.. currentmodule:: pandas
.. ipython:: python :suppress: import numpy as np np.random.seed(123456) from pandas import * import pandas.util.testing as tm randn = np.random.randn np.set_printoptions(precision=4, suppress=True) import matplotlib.pyplot as plt plt.close('all') options.display.mpl_style='default'
Both Series
and DataFrame
has a method pct_change
to compute the
percent change over a given number of periods (using fill_method
to fill
NA/null values).
.. ipython:: python ser = Series(randn(8)) ser.pct_change()
.. ipython:: python df = DataFrame(randn(10, 4)) df.pct_change(periods=3)
The Series
object has a method cov
to compute covariance between series
(excluding NA/null values).
.. ipython:: python s1 = Series(randn(1000)) s2 = Series(randn(1000)) s1.cov(s2)
Analogously, DataFrame
has a method cov
to compute pairwise covariances
among the series in the DataFrame, also excluding NA/null values.
.. ipython:: python frame = DataFrame(randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e']) frame.cov()
DataFrame.cov
also supports an optional min_periods
keyword that
specifies the required minimum number of observations for each column pair
in order to have a valid result.
.. ipython:: python frame = DataFrame(randn(20, 3), columns=['a', 'b', 'c']) frame.ix[:5, 'a'] = np.nan frame.ix[5:10, 'b'] = np.nan frame.cov() frame.cov(min_periods=12)
Several methods for computing correlations are provided. Several kinds of correlation methods are provided:
Method name | Description |
---|---|
pearson (default) |
Standard correlation coefficient |
kendall |
Kendall Tau correlation coefficient |
spearman |
Spearman rank correlation coefficient |
All of these are currently computed using pairwise complete observations.
.. ipython:: python frame = DataFrame(randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e']) frame.ix[::2] = np.nan # Series with Series frame['a'].corr(frame['b']) frame['a'].corr(frame['b'], method='spearman') # Pairwise correlation of DataFrame columns frame.corr()
Note that non-numeric columns will be automatically excluded from the correlation calculation.
Like cov
, corr
also supports the optional min_periods
keyword:
.. ipython:: python frame = DataFrame(randn(20, 3), columns=['a', 'b', 'c']) frame.ix[:5, 'a'] = np.nan frame.ix[5:10, 'b'] = np.nan frame.corr() frame.corr(min_periods=12)
A related method corrwith
is implemented on DataFrame to compute the
correlation between like-labeled Series contained in different DataFrame
objects.
.. ipython:: python index = ['a', 'b', 'c', 'd', 'e'] columns = ['one', 'two', 'three', 'four'] df1 = DataFrame(randn(5, 4), index=index, columns=columns) df2 = DataFrame(randn(4, 4), index=index[:4], columns=columns) df1.corrwith(df2) df2.corrwith(df1, axis=1)
The rank
method produces a data ranking with ties being assigned the mean
of the ranks (by default) for the group:
.. ipython:: python s = Series(np.random.randn(5), index=list('abcde')) s['d'] = s['b'] # so there's a tie s.rank()
rank
is also a DataFrame method and can rank either the rows (axis=0
)
or the columns (axis=1
). NaN
values are excluded from the ranking.
.. ipython:: python df = DataFrame(np.random.randn(10, 6)) df[4] = df[2][:5] # some ties df df.rank(1)
rank
optionally takes a parameter ascending
which by default is true;
when false, data is reverse-ranked, with larger values assigned a smaller rank.
rank
supports different tie-breaking methods, specified with the method
parameter:
average
: average rank of tied groupmin
: lowest rank in the groupmax
: highest rank in the groupfirst
: ranks assigned in the order they appear in the array
.. currentmodule:: pandas
.. currentmodule:: pandas.stats.api
For working with time series data, a number of functions are provided for computing common moving or rolling statistics. Among these are count, sum, mean, median, correlation, variance, covariance, standard deviation, skewness, and kurtosis. All of these methods are in the :mod:`pandas` namespace, but otherwise they can be found in :mod:`pandas.stats.moments`.
