-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmain.py
684 lines (587 loc) · 25.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.autograd import Variable
from tensorboardX import SummaryWriter
import argparse
import os
import os.path as osp
import subprocess
import setproctitle
import colorama
import numpy as np
from tqdm import tqdm
import datasets
import losses
import models
from utils import flow_utils, tools
# fp32 copy of parameters for update
global param_copy
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--start_epoch', type=int, default=1)
parser.add_argument('--total_epochs', type=int, default=10000)
parser.add_argument(
'--batch_size', '-b', type=int, default=8, help="Batch size")
parser.add_argument(
'--train_n_batches',
type=int,
default=-1,
help=
'Number of min-batches per epoch. If < 0, it will be determined by training_dataloader'
)
parser.add_argument(
'--crop_size',
type=int,
nargs='+',
default=[256, 256],
help="Spatial dimension to crop training samples for training")
parser.add_argument('--gradient_clip', type=float, default=None)
parser.add_argument(
'--schedule_lr_frequency',
type=int,
default=0,
help='in number of iterations (0 for no schedule)')
parser.add_argument('--schedule_lr_fraction', type=float, default=10)
parser.add_argument("--rgb_max", type=float, default=255.)
parser.add_argument(
'--number_workers', '-nw', '--num_workers', type=int, default=4)
parser.add_argument(
'--number_gpus',
'-ng',
type=int,
default=1,
help='number of GPUs to use')
parser.add_argument('--no_cuda', action='store_true')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument(
'--name',
default='run',
type=str,
help='a name to append to the save directory')
parser.add_argument(
'--save',
'-s',
default='./work',
type=str,
help='directory for saving')
parser.add_argument(
'--validation_frequency',
type=int,
default=5,
help='validate every n epochs')
parser.add_argument('--validation_n_batches', type=int, default=-1)
parser.add_argument(
'--render_validation',
action='store_true',
help=
'run inference (save flows to file) and every validation_frequency epoch'
)
parser.add_argument('--inference', action='store_true')
parser.add_argument(
'--inference_size',
type=int,
nargs='+',
default=[-1, -1],
help=
'spatial size divisible by 64. default (-1,-1) - largest possible valid size would be used'
)
parser.add_argument('--inference_batch_size', type=int, default=1)
parser.add_argument('--inference_n_batches', type=int, default=-1)
parser.add_argument(
'--save_flow',
action='store_true',
help='save predicted flows to file')
parser.add_argument(
'--resume',
default='',
type=str,
metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument(
'--log_frequency',
'--summ_iter',
type=int,
default=1,
help="Log every n batches")
parser.add_argument('--skip_training', action='store_true')
parser.add_argument('--skip_validation', action='store_true')
parser.add_argument(
'--fp16',
action='store_true',
help='Run model in pseudo-fp16 mode (fp16 storage fp32 math).')
parser.add_argument(
'--fp16_scale',
type=float,
default=1024.,
help=
'Loss scaling, positive power of 2 values can improve fp16 convergence.'
