
Comparing spectrum based fault localisation against
test-to-code traceability links

Gulsher Laghari
University of Sindh, Jamshoro

Pakistan
gulsher.laghari@usindh.edu.pk

Kamran Dahri
University of Sindh, Jamshoro

Pakistan
kamran.dahri@usindh.edu.pk

Serge Demeyer
University of Antwerp and Flanders Make

Belgium
serge.demeyer@uantwerpen.be

Abstract—The recent shift towards automated software tests
stimulated research interest in fault localisation. Fault localisation
addresses the question which program elements need to be fixed
to repair a failing test. The current state of the art in that
field is named spectrum based fault localisation, which relies on
dynamic coverage information from both failing and passing test
cases to pinpoint the faulty program elements. This is in sharp
contrast with the naïve approach which extracts traceability links
between the test code and the program elements under test and
enumerates those until the faulty element is found. In this paper
we ask ourselves the question whether the state-of-the-art ap-
proach (spectrum based fault localisation) is so much better than
the naïve approach (test-to-code traceability). We demonstrate
on 178 defects from three representative projects in the recent
Defects4J dataset that spectrum based fault localisation does not
perform better than test-to-code traceability . This implies that
future improvements in spectrum based fault localisation should
also be compared against naïve approaches, such as test-to-code
traceability .

Index Terms—Debugging, Spectrum Based Fault Localisation,
Test to Code Traceability Links

I. INTRODUCTION

Software testing aims at discovering defects in a software.
In a typical software test, the test sets the particular state of
the given unit under test and verifies whether or not the state
corresponds with the expected state. The test fails when the
two states differ. As such, the test exposes a defect. To fix the
defect, the developer needs to search for its root cause and
location in the code.

Although testing discovers the presence of the defects, it
does not locate the defect to the exact location in the code [1].
However, the developer can already tag the method in the
test code as element under test, either by comments or via
specialised tools [1]. As such, when the test case fails, the
established traceability link can directly point to the faulty
method in the code. Even the research community has provided
the solutions to find the focal methods in the test code when
the test was written long before and its intent is not clear
during the maintenance [2], [3], [4].

Although establishing these simple traceability links (referred
to as test-to-code traceability later in this paper) can help link
the failing test to faulty methods, this may not always work.
For example, the fault may lie in the method that is invoked
by another method which is directly called from the test case.
Thus, there exists no direct traceability link between test to

code. Fault localisation is widely acknowledged to be one of the
more difficult and time consuming steps while fixing defects
and it is, therefore, a heavily investigated research topic [5].

To help developers in fault localisation, the research commu-
nity has forwarded the spectrum based fault localisation [5], [6],
[7], [8], [9]. Spectrum based fault localisation is an automated
fault localisation technique that assigns a suspiciousness to each
program element that indicates the likelihood of the program
element to be faulty and , based on the suspiciousness, ranks
the program elements with the aim to rank the faulty elements
on the top. The developer is then expected to search the faulty
elements starting from top ranked elements.

However, it is not known how the performance of spectrum
based fault localisation fares against such simple test-to-code
traceability . To the best of our knowledge, such evaluation
of fault localisation has not been done before. In this paper,
we perform a preliminary empirical evaluation to assess the
performance of spectrum based fault localisation against test-
to-code traceability . We establish that spectrum based fault
localisation does not outperform test-to-code traceability and
that it also misses for the defects where simple test-to-
code traceability also fails to locate the faulty methods. The
contributions of this paper are as follows.

1) We use an algorithm inspired by test naming conventions
to establish simple test-to-code traceability links.

2) We use test-to-code traceability to produce a ranked list
of methods involved in the failing test cases to pinpoint
the faulty methods.

3) We assess the performance of spectrum based fault
localisation against such simple test-to-code traceability .

The remainder of this paper is organised as follows. Section II
provides a motivating example how the simple test-to-code
traceability can quickly point to the faulty method. Section III
provides details on how spectrum based fault localisation works
and how we create simple test-to-code traceability links. Then,
Section IV describes the set-up of the empirical evaluation,
which naturally leads to Section V to report and interpret the
results. After discussing the related work in Section VI and
the threats to validity in Section VII, we conclude the paper
in Section VIII.

