Improving Spectrum Based
Fault Localisation Techniques

Gulsher Laghari, Alessandro Murgia and Serge Demeyer
BENEVOL 2015 - December 4,2015

) Ansymo —
& Antwerp Systems & Software Modelling Universiteit
N/ University of Antwerp

Antwerpen

Overview

ch
® g
CHANGES >
vy

. U™ o
> 1 ' 4 -

Fault localisation

Fault Localisation an important step in the Debugging

return p;

¥

throw new NoSuchElementException();

—

Fault localisation

Which Classes to e g
Rrogram

look at? -
OOK 4 7 nteger“ ext() {
= plength - 1; 1 >= 0;

return p;

}

throw new NoSuchElementException();

—

Fault localisation

| . < J\ rogram {
Which Methods to pnext() {

look at? = plength - 1; 1 >= 0;

return p;

}

throw new NoSuchElementException();

—

Fault localisation

public <
publi f"tege““ ext() {
fo (lﬂt 1 = plength - 1; 1 >= 0;

++p[i] A0

W o wgzar(0);
else- | ~\
return p; | -

¥

throw new NoSuchElementException();

Which Statements
to look at?

—

ﬁ
Spectrum Based Fault Localisation

. Inpu

Ranked list of

| program elements
Faulty j | Run Tests and
Program 5 Collect traces

Build Program
Spectrum

Rank Program
Elements

Spectrum Based Fault Localisation

Ranked list of
program elements

Spectrum Based Fault Localisation

| . Trace Collection

Unit Under Test (UUT)

Spectrum Based Fault Localisation

| . Trace Collection

Unit Under Test (UUT)

)
s
e

ﬁ
Spectrum Based Fault Localisation

| . Trace Collection

Unit Under Test (UUT)

)
o
e

Spectrum Based Fault Localisation

| . Trace Collection

Unit Under Test (UUT)

i
Spectrum Based Fault Localisation

2. Program Spectrum

UUT,; = (ef, ep, ng; np)

ef= number of failing test cases that execute the UUT

ep = number of passing test cases that execute the UUT

ny= number of failing test cases that do not execute the UUT

np = number of passing test cases that do not execute the UUT

—

ﬁ
Spectrum Based Fault Localisation

2. Program Spectrum

Test Coverage Matrix

Program Spectrum

| ep | Mf | Np

UUT, | X

1,m 1, m+1 1,n

UUTy | X

N,m N,m+1 N,n

ﬁ
Spectrum Based Fault Localisation

2. Program Spectrum

Test Coverage Matrix

Program Spectrum

| ep | Mf | Np

UUT, ol x

UUTy | X

ﬁ
Spectrum Based Fault Localisation

2. Program Spectrum

Test Coverage Matrix

Program Spectrum

ep | ¢ | Np
N\ N
X (o)
e "

UUTy | X

ﬁ
Spectrum Based Fault Localisation

2. Program Spectrum

Test Coverage Matrix

Program Spectrum

ﬁ
Spectrum Based Fault Localisation

3. Ranking

Suspiciousness of UUT

Program Spectrum

 f lep| Mf [Np

Uuty| X tm | Mmet| - 1n [0,1]

UUTN X N,m N, m+1 N.n

ﬁ
Spectrum Based Fault Localisation

3. Ranking

Suspiciousness of UUT

Program Spectrum

®f [ep| M | Np
TN
(uuT, »(1 1 1) Tl 0
UUTN XN,1 XN,m XN,m+1 XN,n

ﬁ
Spectrum Based Fault Localisation

3. Ranking

Suspiciousness of UUT

Program Spectrum

®f [ep| M | Np
(WT) oI 0 Ximer| o | Xy
UUTN XN,1 XN,m XN,m+1 XN,n

ﬁ
Spectrum Based Fault Localisation

3. Ranking

Suspiciousness of UUT

Program Spectrum

 f lep| Mf [Np

ﬁ
Spectrum Based Fault Localisation

3. Ranking

Suspiciousness of UUT

Similarity

Coefficient
UUT, 1 0 1 0
UUTN XN,1 XN,m XN,m+1 AN

ﬁ

Spectrum Based Fault Localisation (The Problem)

Context: when the UUT is a method

public void method(){

methodA ()

S5 methodB ()

ault : —

(wrong tondition) 1t ((CondlthID) {
return

Spectrum Based Fault Localisation (The Problem)

Context: when the UUT is a method

public void method(){

[Package Explorer gfu JUnit 3 |E| B

O o e®REl @R m E~ Y
Finished after 0,173 seconds

Runs: 2/2 B Errors: 0 B Failures: 2

4 [com.ontestautomation.selenium.objectmap.ObjectMap
g testObjectMap (0,005 s)
gis'__] testGetLocator (0,000 5)

< | i | »

—3! =
P

= Failure Trace

39 java.lang.AssertionError: Not yet implemented
= at com.ontestautomation.selenium.objectmap.ObjectMapT

