All Projects → ZhiqingXiao → Pytorch Book

ZhiqingXiao / Pytorch Book

Source codes for the book "Application of Neural Network and PyTorch"

Projects that are alternatives of or similar to Pytorch Book

Byu econ applied machine learning
The course work for the applied machine learning course I am teaching at BYU
Stars: ✭ 128 (-0.78%)
Mutual labels:  jupyter-notebook
2013 fall astr599
Content for my Astronomy 599 Course: Intro to scientific computing in Python
Stars: ✭ 128 (-0.78%)
Mutual labels:  jupyter-notebook
Eewpython
A series of Jupyter notebook to learn Google Earth Engine with Python
Stars: ✭ 129 (+0%)
Mutual labels:  jupyter-notebook
Abstractive Summarization
Implementation of abstractive summarization using LSTM in the encoder-decoder architecture with local attention.
Stars: ✭ 128 (-0.78%)
Mutual labels:  jupyter-notebook
Pydata Chicago2016 Ml Tutorial
Machine learning with scikit-learn tutorial at PyData Chicago 2016
Stars: ✭ 128 (-0.78%)
Mutual labels:  jupyter-notebook
Contactpose
Large dataset of hand-object contact, hand- and object-pose, and 2.9 M RGB-D grasp images.
Stars: ✭ 129 (+0%)
Mutual labels:  jupyter-notebook
Slicerjupyter
Extension for 3D Slicer that allows the application to be used from Jupyter notebook
Stars: ✭ 127 (-1.55%)
Mutual labels:  jupyter-notebook
Predictive Filter Flow
Predictive Filter Flow for fully/self-supervised learning on various vision tasks
Stars: ✭ 128 (-0.78%)
Mutual labels:  jupyter-notebook
Cmaps
user defined colormaps in matplotlib.
Stars: ✭ 126 (-2.33%)
Mutual labels:  jupyter-notebook
Nb2xls
Convert Jupyter notebook to Excel spreadsheet
Stars: ✭ 129 (+0%)
Mutual labels:  jupyter-notebook
Griffon Vm
Griffon Data Science Virtual Machine
Stars: ✭ 128 (-0.78%)
Mutual labels:  jupyter-notebook
Pyvi
Python Vietnamese Core NLP Toolkit
Stars: ✭ 128 (-0.78%)
Mutual labels:  jupyter-notebook
Pytorch Ensembles
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning, ICLR 2020
Stars: ✭ 128 (-0.78%)
Mutual labels:  jupyter-notebook
Rsis
Recurrent Neural Networks for Semantic Instance Segmentation
Stars: ✭ 128 (-0.78%)
Mutual labels:  jupyter-notebook
Stanford Machine Learning Camp
Stars: ✭ 128 (-0.78%)
Mutual labels:  jupyter-notebook
Ccm Site
NYU PSYCH-GA 3405.002 / DS-GS 3001.006 : Computational cognitive modeling
Stars: ✭ 127 (-1.55%)
Mutual labels:  jupyter-notebook
Python Workshop
A series of Jupyter Notebooks on exploring Unidata technology with Python. See website for more information.
Stars: ✭ 127 (-1.55%)
Mutual labels:  jupyter-notebook
Dask Tutorial Pycon 2018
Stars: ✭ 129 (+0%)
Mutual labels:  jupyter-notebook
My deep project
个人深度学习项目整理
Stars: ✭ 129 (+0%)
Mutual labels:  jupyter-notebook
Real Time Sentiment Tracking On Twitter For Brand Improvement And Trend Recognition
A real-time interactive web app based on data pipelines using streaming Twitter data, automated sentiment analysis, and MySQL&PostgreSQL database (Deployed on Heroku)
Stars: ✭ 127 (-1.55%)
Mutual labels:  jupyter-notebook

神经网络与PyTorch实战

世界上第一本 PyTorch 1 纸质教程书籍

Book

本书讲解神经网络设计与 PyTorch 应用。

全书分为三个部分。

  • 第 1 章和第 2 章:厘清神经网络的概念关联,利用 PyTorch 搭建迷你 AlphaGo,使你初步了解神经网络和 PyTorch。
  • 第 3~9 章:讲解基于 PyTorch 的科学计算和神经网络搭建,涵盖几乎所有 PyTorch 基础知识,涉及所有神经网络的常用结构,并通过 8 个例子使你完全掌握神经网络的原理和应用。
  • 第 10 章和第 11 章:介绍生成对抗网络和增强学习,使你了解更多神经网络的实际用法。

在线阅读:https://www.hzmedia.com.cn/books11119345

勘误列表:https://nbviewer.jupyter.org/github/zhiqingxiao/pytorch-book/blob/master/errata/errata201808.ipynb

Application of Neural Network and PyTorch

The First Hard-copy Tutorial Book on PyTorch 1

Application of Neural Network and PyTorch is an introductory tutorial on artificial neutral networks. It covers the fundamental theory of tensors and artificial neutral networks, as well as the implementation with PyTorch API.

  • Theory: Without preparatory knowledge of advanced mathmatics, this book leverages the concept of tensor to efficiently cover all important theoretics basis on neural networks.
  • Practice: This book leads you to deploy the latest version of PyTorch in your favorate OS (Windows, macOS, or Linux), and use the concise PyTorch APIs to build neural networks for your application in a super easy way.

BibTeX

@book{xiao2018,
 title     = {Application of Neural Network and {PyTorch}},
 author    = {Zhiqing Xiao},
 year      = 2018,
 month     = 8,
 publisher = {China Machine Press},
}
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].