II. MOTIVATING EXAMPLE

To demonstrate the use of test-to-code traceability , consider
the example failing test case in Listing 1. Looking at the code
one can easily infer that the intent of the test case is to test the
method NumberUtils.createNumber(String) and
that when the test case fails one should look for the
fault in this method. Indeed, the defect is located in
NumberUtils.createNumber(String) as recorded in
Defects4J dataset. In such defects where simple test-to-code
traceability can easily point to the faulty method when test case
fails, automated fault localisation may not be needed at all. Yet,
the fault localisation techniques are expected to successfully
treat such easier defects. Hence, the motivation of this paper
is to assess the relative performance of spectrum based fault
localisation against such simple test-to-code traceability which
can quickly point to the faulty methods.

Listing 1. The test method in test class NumberUtilsTest in defect 3b in
Lang project

1 p u b l i c vo id testStr ingCreateNumberEnsureNoPrecisionLoss () {
2 S t r i n g shouldBeFloat = " 1.23 " ;
3 S t r i n g shouldBeDouble = " 3.40282354e+38 " ;
4 S t r i n g shouldBeBigDecimal = " 1.797693134862315759e+308 " ;
5
6 asser tTrue (NumberUti ls . createNumber (shouldBeFloat) i ns tanceo f F loa t) ;
7 asser tTrue (NumberUti ls . createNumber (shouldBeDouble) i ns tanceo f Double)

;
8 asser tTrue (NumberUti ls . createNumber (shouldBeBigDecimal) i ns tanceo f

BigDecimal) ;
9 }

III. SPECTRUM BASED FAULT LOCALISATION AND TEST TO
CODE TRACEABILITY

In this section we provide short details about the spectrum
based fault localisation and the simple algorithm we use to
establish simple test-to-code traceability .

Spectrum based fault localisation. Spectrum based fault
localisation is a lightweight automated fault localisation tech-
nique that uses dynamic coverage information from both failing
and passing test cases and statistical analysis of the coverage
to pinpoint the faulty elements. The coverage of an element is
summarised as hit-spectrum, which is a tuple of four values:
ef , ep, nf , np. Where ef and ep are the number of failing and
passing test cases where the element under test is executed
respectively. Similarly, nf and np are the number of failing
and passing test cases where the element under test is not
executed respectively.

To produce the ranked list of elements, the fault locator
function translates the hit-spectrum of the element under test
into its suspiciousness (the likelihood of the element under test
to be faulty).

In this paper we use GZoltar [10] to collect the coverage
information and use the Ochiai fault locator (Equation (1))
[11]. GZoltar is the standard implementation of spectrum based
fault localisation and is still used in recent evaluation of fault
localisation [9].

Ochiai =
ef√

(ef + nf)(ef + ep)
(1)

Test to code traceability. To establish simple test-to-code
traceability , we use a very simple algorithm inspired by the

TABLE I
DESCRIPTIVE STATISTICS FOR THE TEST TO CODE TRACEABILITY

ESTABLISHED IN PROJECTS USED IN EMPIRICAL EVALUATION

Project TCT exists TCT does not exist # Defects

Math 51 46 97
Lang 31 27 58
Chart 14 9 23

TOTAL 178 96 82

unit testing conventions. It is convention to name the test class
appending the word “Test" to the name of class under test
and the name of the test method (test case) starts with the
word “test" followed by the name of the method under test.
Consider the Listing 1 where the name of the test class is
NumberUtilsTest which tests the class NumberUtils.
Similarly, the test method name contains the name of the
method under test— createNumber(String).

To create test-to-code traceability links, we run all the
failing test cases in a faulty version of a project and for each
test case capture the method calls appearing in the test method.
We use AspectJ1 to capture the method calls and hence the
name of the called methods. Once the names of the methods
directly invoked by the test case are collected, we use above
naming guidelines to assign a matching score (suspiciousness)
to the method. Thus, the method which resembles more to
the test case is considered method under test and has the
highest suspiciousness. We use name similarity metric to
calculate the matching score between the project methods
and the test method (test case) [3]. Consider for example
method NumberUtils.createNumber(String) in
Listing 1. Although this is the only method involved
in the test case, it matches more to the test case
NumberUtilsTest.testStringCreateNumberEns-
ureNoPrecisionLoss(). Hence, when the test case fails
this is the highly suspicious method to look for the defect. We
adopt this simple algorithm to produce a ranked list of all the
methods that are directly invoked by the failing test cases that
expose a defect in the code.

