Mecánica estatística
Este artigo contén varias ligazóns externas e/ou bibliografía ao fin da páxina, mais poucas ou ningunha referencia no corpo do texto. Por favor, mellora o artigo introducindo notas ao pé, citando as fontes. Podes ver exemplos de como se fai nestes artigos. |
A mecánica estatística é a parte da física que trata de determina-lo comportamento termodinámico de sistemas macroscópicos, a partir de consideracións microscópicas (é dicir, a escalas próximas ou inferiores ó átomo) de tipo estatístico.
Historia
editarPódese dicir que a mecánica estatística naceu dos traballos de James Clerk Maxwell e Ludwig Boltzmann. Dos estudos sobre as partículas constituíntes dos gases (átomos e moléculas) e dos niveis de enerxía resultou unha gran cantidade de informacións sobre as magnitudes macroscópicas baseadas soamente nas magnitudes microscópicas medias.
Características
editarA mecánica estatística estuda os comportamento de sistemas con elevado número de entidades constituíntes a partir do comportamento destas entidades. Os constituíntes poden ser átomos, moléculas, íons, entre outros. É unha teoría reducionista, en oposición á holística termodinámica, que ten factura fenomenolóxica.
A mecánica estatística inclúe ferramentas matemáticas para tratar con grandes poboacións no campo da mecánica, ou que concirne ó movemento das partículas ou obxectos suxeitos a forzas. Subministra unha base para relacionar as propiedades microscópicas dos átomos e moléculas individuais ás correspondentes macroscópicas dos materiais, as que poden ser observadas na vida diaria, explicando a termodinámica como un resultado natural da estatística e a mecánica (mecánica clásica e mecánica cuántica). En particular, pode ser usada para calcular as propiedades termodinámicas dos materiais a partir dos datos espectroscópicos das moléculas individuais. En combinación coa mecánica cuántica, resulta de grande utilidade na análise do comportamento de sistemas macroscópicos.
O estudo de tales sistemas en toda a súa complexidade é pouco práctico ou mesmo inviábel. Para superar esa dificultade o que se fai é esbozar un conxunto de simplificacións e atribuír unha serie de vínculos matemáticos, como a hipótese ergódica. Alén diso, a mecánica estatística divídese en áreas: mecánica estatística cuántica, mecánica estatística de equilibrio, mecánica estatística do non-equilibrio etc.
Por exemplo, para predicir o comportamento dun gas, a mecánica clásica esixiría calcular a traxectoria exacta de cada unha das partículas que o compoñen. A mecánica estatística ignora os comportamentos individuais das partículas, preocupándose só por promedios: desta forma, podemos calcula-la presión, temperatura, volume etc. dun gas a partir do noso coñecemento xenérico das moléculas que o compoñen.
Entropía microscópica, o factor de Boltzmann e a función de partición
editarO núcleo da mecánica estatística é a función de partición (ver Derivación da función de partición):
- Q = Σ exp ( -Ei / kT) = Σ e-Ei / kT ( exp e e... denota a función exponencial)
- i i
onde k é a constante de Boltzmann, T é a temperatura e Ei reflicte cada posible estado enerxético do sistema. A función de partición subministra unha medida do número total de estados enerxéticos dispoñibles polo sistema á temperatura dada. De forma semellante,
- e -Ei / kT
danos unha medida do número de estados enerxéticos dunha enerxía particular que están próximos a ser ocupados a unha temperatura dada.
Dividindo a segunda ecuación pola primeira, obtémo-la probabilidade de atopa-lo sistema nun estado enerxético particular -Ei:
- pi = e -Ei/kT / Q
Esta probabilidade pode ser usada para atopa-lo valor medio que corresponde ó valor macroscópico dunha propiedade, J, o que depende do estado enerxético do sistema segundo a relación:
- <J> = Σ pi Ji = Σ Ji e-Ei/kT / Q
- i i
onde <J> é o valor medio da propiedade J. Esta ecuación pode ser aplicada á enerxía interna, U, e a presión, P:
- U = Σ Ei e-Ei/kT / Q
- i
- P = Σ Pi e-Ei/kT / Q
- i
De forma derivada, estas ecuacións poden ser combinadas con coñecidas relacións termodinámicas entre U e P para chegar a expresións para P en función de tan só temperatura, volume e a función de partición. Relacións semellantes poden ser derivadas para outras propiedades termodinámicas, segundo amosa a continuación.