Function | Description |
---|---|
rolling_count |
Number of non-null observations |
rolling_sum |
Sum of values |
rolling_mean |
Mean of values |
rolling_median |
Arithmetic median of values |
rolling_min |
Minimum |
rolling_max |
Maximum |
rolling_std |
Unbiased standard deviation |
rolling_var |
Unbiased variance |
rolling_skew |
Unbiased skewness (3rd moment) |
rolling_kurt |
Unbiased kurtosis (4th moment) |
rolling_quantile |
Sample quantile (value at %) |
rolling_apply |
Generic apply |
rolling_cov |
Unbiased covariance (binary) |
rolling_corr |
Correlation (binary) |
rolling_corr_pairwise |
Pairwise correlation of DataFrame columns |
rolling_window |
Moving window function |
Generally these methods all have the same interface. The binary operators
(e.g. rolling_corr
) take two Series or DataFrames. Otherwise, they all
accept the following arguments:
window
: size of moving windowmin_periods
: threshold of non-null data points to require (otherwise result is NA)freq
: optionally specify a :ref:`frequency string <timeseries.alias>` or :ref:`DateOffset <timeseries.offsets>` to pre-conform the data to. Note that prior to pandas v0.8.0, a keyword argumenttime_rule
was used instead offreq
that referred to the legacy time rule constants
These functions can be applied to ndarrays or Series objects:
.. ipython:: python ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000)) ts = ts.cumsum() ts.plot(style='k--') @savefig rolling_mean_ex.png width=6in rolling_mean(ts, 60).plot(style='k')
They can also be applied to DataFrame objects. This is really just syntactic sugar for applying the moving window operator to all of the DataFrame's columns:
.. ipython:: python :suppress: plt.close('all')
.. ipython:: python df = DataFrame(randn(1000, 4), index=ts.index, columns=['A', 'B', 'C', 'D']) df = df.cumsum() @savefig rolling_mean_frame.png width=6in rolling_sum(df, 60).plot(subplots=True)
The rolling_apply
function takes an extra func
argument and performs
generic rolling computations. The func
argument should be a single function
that produces a single value from an ndarray input. Suppose we wanted to
compute the mean absolute deviation on a rolling basis:
.. ipython:: python mad = lambda x: np.fabs(x - x.mean()).mean() @savefig rolling_apply_ex.png width=6in rolling_apply(ts, 60, mad).plot(style='k')
The rolling_window
function performs a generic rolling window computation
on the input data. The weights used in the window are specified by the win_type
keyword. The list of recognized types are:
boxcar
triang
blackman
hamming
bartlett
parzen
bohman
blackmanharris
nuttall
barthann
kaiser
(needs beta)gaussian
(needs std)general_gaussian
(needs power, width)slepian
(needs width).
.. ipython:: python ser = Series(randn(10), index=date_range('1/1/2000', periods=10)) rolling_window(ser, 5, 'triang')
Note that the boxcar
window is equivalent to rolling_mean
:
.. ipython:: python rolling_window(ser, 5, 'boxcar') rolling_mean(ser, 5)
For some windowing functions, additional parameters must be specified:
.. ipython:: python rolling_window(ser, 5, 'gaussian', std=0.1)
By default the labels are set to the right edge of the window, but a
center
keyword is available so the labels can be set at the center.
This keyword is available in other rolling functions as well.
.. ipython:: python rolling_window(ser, 5, 'boxcar') rolling_window(ser, 5, 'boxcar', center=True) rolling_mean(ser, 5, center=True)
rolling_cov
and rolling_corr
can compute moving window statistics about
two Series
or any combination of DataFrame/Series
or
DataFrame/DataFrame
. Here is the behavior in each case:
- two
Series
: compute the statistic for the pairing DataFrame/Series
: compute the statistics for each column of the DataFrame with the passed Series, thus returning a DataFrameDataFrame/DataFrame
: compute statistic for matching column names, returning a DataFrame
For example:
.. ipython:: python df2 = df[:20] rolling_corr(df2, df2['B'], window=5)
In financial data analysis and other fields it's common to compute correlation
matrices for a collection of time series. More difficult is to compute a
moving-window correlation matrix. This can be done using the
rolling_corr_pairwise
function, which yields a Panel
whose items
are the dates in question:
.. ipython:: python correls = rolling_corr_pairwise(df, 50) correls[df.index[-50]]
You can efficiently retrieve the time series of correlations between two
columns using ix
indexing:
.. ipython:: python :suppress: plt.close('all')
.. ipython:: python @savefig rolling_corr_pairwise_ex.png width=6in correls.ix[:, 'A', 'C'].plot()
A common alternative to rolling statistics is to use an expanding window, which yields the value of the statistic with all the data available up to that point in time. As these calculations are a special case of rolling statistics, they are implemented in pandas such that the following two calls are equivalent:
.. ipython:: python rolling_mean(df, window=len(df), min_periods=1)[:5] expanding_mean(df)[:5]
Like the rolling_
functions, the following methods are included in the
pandas
namespace or can be located in pandas.stats.moments
.