Using the above algorithm on the defects from 3 projects in
Defects4J dataset (Section IV-A), we could establish test-to-
code traceability for certain defects. There are indeed cases
in Defects4J dataset where the defect is not located in the
methods which are not directly invoked from the failing test
cases.

IV. EMPIRICAL EVALUATION

In this section, we provide the details of empirical evaluation
on how does the performance of spectrum based fault localisa-
tion compare against the simple test-to-code traceability .
A. Dataset

For this empirical evaluation, we use real defects collected
by Just et. al. from open source java projects and organised
into a database called Defects4J2 [12]. Defects4J version 1.1.0

1https://www.eclipse.org/aspectj/
2http://defects4j.org

https://www.eclipse.org/aspectj/
http://defects4j.org

contains defects from 6 open source java projects and also
provides the meta information about each defect, such as the
source classes that are modified to fix the defect, the test cases
that expose the defect, and the test cases that trigger at least
one of the modified classes.

In our preliminary study, we select 3 representative projects
from Defects4J. The descriptive statistics of these 3 projects
are reported in Table I. In this evaluation, we use 178 defects
which are located inside methods or constructors and where
the ranked lists can be generated for both spectrum based fault
localisation and test-to-code traceability .

B. Evaluation Metrics

Fault localisation techniques produce a ranked list of
elements under test with the aim to rank the faulty units on
top of the list. Similarly, the test-to-code traceability also
produces the ranked list of elements under test. There exist
several metrics to evaluate such rankings produced by fault
localisation techniques. The relative measures, such as the
percentage of code that need or need not be inspected to
find the location of the defect are criticised in that they do not
represent real debugging activities [13]. However, contemporary
evaluations mostly favour absolute measures [14], [13]. The
most commonly adopted metrics are wasted effort, acc@n, and
mean average precision [13], [15], [16], [7]. Consequently,
we use these metrics to relatively assess the performance of
spectrum based fault localisation against such simple test-to-
code traceability .

To deal with defects spread over multiple locations, we
evaluate from the perspective of a best-case debugging scenario
as argued by Pearson et. al. [9]. In such a scenario identifying
one of the possible locations is good to understand and
consequently repair the defect. Indeed, once the first faulty
element is located it will help developers to find the remaining
ones [15].

Mean Wasted Effort (MWE) — Smaller is better. The mean
wasted effort is the simply the mean of the wasted effort
in all ranked lists. The wasted effort is an absolute measure
which indicates the effort wasted in searching the number of
non-faulty elements for the defect before actually reaching the
first faulty element. It is computed as follows:

wasted effort = m+
n

2
(2)

Where m is the number of elements which are ranked above
the the faulty element, yet they do not contribute in the defect;
and n is the number of non-faulty elements which are equally
ranked with the faulty element. This is used to deal with ties
in the ranked list.

acc@n — Higher is better. This is the count of all the faults
successfully localised in top-n positions in the ranked list.
Inspired by Le et al. [7], we also choose n ∈ {1, 3, 5}, thus
effectively creating three variants of the acc@n namely acc@1,
acc@3, and acc@5. It is not uncommon for two elements in
a ranked list sharing the same suspiciousness scores. Hence,
while computing the acc@n, we break the ties randomly.

Mean Average Precision (MAP) — Higher is better. The mean
average precision has traditionally been used in information
retrieval to evaluate the ranked lists and is also adopted for
studying Fault localisation. It takes all faulty elements into
account and emphasises recall over precision. Thus, it is suitable
in scenarios where developers search deep in the ranked list
to find more relevant faulty elements [15]. The mean average
precision is the mean of average precision in all ranked lists.
The average precision in a single ranked list is calculated as
following:

average precision =

M∑
i=1

P (i)× pos(i)

number of faulty methods
(3)

Where: i indicates the position of a method in the ranked list;
M is size of the ranked list (number of methods ranked); pos(i)
is a boolean indicating whether or not the method at ith position
in the ranked list is faulty; P(i) is the precision at ith position in
the ranked list, computed as P (i) = # faulty methods in top i

i .

