
Cloud Haskell Semantics (DRAFT)

Well-Typed LLP

November 7, 2012

1 Introduction
Cloud Haskell brings Erlang-style concurrency to Haskell in the form of a library.1 The original publication [Epstein et al., 2011]
is a good introduction to Cloud Haskell, and is accompanied by an ever-growing number of resouces, collected on the
Haskell Wiki.2 The current document augments the original publication about Cloud Haskell by giving a precise
semantics to the Cloud Haskell primitives. It is meant as a reference, not an introduction.

The original Cloud Haskell paper stipulates that messages are “asynchronous, reliable, and buffered”, but does not
describe how this can be achieved. Understanding “reliable” to mean “reliable ordered” (or “TCP-like”), the reliability
of message delivery comes from the reliability of the underlying network protocol—up to a point.

The problem is that the underlying network protocol is connection-oriented, but Cloud Haskell is not. Intuitively,
when P sends a message to Q, we open a reliable-ordered connection from P to Q. Reliability of message delivery
now follows from reliability of the network protocol, until P somehow gets disconnected from Q. If P now sends
another message to Q, the implementation cannot simply reconnect: after all, some messages that were sent on the first
connection might not have been delivered. This means that P might send m1, m2, m3 to Q, but Q will receive m1, m3.3

One (non-)solution is for P to buffer all messages it sends to Q, and remove messages from this buffer only when Q
acknowledges that it received them. On a reconnect P must ask which message Q last received, and retransmit the rest.
This means that when P gets disconnected from Q, it must infinitely buffer all messages sent to Q (until a connection
is reestablished). However, infinite buffering is too strong a requirement; moreover, this is unsatisfactory because it
means implementing a reliable protocol on top of the underlying reliable network protocol. We would like a different
solution.

Instead, Cloud Haskell does not attempt to reconnect automatically, but provides a reconnect primitive which
gives programmers the option of reconnecting manually. This is an explicit acknowledgement from the programmer
that message loss might occur, and forces them to consider how such loss might be dealt with.

The semantics we present is based on [Svensson et al., 2010], which we will refer to the as the “Unified” semantics.
However, we will present the semantics in a more “Haskell” style following the semantics for STM [Harris et al., 2008].
It differs from the Unified semantics in that

1. We introduce an explicit notion of reconnecting (with potential message loss)

2. We simplify the semantics: we “flatten” sets of nodes of processes as sets of processes (but assume a mapping
from process identifiers to node identifiers), do not have per-process mailboxes (but only the system queue or
“ether”) and do not have an explicit concept of node controllers

Our semantics differs from the STM semantics in that we pretend that the Cloud Haskell Process monad is the top-
level monad, and do not consider the IO monad at all. Current imprecisions with respect to the “real” Cloud Haskell
are

1. We ignore the issue of serializability, other than to say that the semantics will get stuck when trying to send a
non-serializable payload; consequently, we do not formalize static

2. We do not formalize all Cloud Haskell primitives (merging of ports, “advanced messaging”, and others)

1http://hackage.haskell.org/package/distributed-process
2http://www.haskell.org/haskellwiki/Cloud Haskell
3Indeed, message passing in Erlang is ordered but unreliable for the same reason [Svensson and Fredlund, 2007].

1

JMK = V M 6= V
M→ V

EVAL
M→ N〈

P[M]pid;Q;B;M
〉
→
〈

P[N]pid;Q;B;M
〉ADMIN

return N >>= M→ M N BIND catch (return M) N → return M CATCH1
throw N >>= M→ throw N THROW catch (throw M) N → N M CATCH2

Figure 1: Administrative Transitions

3. Some of the concepts that we do formalize are lower-level concepts; for instance, the primitive spawn that we
formalize is asynchronous (following the Unified semantics); a synchronous construct can be derived.

2 Preliminaries
Cloud Haskell Processes run on nodes. Processes communicate by sending messages to each other (directly or using
typed channels). Processes can also send messages to nodes (for instance, a request to spawn or monitor a process).

We assume disjoint countable sets NodeId, ProcessId, and ChannelId, changed over by nid, pid and cid respec-
tively, and representing process identifiers, node identifiers, and (typed) channel identifiers. We assume the existence
of total functions

node : (ProcessId] ChannelId)→ NodeId

process : ChannelId→ ProcessId

and define
Identifier = NodeId] ProcessId] ChannelId

and let id range over Identifier.
We represent a process as a pair Mpid of a term M and a process ID pid. We will denote a set of processes as

Mpid ‖ · · · ‖ Npid′

A system 〈P ;Q;B;M〉 is a tuple containing a set P of processes, a system queue Q, a blacklist B, and a set of
monitors M. The set of monitors M is a set of tuples (idto, pidfr, nid, ref) which records that node nid knows that
process pidfr is monitoring idto (ref is the monitor reference). The system queue is a set of triples (idto, idfr, message)
of messages that have been sent but not yet processed. The blacklist records disconnections and is represented as a of
pairs (idto, idfr).