—

ﬁ

Spectrum Based Fault Localisation (The Problem)

Context: when the UUT is a method

public void method() {

(5 Project Explorer | £ Package Explorer‘ fs Hierarchy‘n‘u JUnit zg =0
Finished after 3.603 seconds £ Q g v
Runs: 2/2 B Errors: 0 B Failures: 0

~ ™ com.example.helloandroid test HelloAndroidTest [Runner: JUnit 3] (3.768 s)
g/ testPreConditions (1,883 s)
dl testText (1.885 s)

= Failure Trace
{

ﬁ

Spectrum Based Fault Localisation (The Problem)

Context: when the UUT is a method

public void method(){

methodA ()

methodB ()

1f(condition){
return

ﬁ

Spectrum Based Fault Localisation (The Problem)

Context: when the UUT is a method

Program

Coverage method M method

ﬁ

Spectrum Based Fault Localisation (The Problem)

Context: when the UUT is a method

Program

Coverage method M method

Test Coverage Matrix

Program Spectrum

ep | M | Mp

ﬁ

Spectrum Based Fault Localisation (The Solution)

Context: when the UUT is a method

Method P

| | J i
- Call Sequences | | i Coveraseii |
M M

—

ﬁ

Spectrum Based Fault Localisation (The Solution)

Context: when the UUT is a method

Program

method

method

public voI® method() {
methodC methodB methodA

—» methodA()

methodB ()

1f(condition){
return

e

ﬁ

Spectrum Based Fault Localisation (The Solution)

Context: when the UUT is a method

Program

method method

method method method

method method method

method method method

—

ﬁ

Spectrum Based Fault Localisation (The Solution)

Context: when the UUT is a method

Program

method

N N—
method method) method method method method

Test Coverage Matrix Test Coverage Matrix Test Coverage Matrix

Program Spectrum Program Spectrum
e | ep | M | mp e MM

uuTy X1.1 X1,m X1.m*1 X1,n uuTy X1.1 X1,m X1.m*1 X1,n uuTy X1,1 X1,m X1,m«‘1 X1,n

method

method

UuTy XN,1 XN.m XN,m+1 XN.n uuTy XN,1 XN.m XN,m+1 XN.n uuTy XN,1 XN.m XN.m+1 XN,n

ﬁ

Spectrum Based Fault Localisation (The Solution)

Context: when the UUT is a method

Program

method method

method @ n Frequent Call Sequences
(Closed Itemset mining algorithm)

/

Test Coverage Matrix Test Coverage Matrix Test Coverage Matrix

Program Spectrum
e | e | " | mp
uuTy X1.1 X1,m X1.m*1 X1,n

111111111111

ﬁ

Spectrum Based Fault Localisation (The Solution)

Context: when the UUT is a method

Intuition

A method whose call sequences differ in failing
and passing test cases is more suspicious

e
Experimental Setup |/2

Project™ # of versions LOC # of faults
NanoXML 4 7646 16
|Meter 2 43400 3

* Downloaded from Software-artifact Infrastructure Repository (http://sir.unl.edu)

e One fault at a time

* Single failing and all passing test cases

—

e
Experimental Setup 2/2

Evaluation metric

Wasted effort

Ranked list of
program elements

ﬁ
Results and Discussion - |/2

Total 354 rankings

Average Wasted effort

Call Sequence Coverage

o | —_—
method method © | — call Sequence method
o | Coverage method ’
O
mean 2.3 22.2 - .
| - O])
g S
Std. Dev 1.1 14.9 © S ‘
U p—
o @
4{7)' —_
s Q -
z « —
(@) | —_
— _
o - =

0 50 100 150 200 250 300 350
Ranking

—

e
Results and Discussion - 2/2

Total 354 rankings

O] —_
©
— Call Sequence method I
Coverage method _
s
O 5 .
3 @ |
U) -
© O -
S QA o
S ottt e -g— —
o - :
| | | | |
0 100 177 (50%) 300 1354
Ranking

—

ﬁ
Summar

— L
Spectrum Based Fault Localisation Spectrum Based Fault Localisation (The Problem)

2.Analyse 3. Output Context: when the UUT is a method
Ranked list of
Faulty \ Run Tests and
—_— o Collect traces p

program elements
Java o

A
\
A Coverage

Test Coverage Matrix

Program

method method method

——
Build Program L]

Spectrum

P
A:'
@ 1“"‘1 = 7

— Rank Program
Elements

e

Spectrum Based Fault Localisation (The Solution) Results and Discussion - |/2

Context: when the UUT is a method Total 354 rankings

Program 8
—— Call Sequence method ’
Coverage method
mehod method < N
g ;
)
o 8 ‘
Frequent Call Sequences o
(Closed Itemset mining algorithm) g 0 -~
< .=,——"——
=T ;
T T | T T
0 100 177 (50%) 300 354
Ranking

—

