחישובים מכניים. עבודה חיובית יכולה להתפרש כהשקעת אנרגיה בגוף על ידי כוח חיצוני, ועבודה שלילית מציינת איבוד אנרגיה על ידי הגוף. כך למשל, כוח החיכוך, הפועל על גוף שנע על פני משטח, יכול להאט את תנועתו של הגוף. אי לכך, כוח החיכוך מבצע בהכרח עבודה שלילית על הגוף שהוא פועל עליו.
לפי חוק שימור האנרגיה, האנרגיה הכוללת במערכת סגורה, שאין עליה השפעות חיצוניות, היא קבועה. בהיבט זה, עבודה חיובית הנעשית על גוף מייצגת העברת אנרגיה אל הגוף שמתפרשת כתוספת לאנרגיה הקינטית שלו, ואילו עבודה שלילית שמתבצעת על הגוף מציינת העברת אנרגיה ממנו לסביבה או לגוף אחר. בהתאם לנקודת מבט זו, כוח החיכוך גורם למעבר של אנרגיה קינטית מהגוף לסביבה והפיכתה לאנרגיית חום. באופן דומה, כוח הכבידה גורם לעליית האנרגיה הקינטית של גופים נופלים על חשבון האנרגיה הפוטנציאלית שלהם. לעומת זאת, האנרגיה הקינטית של גופים שנעים כלפי מעלה קטנה, בעוד שהאנרגיה הפוטנציאלית שלהם גדלה.
במערכות מסוימות מתקיים לא רק שימור אנרגיה אלא גם שימור אנרגיה קינטית, אך אין לראות בשימור האנרגיה הקינטית מקרה כללי או חוק טבע. דוגמה למערכת כזו היא התנגשות אלסטית שבה חוק שימור התנע ושימור האנרגיה הקינטית מאפשרים לחשב את מסלולם של הגופים לאחר ההתנגשות. באופן כללי, השימוש באנרגיה קינטית בחישובים יכול להיות נוח, משום שאנרגיה, בניגוד לכוח, היא גודל סקלרי, ובדרך כלל חישובים הנעשים תוך שימוש בסקלרים פשוטים יותר מאלו שמעורבים בהם וקטורים.
במכניקה לא יחסותית
עריכהגוף נקודתי
עריכהעבור גוף נקודתי שמסתו ומהירותו , האנרגיה הקינטית היא:
הנוסחה מתקבלת תוך שימוש בנוסחה המקשרת בין עבודה לאנרגיה קינטית. הואיל ואנרגיה קינטית תלויה בתנועה בלבד, הגיוני לדרוש שערכה יהיה אפס עבור גוף שנמצא במנוחה. נניח שכוח קבוע מופעל על גוף שנמצא במנוחה. אם הגוף עבר מרחק , אז העבודה שהכוח ביצע עליו שווה ל- . לפי החוק השני של ניוטון, , כאשר היא מסת הגוף, ו- היא תאוצתו. אם היא מהירותו הסופית של הגוף, אז:
עבור המקרה הכללי, שבו פועל כוח משתנה, יש להשתמש בהגדרה הכללית של העבודה. בהנחה שהמהירות ההתחלתית היא אפס, ולכן גם האנרגיה הקינטית ההתחלתית היא אפס, לפי החישוב מתקבל ביטוי זהה לאנרגיה הקינטית:
- .
בחישוב זה נעשה שימוש בביטויים הקינמטיים: , .
גוף לא נקודתי
עריכהעבור גוף לא נקודתי, או גוף שלא ניתן להתייחס אליו כאל גוף נקודתי, יש להתחשב הן בתנועת מרכז המסה של הגוף והן בסיבוב הגוף סביב מרכז המסה. במקרה זה, האנרגיה הקינטית מתחלקת לשניים. החלק הראשון שמתייחס לתנועת מרכז המסה נקרא אנרגיה קינטית קווית, והוא מבוטא כמקודם:
כאשר היא מהירות מרכז המסה.