3 Semantics
We follow the STM semantics as closely as possible. The language is the same except for the primitives considered,
and we use the same concept of evaluation contexts:

value V ::= id | λx ·M | return M | M >>= N | throw M | catch M N |
expect | send pid M | spawn nid M | monitor id

term M, N ::= x | V | MN | · · ·

Evaluation E ::= [] | E >>= M | catch E M
context Ppid ::= E[]pid ‖ P

Indeed, the “administrative” transitions are identical (Figure 1).

3.1 Disconnect and Reconnect
Figure 2 gives the semantics for disconnecting and reconnecting. Rule DISCONNECT models random network dis-
connect between nodes nid1 and nid2. We assume that entire nodes get disconnected from each other, not individual
processes. Reconnecting however is on a per connection basis (RECON-EX). Connections to and from node controllers
can be implicitly reconnected (RECON-IM1 and RECON-IM2).

2

nid1 6= nid2

〈P ;Q;B;M〉 →
〈
P ;Q;B ∪ (nid1 × nid2);M

〉DISCONNECT

〈
P[reconnect idto]pidfr

;Q;B;M
〉
→
〈

P[return ()]pid;Q;B\(idto, pidfr);M
〉RECON-EX

〈
P ;Q;B, (nidto, idfr);M

〉
→ 〈P ;Q;B;M〉

RECON-IM1 〈
P ;Q;B, (idto, nidfr);M

〉
→ 〈P ;Q;B;M〉

RECON-IM2

where
nid ⊂ Identifier = {nid} ∪ {pid | node(pid) = nid} ∪ {cid | node(cid) = nid}

Figure 2: Disconnect and Reconnect

〈
P[send pidto M]pidfr

;Q;B;M
〉
→
〈

P[return ()]pidfr
;Q .B (pidto, pidfr, M);B;M

〉 SEND

idfr /∈ senders(Q)〈
P[expect]pidto

;Q, (pidto, idfr, M),Q′;B;M
〉
→
〈

P[return M]pidto
;Q,Q′;B;M

〉EXPECT

cid fresh process(cid) = pid〈
P[newChan]pid;Q;B;M

〉
→
〈

P[return (cids, cidr)]pid;Q;B;M
〉NEWCHAN

〈
P[sendChan cids

to M]pidfr
;Q;B;M

〉
→
〈

P[return ()]pidfr
;Q .B (cidto, pidfr, M);B;M

〉 SENDCHAN

pidfr /∈ senders(Q)〈
P[receiveChan cidr

to]pid;Q, (cidto, pidfr, M),Q′;B;M
〉
→
〈

P[return M]pid;Q,Q′;B;M
〉RECEIVECHAN

ref fresh〈
P[spawn nid M]pid;Q;B;M

〉
→
〈

P[return ref]pid;Q .B (nid, pid, spawn ref M);B;M
〉 SPAWN-ASYNC

pid /∈ senders(Q) pid′ fresh node(pid′) = nid

〈P ;Q, (nid, pid, spawn ref M),Q′;B;M〉 →
〈
P ‖ Mpid′ ;Q,Q′ .B (pid, nid, spawned ref pid′);B;M

〉 SPAWN-EXEC

where
Q .B (idto, idfr, M) = Q, (idto, idfr, M) if (idto, idfr) /∈ B
Q .B (idto, idfr, M) = Q otherwise

(.B) is only defined for serializable payloads.

Figure 3: Basic Primitives

3.2 Communication
The semantics for the basic primitives are listed in Figure 3. Once a connection has been blacklisted, no further
messages can be sent across that connection (until an explicit or implicit reconnect).

Message passing is ordered but only for a given sender and receiver; no ordering guarantees exist between messages
sent by different processes. For that reason rules EXPECT, RECEIVECHAN and SPAWN-EXEC choose the first message
of a randomly chosen sender.

Since the semantics is not type-driven, we represent typed channels simply as an identifier with an annotation
whether it is the send-end (cids) or the receive end (cidr) of the channel (rules NEWCHAN, SENDCHAN and RE-
CEIVECHAN).

Spawning finally is asynchronous. When process P spawns process Q on node nid (rule SPAWN-ASYNC) a mes-
sage is sent to node nid (which may, of course, never arrive). When the remote node receives the message and actually
spawns Q (rule SPAWN-EXEC) it sends a message back to P with Q’s process ID. In Cloud Haskell this primitive
is called spawnAsync, and the Cloud Haskell spawn primitive is defined in terms of spawnAsync (we do not
consider the synchronous version in this document).