We use several metrics together to evaluate fault localisation
in several contexts. Wasted effort does not normalise the rank
of faulty methods with respect to total number of methods
in the program. Thus, it is inline with recommendations of
Parnin et. al. [14] that for the fault localisation to be useful for
developers the aim should be to improve absolute rank rather
than percentage rank. In their study, they found that developers
switched to other means of debugging when they did not find
faulty statements within the first few top positions in the ranked
list. The same concerns are also addressed by acc@n. However,
when developers are interested to search deep in the ranked list
to find more relevant faulty methods, mean average precision is
suitable in this context [15]. Improving mean average precision
may also imply the fault localisation to be useful for automated
fault repair techniques [17] which repair a fault by modifying
potentially faulty program elements, starting from the top of
the ranked list, in a brute-force manner until a valid patch is
generated.

C. Experimental Protocol

To assess the spectrum based fault localisation performance
against the test-to-code traceability , we use the same faulty
version of each project and produce the ranked list of methods
with both spectrum based fault localisation and test-to-code
traceability . As such, we obtain ranked lists for each of the 178
defects from the three representative projects from Defects4J
dataset. Then we compare the two respective ranked lists. We
use five different metrics for this comparison: Mean Average
Precision (MAP), Mean Wasted Effort (MWE) and acc@1,
acc@3, and acc@5.

Research Questions. In this evaluation, we address following
research questions.

RQ1. Relative Performance. Is spectrum based fault local-
isation relatively better than test-to-code traceabil-
ity?
Motivation. This is a very fundamental question where

we are interested to establish the overall relative

performance of spectrum based fault localisation against
the test-to-code traceability . This establishes whether
or not the spectrum based fault localisation is actually
better than simple test-to-code traceability algorithm
which may also pinpoint the defects.

RQ2. Worst Case Performance. Can spectrum based fault
localisation compensate in the worst case scenarios for
test-to-code traceability?
Motivation. Here we evaluate how the spectrum based

fault localisation treat the defects where simple test-to-
code traceability does not help locate the defect. Since
the failing test case does not directly invoke the faulty
method and it is invoked down the call graph, such
defects are comparatively hard to deal and this is where
the spectrum based fault localisation is truly needed to
pinpoint the defects.

V. RESULTS AND DISCUSSION

In this section, we summarise the findings of this empirical
study.

RQ1. Relative Performance. Is spectrum based fault local-
isation relatively better than test-to-code traceability?

To answer this RQ, we take the subset of the defects
where the test-to-code traceability directly points to the faulty
methods i.e. the defects where at least one of the failing
test cases directly triggers the faulty method. We take the
ranked lists produced by test-to-code traceability and spectrum
based fault localisation for these defects. Then compare how
spectrum based fault localisation fare against the test-to-code
traceability .

Table II shows the relative performance of spectrum based
fault localisation. We immediately notice that the test-to-code
traceability outperforms spectrum based fault localisation for
all the evaluation metrics in all three projects. It is only for
the metrics mean average precision the spectrum based fault
localisation is better and acc@3 where it is equal to test-
to-code traceability in Chart project. However, overall the
spectrum based fault localisation is not any better than the
simple test-to-code traceability , although spectrum based fault
localisation exploits more coverage information from both
failing and passing test cases and applies statistical analysis.

Since the metric wasted effort precisely highlights how much
the developer effort is wasted when traversing the ranked
list to search for the faulty method, Table III provides more
insight to the distribution of the wasted effort metric. There,
again, we observe that the spectrum based fault localisation
is not any better than test-to-code traceability . The median
column indicates that the performance of spectrum based
fault localisation for 50% of the defects is almost the same
to test-to-code traceability . However, the 3rd quartile tells
that for 75% of the defects the performance of spectrum
based fault localisation even degrades compared to test-to-
code traceability .

This observation elicits a serious threat to validity to the eval-
uation of spectrum based fault localisation techniques. Any new

TABLE II
THE RELATIVE PERFORMANCE OF SPECTRUM BASED FAULT LOCALISATION

AGAINST SIMPLE TEST TO CODE TRACEABILITY OVER 96 DEFECTS.

Project Approach MWE MAP acc@1 acc@3 acc@5

Math TCT 2.08 0.6006 21 36 46
SFL 7.83 0.4817 20 34 37

Lang TCT 0.92 0.8417 23 30 31
SFL 2.03 0.7123 20 28 29

Chart TCT 1.93 0.6330 6 10 13
SFL 4.25 0.6476 8 10 10

TABLE III
THE DISTRIBUTION OF WASTED EFFORT METRIC FOR SPECTRUM BASED

FAULT LOCALISATION AND SIMPLE TEST TO CODE TRACEABILITY OVER 96
DEFECTS.

