All Projects → szagoruyko → Diracnets

szagoruyko / Diracnets

Training Very Deep Neural Networks Without Skip-Connections

Projects that are alternatives of or similar to Diracnets

Bert score
BERT score for text generation
Stars: ✭ 568 (-2.24%)
Mutual labels:  jupyter-notebook
Wgan Tensorflow
a tensorflow implementation of WGAN
Stars: ✭ 572 (-1.55%)
Mutual labels:  jupyter-notebook
T2t Vit
Stars: ✭ 575 (-1.03%)
Mutual labels:  jupyter-notebook
Practical python programming
北邮《Python编程与实践》课程资料
Stars: ✭ 569 (-2.07%)
Mutual labels:  jupyter-notebook
Data Science Notes
数据科学的笔记以及资料搜集
Stars: ✭ 6,072 (+945.09%)
Mutual labels:  jupyter-notebook
Eng Edu
Stars: ✭ 573 (-1.38%)
Mutual labels:  jupyter-notebook
Datasets For Recommender Systems
This is a repository of a topic-centric public data sources in high quality for Recommender Systems (RS)
Stars: ✭ 564 (-2.93%)
Mutual labels:  jupyter-notebook
Bdl Benchmarks
Bayesian Deep Learning Benchmarks
Stars: ✭ 578 (-0.52%)
Mutual labels:  jupyter-notebook
Deeplearning.ai
Some work of Andrew Ng's course on Coursera
Stars: ✭ 572 (-1.55%)
Mutual labels:  jupyter-notebook
Agegenderdeeplearning
Stars: ✭ 575 (-1.03%)
Mutual labels:  jupyter-notebook
Dogs vs cats
猫狗大战
Stars: ✭ 570 (-1.89%)
Mutual labels:  jupyter-notebook
Cleverhans
An adversarial example library for constructing attacks, building defenses, and benchmarking both
Stars: ✭ 5,356 (+821.86%)
Mutual labels:  jupyter-notebook
Ml Design Patterns
Source code accompanying O'Reilly book: Machine Learning Design Patterns
Stars: ✭ 566 (-2.58%)
Mutual labels:  jupyter-notebook
Tutorials
CatBoost tutorials repository
Stars: ✭ 563 (-3.1%)
Mutual labels:  jupyter-notebook
Business Machine Learning
A curated list of practical business machine learning (BML) and business data science (BDS) applications for Accounting, Customer, Employee, Legal, Management and Operations (by @firmai)
Stars: ✭ 575 (-1.03%)
Mutual labels:  jupyter-notebook
Python For Data Analysis
An introduction to data science using Python and Pandas with Jupyter notebooks
Stars: ✭ 564 (-2.93%)
Mutual labels:  jupyter-notebook
Codereader
跟大咖一起读源码
Stars: ✭ 572 (-1.55%)
Mutual labels:  jupyter-notebook
Coursera Ml Using Matlab Python
coursera吴恩达机器学习课程作业自写Python版本+Matlab原版
Stars: ✭ 579 (-0.34%)
Mutual labels:  jupyter-notebook
Functional Zoo
PyTorch and Tensorflow functional model definitions
Stars: ✭ 577 (-0.69%)
Mutual labels:  jupyter-notebook
Gym Trading
Environment for reinforcement-learning algorithmic trading models
Stars: ✭ 574 (-1.2%)
Mutual labels:  jupyter-notebook

DiracNets

v2 update (January 2018):

The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without weight decay. This allowed us to significantly simplify the network, which is now folds into a simple chain of convolution-ReLU layers, like VGG. On ImageNet DiracNet-18 and DiracNet-34 closely match corresponding ResNet with the same number of parameters.

See v1 branch for DiracNet-v1.


PyTorch code and models for DiracNets: Training Very Deep Neural Networks Without Skip-Connections

https://arxiv.org/abs/1706.00388

Networks with skip-connections like ResNet show excellent performance in image recognition benchmarks, but do not benefit from increased depth, we are thus still interested in learning actually deep representations, and the benefits they could bring. We propose a simple weight parameterization, which improves training of deep plain (without skip-connections) networks, and allows training plain networks with hundreds of layers. Accuracy of our proposed DiracNets is close to Wide ResNet (although DiracNets need more parameters to achieve it), and we are able to match ResNet-1000 accuracy with plain DiracNet with only 28 layers. Also, the proposed Dirac weight parameterization can be folded into one filter for inference, leading to easily interpretable VGG-like network.