3

nidfr = node(pidfr) nidto = node(idto) ref fresh〈
P[monitor idto]pidfr

;Q;B;M
〉
→
〈

P[return ref]pidfr
;Q .B (nidto, pidfr, monitor ref idto);B;M, (idto, pidfr, nidfr, ref)

〉MON-LOC

pidfr /∈ senders(Q)〈
P ;Q, (nidto, pidfr, monitor ref idto),Q′;B;M

〉
→
〈
P ;Q,Q′;B;M, (idto, pidfr, nidto, ref)

〉MON-REM

nidfr = node(pidfr) (idto, pidfr) ∈ B〈
P ;Q;B;M, (idto, pidfr, nidfr, ref)

〉
→
〈
P ;Q, (pidfr, idto, discon ref);B;M

〉MON-DIS

node(pid) = nid〈
(return ())pid ‖ P ;Q;B;M, (pid, pid′, nid, ref)

〉
→
〈
(return ())pid ‖ P ;Q .B (pid′, nid, died ref);B;M

〉MON-RET

node(pid) = nid〈
(throw M)pid ‖ P ;Q;B;M, (pid, pid′, nid, ref)

〉
→
〈
(throw M)pid ‖ P ;Q .B (pid′, nid, exc ref M);B;M

〉MON-THROW

node(pid) = nid pid /∈ P〈
P ;Q;B;M, (pid, pid′, nid, ref)

〉
→
〈
P ;Q .B (pid′, nid, unknown ref);B;M

〉MON-UNKNOWN

Figure 4: Monitoring

node(pid) = nid @ pid′, ref · (pid′, pid, nid, ref) ∈ M〈
(return ())pid ‖ P ;Q;B;M

〉
→ 〈P ;Q;B;M〉

TERMRET

node(pid) = nid @ pid′, ref · (pid′, pid, nid, ref) ∈ M〈
(throw M)pid ‖ P ;Q;B;M

〉
→ 〈P ;Q;B;M〉

TERMTHROW

Figure 5: Process Termination

3.3 Monitoring
When process P on node nidP wants to monitor process Q on node nidQ both nodes must be notified. The local
node it notified immediately, and a message is sent to to the remote node (rules MON-LOC and MON-REM). As with
all messages, the message to the remote node might be lost. When P is disconnected from Q it is the responsibility
of P’s local node nidP to notify P (MON-DIS); when Q terminates (MON-RET) or crashes (MON-THROW) it is the
responsibility of the remote node nidQ to notify P.

3.4 Process Termination
The rules for normal and abnormal process termination are defined in Figure 5. When a process crashes it dies silently,
unless monitors are setup.

4 Open Issues

4.1 Ordering of Monitor/Link Notifications
The semantics as described above, like the original Unified semantics, does not guarantee that messages send from
process P to process Q (SEND) are ordered with respect to the link or monitor notification sent when process P
terminates normally or abnormally (MON-RET, MON-THROW). This means that if process P does

receiveWait [
match $ \(Reply reply) -> ...

, match $ \(ProcessMonitorNotification ..) -> ...
]

4

and process Q does

send pidA (Reply reply)
// terminate or indeed throw an exception

then the semantics does not guarantee that the reply from process Q will arrive at process P before the monitor
notification; hence, this results in an (artificial) race condition in process P.

One possible solution is to regard such a link notification as a message from process Q to process P, which should
be ordered along with the other messages.

4.2 Ordering and Typed Channels
The situation is more tricky still than sketched above because we of typed channels. The semantics does not provide
ordering guarantees between messages sent directly to the process and messages sent on typed channels. That means
that even if we consider a link or monitor notification as a message sent to the process, to be ordered with other
messages sent to that process, it is still unordered with respect to messages sent on typed channels. This means that we
have similar race conditions4

A possible solution is to insist that all messages from process P to process Q are ordered, no matter how they are
sent. From a implementation point of view, this would entail the use of a single ordered network connection for all
messages from P to Q, rather than using an ordered connection per typed channel plus one for direct messages.

References
[Epstein et al., 2011] Epstein, J., Black, A. P., and Peyton-Jones, S. (2011). Towards Haskell in the cloud. In Proceed-

ings of the 4th ACM symposium on Haskell, Haskell ’11, pages 118–129, New York, NY, USA. ACM.

[Harris et al., 2008] Harris, T., Marlow, S., Jones, S. P., and Herlihy, M. (2008). Composable memory transactions.
Commun. ACM, 51(8):91–100.

[Svensson and Fredlund, 2007] Svensson, H. and Fredlund, L.-A. (2007). A more accurate semantics for distributed
erlang. In Proceedings of the 2007 SIGPLAN workshop on ERLANG Workshop, ERLANG ’07, pages 43–54, New
York, NY, USA. ACM.

[Svensson et al., 2010] Svensson, H., Fredlund, L.-Å., and Benac Earle, C. (2010). A unified semantics for future
Erlang. In Proceedings of the 9th ACM SIGPLAN workshop on Erlang, Erlang ’10, pages 23–32, New York, NY,
USA. ACM.

4Even ignoring the fact that we currently don’t even provide a way to wait for a message on a typed channel or a direct message.

5