Project Approach Min Max Median 3rd Quartile

Math TCT 0.5 7 0.5 3.5
SFL 0.5 87.5 0.5 7

Lang TCT 0.5 3.5 0.5 1.25
SFL 0.5 18.5 0.5 1.50

Chart TCT 0.5 5.5 1.5 3.25
SFL 0.5 30.5 0.75 3.88

spectrum based fault localisation techniques employing heavy
machine learning and information retrieval apparatus should
demonstrate that these techniques at least perform far more
better than simple test-to-code traceability to compensate for
their inherent complexity and machine cycles.

Spectrum based fault localisation does not per-
form any better than test-to-code traceability.
For simple defects where the failing test case
directly interact with the faulty method, the test-
to-code traceability is far more better to quickly
pinpoint to the faulty method.

RQ2. Worst Case Performance. Can spectrum based fault
localisation compensate in the worst case scenarios for test-
to-code traceability?

To answer this RQ, we take the subset of the defects where
the test-to-code traceability does not directly point to the
faulty methods i.e. the defects where the faulty method is
buried down the call graph and is not immediately involved in
the test case. Indeed, such defects are hard to locate and the
spectrum based fault localisation is expected to perform better
for these defects.

Table IV provides the details about the performance of
spectrum based fault localisation for defects in Chart project
where test-to-code traceability fails to pinpoint the faulty
methods. The highlighted rows indicate that the spectrum based
fault localisation works with only 2 of 9 defects where simple
test-to-code traceability fails to locate the faulty methods. We

TABLE IV
THE PERFORMANCE OF SPECTRUM BASED FAULT LOCALISATION IN

DEFECTS IN CHART PROJECT WHERE SIMPLE TEST TO CODE TRACEABILITY
DOES NOT DIRECTLY POINT TO FAULTY METHODS.

Defect ID WE AP acc@1 acc@3 acc@5

2 43 0.0326 0 0 0
4 46 0.0208 0 0 0
5 1.5 0.5 0 1 1
7 17.5 0.0345 0 0 0

13 10 0.0526 0 0 0
14 6.5 0.2583 0 1 1
15 95 0.0194 0 0 0
25 600 0.002 0 0 0
26 81 0.0161 0 0 0

TABLE V
THE PERFORMANCE OF SPECTRUM BASED FAULT LOCALISATION IN
DEFECTS WHERE SIMPLE TEST TO CODE TRACEABILITY DOES NOT

DIRECTLY POINT TO FAULTY METHODS.

Project # defects without traceability # successfully treated defects

Math 46 11
Lang 27 18
Chart 9 2

Total 82 31

omit the details for the other 2 projects and rather provide the
abstract summary in Table V. We mark the defect is successfully
treated when either the faulty method appears in at least top 5
rank (i.e. acc@5 = 1) or the wasted effort is close to 5. Similarly,
the spectrum based fault localisation does not successfully treat
the defects in Math project: it only works for 11 / 46 (24%)
defects. However, for Lang project its performance is acceptable
where it works for 18 / 27 (67%) defects. We conclude, however,
that overall spectrum based fault localisation also misses the
defects where simple test-to-code traceability fails.

This observation has the implication for improved spectrum
based fault localisation techniques in that these should be
evaluated against simple test-to-code traceability and should
work for the defects where the faulty methods are berried down
in long call graphs and are not easily detectable.

Spectrum based fault localisation does not per-
form well for the defects where simple test-to-
code traceability also fails to locate the faulty
methods.

VI. RELATED WORK

Spectrum based fault localisation. The very seminal
work on spectrum based fault localisation was provided as
a tool called Tarantula [18]. Later, several other researchers
contributed to increase the effectiveness of spectrum based
fault localisation, Some researchers attempted to find the best
performing fault locator [19], [20], [21].

Other researchers investigated to change the hit-spectrum to
boost the performance of spectrum based fault localisation [22],
[6], [7], [8], [23].

To the best of our knowledge the evaluations of these
spectrum based fault localisation techniques do not compare
their performance against test-to-code traceability links.

Test to code traceability. To support the developers to mark
the method under test when writing the test code, Bouillon
et. al. provided a tool called EZUNIT. EZUNIT is an Eclipse
IDE plugin that uses Java annotations to mark the method
under test. It also provides a list of all methods the test method
potentially calls using a static call graph analysis of the test
method. This may be specifically useful when writing the test
code.