)
tools.add_arguments_for_module(
parser, models, argument_for_class='model', default='FlowNet2')
tools.add_arguments_for_module(
parser, losses, argument_for_class='loss', default='L1Loss')
tools.add_arguments_for_module(
parser,
torch.optim,
argument_for_class='optimizer',
default='Adam',
skip_params=['params'])
tools.add_arguments_for_module(
parser,
datasets,
argument_for_class='training_dataset',
default='MpiSintelFinal',
skip_params=['is_cropped'],
parameter_defaults={'root': './MPI-Sintel/flow/training'})
tools.add_arguments_for_module(
parser,
datasets,
argument_for_class='validation_dataset',
default='MpiSintelClean',
skip_params=['is_cropped'],
parameter_defaults={
'root': './MPI-Sintel/flow/training',
'replicates': 1
})
tools.add_arguments_for_module(
parser,
datasets,
argument_for_class='inference_dataset',
default='MpiSintelClean',
skip_params=['is_cropped'],
parameter_defaults={
'root': './MPI-Sintel/flow/training',
'replicates': 1
})
main_dir = osp.dirname(osp.realpath(__file__))
os.chdir(main_dir)
# Parse the official arguments
with tools.TimerBlock("Parsing Arguments") as block:
args = parser.parse_args()
# Get argument defaults (hastag #thisisahack)
parser.add_argument('--IGNORE', action='store_true')
defaults = vars(parser.parse_args(['--IGNORE']))
# Print all arguments, color the non-defaults
for argument, value in sorted(vars(args).items()):
reset = colorama.Style.RESET_ALL
color = reset if value == defaults[
argument] else colorama.Fore.MAGENTA
block.log('{}{}: {}{}'.format(color, argument, value, reset))
args.model_class = tools.module_to_dict(models)[args.model]
args.optimizer_class = tools.module_to_dict(
torch.optim)[args.optimizer]
args.loss_class = tools.module_to_dict(losses)[args.loss]
args.training_dataset_class = tools.module_to_dict(datasets)[
args.training_dataset]
args.validation_dataset_class = tools.module_to_dict(datasets)[
args.validation_dataset]
args.inference_dataset_class = tools.module_to_dict(datasets)[
args.inference_dataset]
args.cuda = not args.no_cuda and torch.cuda.is_available()
args.current_hash = subprocess.check_output(
["git", "rev-parse", "HEAD"]).rstrip()
args.log_file = osp.join(args.save, 'args.txt')
# dict to collect activation gradients (for training debug purpose)
args.grads = {}
if args.inference:
args.skip_validation = True
args.skip_training = True
args.total_epochs = 1
args.inference_dir = "{}/inference".format(args.save)
print('Source Code')
print(' Current Git Hash: {}\n'.format(args.current_hash))
# Change the title for `top` and `pkill` commands
setproctitle.setproctitle(args.save)
# Dynamically load the dataset class with parameters passed in via "--argument_[param]=[value]" arguments
with tools.TimerBlock("Initializing Datasets") as block:
args.effective_batch_size = args.batch_size
args.batch_size = args.effective_batch_size // args.number_gpus
gpuargs = {
'num_workers': args.number_workers,
'pin_memory': True
} if args.cuda else {}
if osp.exists(args.training_dataset_root):
train_dataset = args.training_dataset_class(
args, True, **tools.kwargs_from_args(args, 'training_dataset'))
block.log('Training Dataset: {}'.format(args.training_dataset))
block.log('Training Input: {}'.format(' '.join(
[str([d for d in x.size()]) for x in train_dataset[0][0]])))
block.log('Training Targets: {}'.format(' '.join(
[str([d for d in x.size()]) for x in train_dataset[0][1]])))
train_loader = DataLoader(
train_dataset,
batch_size=args.effective_batch_size,
shuffle=True,
**gpuargs)
if osp.exists(args.validation_dataset_root):
validation_dataset = args.validation_dataset_class(
args, True,
**tools.kwargs_from_args(args, 'validation_dataset'))
block.log('Validation Dataset: {}'.format(args.validation_dataset))
block.log('Validation Input: {}'.format(' '.join([
str([d for d in x.size()]) for x in validation_dataset[0][0]
])))
block.log('Validation Targets: {}'.format(' '.join([
str([d for d in x.size()]) for x in validation_dataset[0][1]