Function | Description |
---|---|
expanding_count |
Number of non-null observations |
expanding_sum |
Sum of values |
expanding_mean |
Mean of values |
expanding_median |
Arithmetic median of values |
expanding_min |
Minimum |
expanding_max |
Maximum |
expanding_std |
Unbiased standard deviation |
expanding_var |
Unbiased variance |
expanding_skew |
Unbiased skewness (3rd moment) |
expanding_kurt |
Unbiased kurtosis (4th moment) |
expanding_quantile |
Sample quantile (value at %) |
expanding_apply |
Generic apply |
expanding_cov |
Unbiased covariance (binary) |
expanding_corr |
Correlation (binary) |
expanding_corr_pairwise |
Pairwise correlation of DataFrame columns |
Aside from not having a window
parameter, these functions have the same
interfaces as their rolling_
counterpart. Like above, the parameters they
all accept are:
min_periods
: threshold of non-null data points to require. Defaults to minimum needed to compute statistic. NoNaNs
will be output oncemin_periods
non-null data points have been seen.freq
: optionally specify a :ref:`frequency string <timeseries.alias>` or :ref:`DateOffset <timeseries.offsets>` to pre-conform the data to. Note that prior to pandas v0.8.0, a keyword argumenttime_rule
was used instead offreq
that referred to the legacy time rule constants
Note
The output of the rolling_
and expanding_
functions do not return a
NaN
if there are at least min_periods
non-null values in the current
window. This differs from cumsum
, cumprod
, cummax
, and
cummin
, which return NaN
in the output wherever a NaN
is
encountered in the input.
An expanding window statistic will be more stable (and less responsive) than
its rolling window counterpart as the increasing window size decreases the
relative impact of an individual data point. As an example, here is the
expanding_mean
output for the previous time series dataset:
.. ipython:: python :suppress: plt.close('all')
.. ipython:: python ts.plot(style='k--') @savefig expanding_mean_frame.png width=6in expanding_mean(ts).plot(style='k')
A related set of functions are exponentially weighted versions of many of the above statistics. A number of EW (exponentially weighted) functions are provided using the blending method. For example, where y_t is the result and x_t the input, we compute an exponentially weighted moving average as
y_t = \alpha y_{t-1} + (1 - \alpha) x_t
One must have 0 < \alpha \leq 1, but rather than pass \alpha directly, it's easier to think about either the span or center of mass (com) of an EW moment:
\alpha = \begin{cases} \frac{2}{s + 1}, s = \text{span}\\ \frac{1}{c + 1}, c = \text{center of mass} \end{cases}
You can pass one or the other to these functions but not both. Span corresponds to what is commonly called a "20-day EW moving average" for example. Center of mass has a more physical interpretation. For example, span = 20 corresponds to com = 9.5. Here is the list of functions available:
Function | Description |
---|---|
ewma |
EW moving average |
ewmvar |
EW moving variance |
ewmstd |
EW moving standard deviation |
ewmcorr |
EW moving correlation |
ewmcov |
EW moving covariance |
Here are an example for a univariate time series:
.. ipython:: python plt.close('all') ts.plot(style='k--') @savefig ewma_ex.png width=6in ewma(ts, span=20).plot(style='k')
Note
The EW functions perform a standard adjustment to the initial observations whereby if there are fewer observations than called for in the span, those observations are reweighted accordingly.