However, during the maintenance when the test code already
exits and there exist no such links, the researchers have provided
solutions to create such links. Rompaey and Demeyer did an
empirical evaluation to identify classes under test via Naming
Convention, Last Call Before Assert, Latent Semantic Indexing,
and Co-evolution methods [2] Qusef et. al. provide SCOTCH+
that automatically creates the traceability links between tests
and tested classes using dynamic sliding and textual analysis
of source code [3].

Ghafari et. al. proposed an approach to create traceability at
even lower granularity i.e to automatically identify the focal
method under test [4]. Focal methods are the core of a test
case which change the object’s state and are primarily checked
in assertions.

These traceability links between test cases and the code,
either marked by developers or created automatically, can
serve best to locate the faulty methods when these test cases
expose the defect in the code. Thus, in this paper we evaluate
whether or not the spectrum based fault localisation techniques
outperform these simple test-to-code traceability links.

VII. THREATS TO VALIDITY

We identify the factors that may affect the validity of our
results and the actions we took to reduce or alleviate the risk.

For the construct validity, we ensure that our algorithm
to establish test-to-code traceability is consistent to adopted
testing naming conventions. Many open source projects follow
these conventions, so the risk is very small.

Although we select 3 representative projects from Defects4J,
the risk to external validity exists. The results and claims may
not be generalisable to other projects in Defects4J and also the
projects in other datasets.

Lastly, for reliability validity, we use GZoltar tool which
is also used in many other spectrum based fault localisation
evaluations. There the risk is also very small. Moreover, we use
AspectJ to implement the test-to-code traceability algorithm.
Although the code is thoroughly checked for errors, any
dormant defects in the implementation may slightly affect
the results.

VIII. CONCLUSION

Automated fault localisation including spectrum based fault
localisation is widely studied and is an active area of the

research to help developers quickly locate the root cause of a
defect when the the tests expose the defect in the code.

Although spectrum based fault localisation can be helpful, for
some defects the simple test-to-code traceability can precisely
point to the method under test which may be potentially faulty
one. Up until now, the spectrum based fault localisation has
not been compared with such simple test-to-code traceability .
In this paper, we have performed a preliminary empirical
evaluation to assess the performance of spectrum based fault
localisation against test-to-code traceability .

We conclude that, at least for three representative projects
from Defects4J, spectrum based fault localisation does not
outperform test-to-code traceability , moreover it does not
successfully treat the the defects where simple test-to-code
traceability also fails to locate the faulty methods.

This has the implication for future research in the spectrum
based fault localisation. Future improved spectrum based fault
localisation techniques should be evaluated against test-to-
code traceability and researchers should demonstrate that their
techniques work better than simple test-to-code traceability .
Moreover, these techniques should also work for the defects
where test-to-code traceability can not point to the faulty
methods.

REFERENCES

[1] P. Bouillon, J. Krinke, N. Meyer, and F. Steimann, “Ezunit: A framework
for associating failed unit tests with potential programming errors,” in
Agile Processes in Software Engineering and Extreme Programming.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 101–104.

[2] B. V. Rompaey and S. Demeyer, “Establishing traceability links between
unit test cases and units under test,” in 2009 13th European Conference
on Software Maintenance and Reengineering, March 2009, pp. 209–218.

[3] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and D. Binkley,
“Recovering test-to-code traceability using slicing and textual analysis,”
J. Syst. Softw., vol. 88, pp. 147–168, Feb. 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2013.10.019

[4] M. Ghafari, C. Ghezzi, and K. Rubinov, “Automatically identifying focal
methods under test in unit test cases,” in 15th IEEE International Working
Conference on Source Code Analysis and Manipulation, 2015.

[5] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, Aug. 2016.