enerxía libre de Helmholtz: | A = -kT·ln Q |
enerxía interna: | U = kT2 (dlnQ/dT)N,V |
Presión: | P = kT (dlnQ/dV)N,T |
Entropía: | S = k·ln Q + U/T |
enerxía libre de Gibbs: | G = -kT·ln Q + kTV (dlnQ/dV)N,T |
Entalpía: | H = U + PV |
Capacidade calorífica a volume constante: | CV = (dU/dT)N,T |
Capacidade calorífica a presión constante: | CP = (dH/dT)N,P |
potencial químico: | mui = -kT(dlnQ/dNi)T,V,N |
Con frecuencia é útil considera-la enerxía dunha molécula dada para ser distribuída entre un certo número de modos. Por exemplo, a enerxía de traslación indica que porción de enerxía está asociada co movemento do centro de masas da molécula. A enerxía de configuración indica a porción de enerxía asociada coas diversas forzas atractivas e repulsivas entre moléculas nun sistema. Os outros modos son considerados internos de cada molécula. Isto inclúe os modos de rotación, vibración, electrónico e nuclear. Se facemos asunción de que cada modo é independente, a enerxía total pode ser expresada como suma de cada unha das compoñentes:
- E = Et + Ec + En + Ee + Er + Ev
Onde os subíndices t, c, n, e, r, e v corresponden respectivamente ós modos de translación, configuración, nuclear, electrónico, rotational e vibratoria. A relación nesta ecuación pode ser substituída na primeira ecuación para dar::
- Q = Σ e(-Eti - Eci - Eni - Eei - Eri - Evi)/kT
- = Σ e-Eti/kT·Σ e-Eci/kT·Σ e-Eni/kT·Σ e-Eei/kT·Σ e-Eri/kT·Σ e-Evi/kT.
- = Qt·Qc·Qn·Qe·Qr·Qv
Tal función de partición pode ser definida para cada modo. De aí pódense obter expresións sinxelas que relacionan os diversos modos coas propiedades macroscópicas, tales como frecuencias características de rotación e vibración.
Expresións para as diferentes funcións de partición moleculares amósanse na seguinte táboa.
nuclear | Qn = 1 \qquad (T < 108K) |
electrónico | Qe = W0exp(kT·De + W1·exp(-θe1/T) + ... |
vibracional | Qv = Π exp(-θvj / 2T) / (1 - exp(-θvj/ T)} |
rotacional (lineal) | Qr = T/σθr |
rotacional (no lineal) | Qr = √(π/σ) T3/ (θAθBθC)1/2 |
Translacional | Qt = (2πmkT)3/2/h3 |
Configuracional (gas ideal) | Qc = V |
Estas ecuacións poden ser combinadas coas da primeira táboa para determina-la contribución dunha enerxía en particular a unha propiedade termodinámica determinada. Por exemplo, a presión rotacional pode ser determinada nesta forma. A presión total pode ser atopada sumando as contribuciones da presión para todos os modos individuais, ie:
- P = Pt + Pc + Pn + Pe + Pr + Pv
No corazón da mecánica estatística atópase a definición de Boltzmann da entropía dun sistema físico:
- A entropía dun estado macroscópico é proporcional ó logaritmo do número dos estados microscópicos asociados.
A constante de proporcionalidade de Boltzmann denotase con k. Ver conxunto microcanónico.
Desta definición pódese deducir que, se un sistema está en contacto cun baño de calor, a probabilidade de ter un microestado de enerxía E é proporcional a
onde a temperatura T xorde do feito de que o sistema está en equilibrio co baño de calor (ver conxunto canónico). Esta cantidade chámase factor de Boltzmann. As probabilidades dos diversos microestados súmanse, e o factor normalización é a función de partición:
onde é a enerxía do microestado i-ésimo do sistema. A función de partición é unha medida do número de estados accesibles ó sistema a unha temperatura dada. Ver derivación da función de partición para ver como xorde o factor de Boltzmann e a forma da función de partición dos principios fundamentais.
Para rematar, a probabilidade de atopar un sistema cun estado particular de enerxía Ei (a temperatura T) é
Colectividades (Ensembles)
editar- Colectividade microcanónica: É un conxunto de réplicas de microsistemas identicamente preparados, no que cada unha ten os mesmos valores de masa(m), volume(V) e enerxía (E), mais cada unha pode evolucionar diferentemente a través do espazo de configuracións.
- Colectividade canónica: É un conxunto de réplicas dun sistema, identicamente preparadas, no que cada unha ten valores definidos de masa(m), volume(V) e temperatura(T), mais non necesariamente a mesma enerxía, no que difire dunha colectividade microcanónica.
- Colectividade gran-canónica.
Véxase tamén
editarBibliografía
editar- Salinas, Silvio R. A (1999). Física estatística. Editora da Universidade de San Paulo. ISBN 85-314-0386-3.
- Huang, Kerson (1990). Statistical mechanics. Wiley, John & Sons. ISBN 0-471-81518-7.
- Reichl, L. E (1998). A modern course in statistical physics. Wiley, John & Sons. ISBN 0-471-59520-9.