החלק השני, המיוחד לגוף שסובב סביב צירו, נקרא אנרגיה קינטית זוויתית. אנרגיה זו מבוטאת באמצעות מומנט ההתמד ובאמצעות המהירות הזוויתית :
סך האנרגיה הקינטית של גוף לא נקודתי שווה ל:
במכניקה יחסותית
עריכהבתורת היחסות הפרטית הקשר בין מסה לאנרגיה מבוטא באמצעות הנוסחה המפורסמת E=mc². נוסחה זו קיבלה משמעות עמוקה בעקבות הגילוי שבתהליכים רבים בפיזיקה גרעינית, למשל ביקוע גרעיני והיתוך גרעיני, מסה אכן הופכת לאנרגיה. את הביטוי ההרסני ביותר של תופעה זו ניתן למצוא בפצצה גרעינית ובפצצת מימן. כאשר פיתח אלברט איינשטיין את נוסחת האנרגיה הקינטית הוא התחשב בשני תנאים: הביטוי היחסותי צריך להתקרב לביטוי הלא יחסותי עבור מהירויות נמוכות, והאנרגיה הקינטית צריכה להתאפס עבור מהירות אפס.
בהתאם לפיתוח של איינשטיין[2], הביטוי של האנרגיה הקינטית מורכב משני חלקים. אם היא מסת המנוחה של הגוף, היא מהירות האור בריק ו- הוא פקטור לורנץ שנתון על ידי:
אז האנרגיה הקינטית של הגוף היא:
עבור מהירויות קטנות באופן ניכר ממהירות האור, ביטוי זה נותן בקירוב מצוין את הביטוי הלא יחסותי של האנרגיה הקינטית. אפשר לראות זאת על ידי פיתוח טור טיילור מסדר ראשון עבור , או מסדר שני עבור ).
החלק השני בביטוי האנרגיה הקינטית, , הוא איבר קבוע שאינו תלוי במהירות. לאיבר זה אין משמעות פיזיקלית שכן בתהליכים פיזיקליים חשובים רק הפרשי האנרגיה בין שני מצבים. איינשטיין הכניס אותו על מנת להבטיח שהאנרגיה הקינטית תתאפס עבור מהירות אפס.
בנוסחה E=mc², המסה תלויה במהירות. למעשה, ניתן לרשום את האנרגיה הכוללת של הגוף בצורה הבאה:
האיבר הראשון הוא האנרגיה הקינטית של הגוף שתלויה במהירות, והאיבר השני הוא קבוע התלוי במסת המנוחה בלבד. הוא מכונה אנרגיית המנוחה של הגוף.
במכניקת הקוונטים
עריכהבמכניקת הקוונטים, האנרגיה הקינטית המסומנת באות נחשבת כאופרטור הפועל על פונקציית הגל. המשוואה המקשרת בין תנע לאנרגיה קינטית: , כאשר היא האנרגיה הקינטית, היא המסה ו- הוא התנע, יחד עם הגדרת אופרטור התנע, בעזרת אופרטור הגרדיאנט, בתור:
מאפשרים לזהות את אופרטור האנרגיה הקינטית עם:
ביטוי זה איפשר את פיתוח משוואת שרדינגר שמתארת את פעולת אופרטור האנרגיה על פונקציית הגל. בדומה לאנרגיה במכניקה קלאסית, אופרטור האנרגיה במכניקת הקוונטים הוא סכום אופרטור האנרגיה הקינטית ואופרטור האנרגיה הפוטנציאלית.
ראו גם
עריכהקישורים חיצוניים
עריכה- אנרגיה קינטית, באתר אנציקלופדיה בריטניקה (באנגלית)
- אנרגיה קינטית, עבודה והקשר ביניהם, באתר המרכז הארצי למורי הפיזיקה
- אנרגיה קינטית, באתר hyperphysics
- על ההיסטוריה של מושג האנרגיה בכלל והאנרגיה הקינטית בפרט, מתוך אתר physicsworld
- אנרגיה, באתר דעמדע – על סוגים שונים של אנרגיה, וביניהם אנרגיה קינטית
- אנרגיית תנועה, באתר BrainPOP ישראל
- אנרגיה קינטית, באתר "פיזיקה בקלות לבחינות הבגרות"
- אנרגיה קינטיתבאתר הספרייה הדיגיטלית (אורכב 07.10.2013 בארכיון Wayback Machine)
הערות שוליים
עריכה- ^ vis viva בוויקיפדיה באנגלית. מקור הביטוי בלטינית ומשמעותו "כוח חי".
- ^ תרגום של המאמר המקורי של איינשטיין מ-1905