[6] G. Laghari, A. Murgia, and S. Demeyer, “Fine-tuning spectrum based
fault localisation with frequent method item sets,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2016. New York, NY, USA: ACM, 2016, pp. 274–
285. [Online]. Available: http://doi.acm.org/10.1145/2970276.2970308

[7] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
ser. ISSTA 2016. New York, NY, USA: ACM, 2016, pp. 177–188.
[Online]. Available: http://doi.acm.org/10.1145/2931037.2931049

[8] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics to
improve fault localization,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2017. New York, NY, USA: ACM, 2017, pp. 273–283. [Online].
Available: http://doi.acm.org/10.1145/3092703.3092717

[9] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the 39th International Conference on Software

Engineering, ser. ICSE ’17. Piscataway, NJ, USA: IEEE Press, 2017,
pp. 609–620. [Online]. Available: https://doi.org/10.1109/ICSE.2017.62

[10] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: An eclipse
plug-in for testing and debugging,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2012. New York, NY, USA: ACM, 2012, pp. 378–381. [Online].
Available: http://doi.acm.org/10.1145/2351676.2351752

[11] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A
practical evaluation of spectrum-based fault localization,” Journal of
Systems and Software, vol. 82, no. 11, pp. 1780–1792, Nov. 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2009.06.035

[12] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing and
Analysis, ser. ISSTA 2014. New York, NY, USA: ACM, 2014, pp. 437–
440. [Online]. Available: http://doi.acm.org/10.1145/2610384.2628055

[13] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity
and value of empirical assessments of the accuracy of coverage-
based fault locators,” in Proceedings of the 2013 International
Symposium on Software Testing and Analysis, ser. ISSTA 2013. New
York, NY, USA: ACM, 2013, pp. 314–324. [Online]. Available:
http://doi.acm.org/10.1145/2483760.2483767

[14] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ser. ISSTA ’11. New
York, NY, USA: ACM, 2011, pp. 199–209. [Online]. Available:
http://doi.acm.org/10.1145/2001420.2001445

[15] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving
bug localization using structured information retrieval,” in 2013 28th
IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, November 2013, pp. 345–355.

[16] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in 2014 IEEE International Conference
on Software Maintenance and Evolution, ser. ICSME 2014. IEEE,
September 2014, pp. 191–200.

[17] J. Xuan, M. Martinez, F. DeMarco, M. Clément, S. L. Marcote,
T. Durieux, D. L. Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Transactions on
Software Engineering, vol. 43, no. 1, pp. 34–55, January 2017.

[18] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of the 24th
International Conference on Software Engineering, ser. ICSE ’02.
New York, NY, USA: ACM, 2002, pp. 467–477. [Online]. Available:
http://doi.acm.org/10.1145/581339.581397

[19] Lucia, D. Lo, L. Jiang, and A. Budi, “Comprehensive evaluation of
association measures for fault localization,” in 2010 IEEE International
Conference on Software Maintenance, ser. ICSM 2010. IEEE, September
2010, pp. 1–10.

[20] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for
spectra-based software diagnosis,” ACM Trans. Softw. Eng. Methodol.,
vol. 20, no. 3, pp. 11:1–11:32, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2000791.2000795

[21] S. Yoo, “Evolving human competitive spectra-based fault localisation
techniques,” in Proceedings of the 4th International Conference
on Search Based Software Engineering, ser. SSBSE’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 244–258. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33119-0_18

[22] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight defect
localization for java,” in Proceedings of the 19th European
Conference on Object-Oriented Programming, ser. ECOOP’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 528–550. [Online]. Available:
http://dx.doi.org/10.1007/11531142_23

[23] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-based
fault localization using pagerank,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2017. New York, NY, USA: ACM, 2017, pp. 261–272.
[Online]. Available: http://doi.acm.org/10.1145/3092703.3092731

http://dx.doi.org/10.1016/j.jss.2013.10.019
http://doi.acm.org/10.1145/2970276.2970308
http://doi.acm.org/10.1145/2931037.2931049
http://doi.acm.org/10.1145/3092703.3092717
https://doi.org/10.1109/ICSE.2017.62
http://doi.acm.org/10.1145/2351676.2351752
http://dx.doi.org/10.1016/j.jss.2009.06.035
http://doi.acm.org/10.1145/2610384.2628055
http://doi.acm.org/10.1145/2483760.2483767
http://doi.acm.org/10.1145/2001420.2001445
http://doi.acm.org/10.1145/581339.581397
http://doi.acm.org/10.1145/2000791.2000795
http://dx.doi.org/10.1007/978-3-642-33119-0_18
http://dx.doi.org/10.1007/11531142_23
http://doi.acm.org/10.1145/3092703.3092731

	Introduction
	Motivating Example
	Spectrum based fault localisation and Test to code traceability
	Empirical Evaluation
	Dataset
	Evaluation Metrics
	Experimental Protocol

	Results and Discussion
	Related Work
	Threats to Validity
	Conclusion
	References