])))
validation_loader = DataLoader(
validation_dataset,
batch_size=args.effective_batch_size,
shuffle=False,
**gpuargs)
if osp.exists(args.inference_dataset_root):
inference_dataset = args.inference_dataset_class(
args, False,
**tools.kwargs_from_args(args, 'inference_dataset'))
block.log('Inference Dataset: {}'.format(args.inference_dataset))
block.log('Inference Input: {}'.format(' '.join([
str([d for d in x.size()]) for x in inference_dataset[0][0]
])))
block.log('Inference Targets: {}'.format(' '.join([
str([d for d in x.size()]) for x in inference_dataset[0][1]
])))
inference_loader = DataLoader(
inference_dataset,
batch_size=args.inference_batch_size,
shuffle=False,
**gpuargs)
# Dynamically load model and loss class with parameters passed in via
# "--model_[param]=[value]" or "--loss_[param]=[value]" arguments
with tools.TimerBlock("Building {} model".format(args.model)) as block:
class ModelAndLoss(nn.Module):
def __init__(self, args):
super(ModelAndLoss, self).__init__()
kwargs = tools.kwargs_from_args(args, 'model')
self.model = args.model_class(args, **kwargs)
kwargs = tools.kwargs_from_args(args, 'loss')
self.loss = args.loss_class(args, **kwargs)
def forward(self, data, target, inference=False):
output = self.model(data)
loss_values = self.loss(output, target)
if not inference:
return loss_values
else:
return loss_values, output
model_and_loss = ModelAndLoss(args)
block.log('Effective Batch Size: {}'.format(args.effective_batch_size))
block.log('Number of parameters: {}'.format(
sum([
p.data.nelement() if p.requires_grad else 0
for p in model_and_loss.parameters()
])))
# assing to cuda or wrap with dataparallel, model and loss
if args.cuda and (args.number_gpus > 0) and args.fp16:
block.log('Parallelizing')
model_and_loss = nn.parallel.DataParallel(
model_and_loss, device_ids=list(range(args.number_gpus)))
block.log('Initializing CUDA')
model_and_loss = model_and_loss.cuda().half()
torch.cuda.manual_seed(args.seed)
param_copy = [
param.clone().type(torch.cuda.FloatTensor).detach()
for param in model_and_loss.parameters()
]
elif args.cuda and args.number_gpus > 0:
block.log('Initializing CUDA')
model_and_loss = model_and_loss.cuda()
block.log('Parallelizing')
model_and_loss = nn.parallel.DataParallel(
model_and_loss, device_ids=list(range(args.number_gpus)))
torch.cuda.manual_seed(args.seed)
else:
block.log('CUDA not being used')
torch.manual_seed(args.seed)
# Load weights if needed, otherwise randomly initialize
if args.resume and osp.isfile(args.resume):
block.log("Loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
if not args.inference:
args.start_epoch = checkpoint['epoch']
best_err = checkpoint['best_EPE']
model_and_loss.module.model.load_state_dict(
checkpoint['state_dict'])
block.log("Loaded checkpoint '{}' (at epoch {})".format(
args.resume, checkpoint['epoch']))
elif args.resume and args.inference:
block.log("No checkpoint found at '{}'".format(args.resume))
quit()
else:
block.log("Random initialization")
block.log("Initializing save directory: {}".format(args.save))
if not osp.osp.exists(args.save):
os.makedirs(args.save)
train_logger = SummaryWriter(
log_dir=osp.join(args.save, 'train'), comment='training')
validation_logger = SummaryWriter(
log_dir=osp.join(args.save, 'validation'), comment='validation')
# Dynamically load the optimizer with parameters passed in via "--optimizer_[param]=[value]" arguments
with tools.TimerBlock(
"Initializing {} Optimizer".format(args.optimizer)) as block:
kwargs = tools.kwargs_from_args(args, 'optimizer')
if args.fp16:
optimizer = args.optimizer_class(
filter(lambda p: p.requires_grad, param_copy), **kwargs)
else:
optimizer = args.optimizer_class(
filter(lambda p: p.requires_grad, model_and_loss.parameters()),
**kwargs)
for param, default in kwargs.items():
block.log("{} = {} ({})".format(param, default, type(default)))
# Log all arguments to file
for argument, value in sorted(vars(args).items()):