DiracNets on ImageNet:

TL;DR

In a nutshell, Dirac parameterization is a sum of filters and scaled Dirac delta function:

conv2d(x, alpha * delta + W)

Here is simplified PyTorch-like pseudocode for the function we use to train plain DiracNets (with weight normalization):

def dirac_conv2d(input, W, alpha, beta)
    return F.conv2d(input, alpha * dirac(W) + beta * normalize(W))

where alpha and beta are per-channel scaling multipliers, and normalize does l_2 normalization over each feature plane.

Code

Code structure:

├── README.md # this file
├── diracconv.py # modular DiracConv definitions
├── test.py # unit tests
├── diracnet-export.ipynb # ImageNet pretrained models
├── diracnet.py # functional model definitions
└── train.py # CIFAR and ImageNet training code

Requirements

First install PyTorch, then install torchnet:

pip install git+https://github.com/pytorch/[email protected]

Install other Python packages:

pip install -r requirements.txt

To train DiracNet-34-2 on CIFAR do:

python train.py --save ./logs/diracnets_$RANDOM$RANDOM --depth 34 --width 2

To train DiracNet-18 on ImageNet do:

python train.py --dataroot ~/ILSVRC2012/ --dataset ImageNet --depth 18 --save ./logs/diracnet_$RANDOM$RANDOM \
                --batchSize 256 --epoch_step [30,60,90] --epochs 100 --weightDecay 0.0001 --lr_decay_ratio 0.1

nn.Module code

We provide DiracConv1d, DiracConv2d, DiracConv3d, which work like nn.Conv1d, nn.Conv2d, nn.Conv3d, but have Dirac-parametrization inside (our training code doesn't use these modules though).

Pretrained models

We fold batch normalization and Dirac parameterization into F.conv2d weight and bias tensors for simplicity. Resulting models are as simple as VGG or AlexNet, having only nonlinearity+conv2d as a basic block.

See diracnets.ipynb for functional and modular model definitions.

There is also folded DiracNet definition in diracnet.py, which uses code from PyTorch model_zoo and downloads pretrained model from Amazon S3:

from diracnet import diracnet18
model = diracnet18(pretrained=True)

Printout of the model above:

DiracNet(
  (features): Sequential(
    (conv): Conv2d (3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))
    (max_pool0): MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), ceil_mode=False)
    (group0.block0.relu): ReLU()
    (group0.block0.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group0.block1.relu): ReLU()
    (group0.block1.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group0.block2.relu): ReLU()
    (group0.block2.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group0.block3.relu): ReLU()
    (group0.block3.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (max_pool1): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
    (group1.block0.relu): ReLU()
    (group1.block0.conv): Conv2d (64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group1.block1.relu): ReLU()
    (group1.block1.conv): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group1.block2.relu): ReLU()
    (group1.block2.conv): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group1.block3.relu): ReLU()
    (group1.block3.conv): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (max_pool2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
    (group2.block0.relu): ReLU()
    (group2.block0.conv): Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group2.block1.relu): ReLU()
    (group2.block1.conv): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group2.block2.relu): ReLU()
    (group2.block2.conv): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group2.block3.relu): ReLU()
    (group2.block3.conv): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (max_pool3): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
    (group3.block0.relu): ReLU()
    (group3.block0.conv): Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group3.block1.relu): ReLU()
    (group3.block1.conv): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group3.block2.relu): ReLU()
    (group3.block2.conv): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group3.block3.relu): ReLU()
    (group3.block3.conv): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (last_relu): ReLU()
    (avg_pool): AvgPool2d(kernel_size=7, stride=7, padding=0, ceil_mode=False, count_include_pad=True)
  )
  (fc): Linear(in_features=512, out_features=1000)
)

The models were trained with OpenCV, so you need to use it too to reproduce stated accuracy.

Pretrained weights for DiracNet-18 and DiracNet-34:
https://s3.amazonaws.com/modelzoo-networks/diracnet18v2folded-a2174e15.pth
https://s3.amazonaws.com/modelzoo-networks/diracnet34v2folded-dfb15d34.pth

Pretrained weights for the original (not folded) model, functional definition only:
https://s3.amazonaws.com/modelzoo-networks/diracnet18-v2_checkpoint.pth
https://s3.amazonaws.com/modelzoo-networks/diracnet34-v2_checkpoint.pth

We plan to add more pretrained models later.

Bibtex

@inproceedings{Zagoruyko2017diracnets,
    author = {Sergey Zagoruyko and Nikos Komodakis},
    title = {DiracNets: Training Very Deep Neural Networks Without Skip-Connections},
    url = {https://arxiv.org/abs/1706.00388},
    year = {2017}}
Note that the project description data, including the texts, logos, images, and/or trademarks, for each open source project belongs to its rightful owner. If you wish to add or remove any projects, please contact us at [email protected].