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Fault localisation

Fault Localisation an important step in the Debugging
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Fault localisation
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2. Program Spectrum

UUT,; = (ef, ep, ng; np)

ef= number of failing test cases that execute the UUT

ep = number of passing test cases that execute the UUT

ny= number of failing test cases that do not execute the UUT

np = number of passing test cases that do not execute the UUT
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2. Program Spectrum

Test Coverage Matrix
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3. Ranking

Suspiciousness of UUT
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3. Ranking
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3. Ranking
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3. Ranking
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3. Ranking

Suspiciousness of UUT

Similarity

Coefficient
UUT, 1 0 1 0
UUTN XN,1 XN,m XN,m+1 AN




ﬁ

Spectrum Based Fault Localisation (The Problem)

Context: when the UUT is a method

public void method(){

methodA ()

S5 methodB ()
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Spectrum Based Fault Localisation (The Problem)

Context: when the UUT is a method

public void method(){

[ Package Explorer gfu JUnit 3 |E| B

O o e®REl @R m E~ Y
Finished after 0,173 seconds

Runs: 2/2 B Errors: 0 B Failures: 2

4 [ com.ontestautomation.selenium.objectmap.ObjectMap
g testObjectMap (0,005 s)
gis'__] testGetLocator (0,000 5)
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Spectrum Based Fault Localisation (The Problem)

Context: when the UUT is a method

public void method() {

(5 Project Explorer | £ Package Explorer‘ fs Hierarchy‘n‘u JUnit zg =0
Finished after 3.603 seconds £ Q g v
Runs: 2/2 B Errors: 0 B Failures: 0

~ ™ com.example.helloandroid test HelloAndroidTest [Runner: JUnit 3] (3.768 s)
g/ testPreConditions (1,883 s)
dl testText (1.885 s)

= Failure Trace
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Context: when the UUT is a method

public void method(){

methodA ()

methodB ()

1f(condition){
return
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Context: when the UUT is a method
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Spectrum Based Fault Localisation (The Solution)

Context: when the UUT is a method
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Context: when the UUT is a method
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Context: when the UUT is a method
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Context: when the UUT is a method
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Spectrum Based Fault Localisation (The Solution)

Context: when the UUT is a method

Program

method method
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(Closed Itemset mining algorithm)
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Context: when the UUT is a method

Intuition

A method whose call sequences differ in failing
and passing test cases is more suspicious
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Project™ # of versions LOC # of faults
NanoXML 4 7646 16
|Meter 2 43400 3

* Downloaded from Software-artifact Infrastructure Repository (http://sir.unl.edu)

e One fault at a time

* Single failing and all passing test cases
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Evaluation metric

Wasted effort

Ranked list of
program elements
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Total 354 rankings
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