block.log2file(args.log_file, '{}: {}'.format(argument, value))
# Reusable function for training and validataion
def train(args,
epoch,
start_iteration,
data_loader,
model,
optimizer,
logger,
is_validate=False,
offset=0):
statistics = []
total_loss = 0
if is_validate:
model.eval()
title = 'Validating Epoch {}'.format(epoch)
args.validation_n_batches = np.inf if args.validation_n_batches < 0 else args.validation_n_batches
progress = tqdm(
tools.IteratorTimer(data_loader),
ncols=100,
total=np.minimum(len(data_loader), args.validation_n_batches),
leave=True,
position=offset,
desc=title)
else:
model.train()
title = 'Training Epoch {}'.format(epoch)
args.train_n_batches = np.inf if args.train_n_batches < 0 else args.train_n_batches
progress = tqdm(
tools.IteratorTimer(data_loader),
ncols=120,
total=np.minimum(len(data_loader), args.train_n_batches),
smoothing=.9,
miniters=1,
leave=True,
position=offset,
desc=title)
last_log_time = progress._time()
for batch_idx, (data, target) in enumerate(progress):
data, target = [Variable(d, volatile=is_validate) for d in data], [
Variable(t, volatile=is_validate) for t in target
]
if args.cuda and args.number_gpus == 1:
data, target = [d.cuda(async=True) for d in data], [
t.cuda(async=True) for t in target
]
optimizer.zero_grad() if not is_validate else None
losses = model(data[0], target[0])
losses = [torch.mean(loss_value) for loss_value in losses]
loss_val = losses[0] # Collect first loss for weight update
total_loss += loss_val.data[0]
loss_values = [v.data[0] for v in losses]
# gather loss_labels, direct return leads to recursion limit error as it looks for variables to gather'
loss_labels = list(model.module.loss.loss_labels)
assert not np.isnan(total_loss)
if not is_validate and args.fp16:
loss_val.backward()
if args.gradient_clip:
torch.nn.utils.clip_grad_norm(model.parameters(),
args.gradient_clip)
params = list(model.parameters())
for i in range(len(params)):
param_copy[i].grad = params[i].grad.clone().type_as(
params[i]).detach()
param_copy[i].grad.mul_(1. / args.loss_scale)
optimizer.step()
for i in range(len(params)):
params[i].data.copy_(param_copy[i].data)
elif not is_validate:
loss_val.backward()
if args.gradient_clip:
torch.nn.utils.clip_grad_norm(model.parameters(),
args.gradient_clip)
optimizer.step()
# Update hyperparameters if needed
global_iteration = start_iteration + batch_idx
if not is_validate:
tools.update_hyperparameter_schedule(
args, epoch, global_iteration, optimizer)
loss_labels.append('lr')
loss_values.append(optimizer.param_groups[0]['lr'])
loss_labels.append('load')
loss_values.append(progress.iterable.last_duration)
# Print out statistics
statistics.append(loss_values)
title = '{} Epoch {}'.format('Validating'
if is_validate else 'Training', epoch)
progress.set_description(title + ' ' +
tools.format_dictionary_of_losses(
loss_labels, statistics[-1]))
if ((((global_iteration + 1) % args.log_frequency) == 0
and not is_validate) or
(is_validate and batch_idx == args.validation_n_batches - 1)):
global_iteration = global_iteration if not is_validate else start_iteration
logger.add_scalar('batch logs per second',
len(statistics) /
(progress._time() - last_log_time),
global_iteration)
last_log_time = progress._time()
all_losses = np.array(statistics)
for i, key in enumerate(loss_labels):
logger.add_scalar('average batch ' + str(key),
all_losses[:, i].mean(),
global_iteration)
logger.add_histogram(
str(key), all_losses[:, i], global_iteration)
# Reset Summary
statistics = []
if (is_validate and (batch_idx == args.validation_n_batches)):
break
if ((not is_validate) and (batch_idx == (args.train_n_batches))):
break
progress.close()
return total_loss / float(batch_idx + 1), (batch_idx + 1)
# Reusable function for inference
def inference(args, epoch, data_loader, model, offset=0):
model.eval()
if args.save_flow or args.render_validation:
flow_folder = "{}/{}.epoch-{}-flow-field".format(
args.inference_dir, args.name.replace('/', '.'), epoch)
if not osp.osp.exists(flow_folder):
os.makedirs(flow_folder)
args.inference_n_batches = np.inf if args.inference_n_batches < 0 else args.inference_n_batches
progress = tqdm(
data_loader,
ncols=100,
total=np.minimum(len(data_loader), args.inference_n_batches),
desc='Inferencing ',
leave=True,
position=offset)
statistics = []
total_loss = 0
for batch_idx, (data, target) in enumerate(progress):
if args.cuda:
data, target = [d.cuda(async=True) for d in data], [
t.cuda(async=True) for t in target
]
data, target = [Variable(d, volatile=True) for d in data], [
Variable(t, volatile=True) for t in target
]
# when ground-truth flows are not available for inference_dataset,
# the targets are set to all zeros. thus, losses are actually L1 or L2 norms of compute optical flows,
# depending on the type of loss norm passed in
losses, output = model(data[0], target[0], inference=True)
losses = [torch.mean(loss_value) for loss_value in losses]
loss_val = losses[0] # Collect first loss for weight update
total_loss += loss_val.data[0]
loss_values = [v.data[0] for v in losses]
# gather loss_labels, direct return leads to recursion limit error as it looks for variables to gather'
loss_labels = list(model.module.loss.loss_labels)
statistics.append(loss_values)
# import IPython; IPython.embed()
if args.save_flow or args.render_validation:
for i in range(args.inference_batch_size):
_pflow = output[i].data.cpu().numpy().transpose(1, 2, 0)
flow_utils.writeFlow(
join(flow_folder, '%06d.flo' %
(batch_idx * args.inference_batch_size + i)),
_pflow)
progress.set_description(
'Inference Averages for Epoch {}: '.format(epoch) +
tools.format_dictionary_of_losses(
loss_labels, np.array(statistics).mean(axis=0)))
progress.update(1)
if batch_idx == (args.inference_n_batches - 1):
break
progress.close()
return
# Primary epoch loop
best_err = 1e8
progress = tqdm(
range(args.start_epoch, args.total_epochs + 1),
miniters=1,
ncols=100,
desc='Overall Progress',
leave=True,
position=0)
offset = 1
last_epoch_time = progress._time()
global_iteration = 0
for epoch in progress:
if args.inference or (args.render_validation and
((epoch - 1) % args.validation_frequency) == 0):
stats = inference(
args=args,
epoch=epoch - 1,
data_loader=inference_loader,
model=model_and_loss,
offset=offset)
offset += 1
if not args.skip_validation and (
(epoch - 1) % args.validation_frequency) == 0:
validation_loss, _ = train(
args=args,
epoch=epoch - 1,
start_iteration=global_iteration,
data_loader=validation_loader,
model=model_and_loss,
optimizer=optimizer,
logger=validation_logger,
is_validate=True,
offset=offset)
offset += 1
is_best = False
if validation_loss < best_err:
best_err = validation_loss
is_best = True
checkpoint_progress = tqdm(
ncols=100, desc='Saving Checkpoint', position=offset)
tools.save_checkpoint({
'arch':
args.model,
'epoch':
epoch,
'state_dict':
model_and_loss.module.model.state_dict(),
'best_EPE':
best_err
}, is_best, args.save, args.model)
checkpoint_progress.update(1)
checkpoint_progress.close()
offset += 1
if not args.skip_training:
train_loss, iterations = train(
args=args,
epoch=epoch,
start_iteration=global_iteration,
data_loader=train_loader,
model=model_and_loss,
optimizer=optimizer,
logger=train_logger,
offset=offset)
global_iteration += iterations
offset += 1
# save checkpoint after every validation_frequency number of epochs
if ((epoch - 1) % args.validation_frequency) == 0:
checkpoint_progress = tqdm(
ncols=100, desc='Saving Checkpoint', position=offset)
tools.save_checkpoint(
{
'arch': args.model,
'epoch': epoch,
'state_dict': model_and_loss.module.model.state_dict(),
'best_EPE': train_loss
},
False,
args.save,
args.model,
filename='train-checkpoint.pth.tar')
checkpoint_progress.update(1)
checkpoint_progress.close()
train_logger.add_scalar('seconds per epoch',
progress._time() - last_epoch_time, epoch)
last_epoch_time = progress._time()
print("\n")