-
Notifications
You must be signed in to change notification settings - Fork 944
/
Copy pathTFSparkNode.py
656 lines (555 loc) · 26.5 KB
/
TFSparkNode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
# Copyright 2017 Yahoo Inc.
# Licensed under the terms of the Apache 2.0 license.
# Please see LICENSE file in the project root for terms.
"""This module provides low-level functions for managing the TensorFlowOnSpark cluster."""
from __future__ import absolute_import
from __future__ import division
from __future__ import nested_scopes
from __future__ import print_function
import json
import logging
import multiprocessing
import os
import pkg_resources
import platform
import socket
import subprocess
import sys
import uuid
import time
import traceback
from packaging import version
from threading import Thread
from . import TFManager
from . import TFNode
from . import gpu_info
from . import marker
from . import reservation
from . import util
logger = logging.getLogger(__name__)
try:
TF_VERSION = pkg_resources.get_distribution('tensorflow').version
except pkg_resources.DistributionNotFound:
TF_VERSION = pkg_resources.get_distribution('tensorflow-cpu').version
def _has_spark_resource_api():
"""Returns true if Spark 3+ resource API is available"""
import pyspark
return version.parse(pyspark.__version__).base_version >= version.parse("3.0.0").base_version
def _get_cluster_spec(sorted_cluster_info):
"""Given a list of node metadata sorted by executor_id, returns a tensorflow cluster_spec"""
cluster_spec = {}
last_executor_id = -1
for node in sorted_cluster_info:
if (node['executor_id'] == last_executor_id):
raise Exception("Duplicate worker/task in cluster_info")
last_executor_id = node['executor_id']
logger.info("node: {0}".format(node))
(njob, nhost, nport) = (node['job_name'], node['host'], node['port'])
hosts = [] if njob not in cluster_spec else cluster_spec[njob]
hosts.append("{0}:{1}".format(nhost, nport))
cluster_spec[njob] = hosts
return cluster_spec
class TFNodeContext:
"""Encapsulates unique metadata for a TensorFlowOnSpark node/executor and provides methods to interact with Spark and HDFS.
An instance of this object will be passed to the TensorFlow "main" function via the `ctx` argument.
To simply the end-user API, this class now mirrors the functions of the TFNode module.
Args:
:executor_id: integer identifier for this executor, per ``nodeRDD = sc.parallelize(range(num_executors), num_executors).``
:job_name: TensorFlow job name (e.g. 'ps' or 'worker') of this TF node, per cluster_spec.
:task_index: integer rank per job_name, e.g. "worker:0", "worker:1", "ps:0".
:cluster_spec: dictionary for constructing a tf.train.ClusterSpec.
:defaultFS: string representation of default FileSystem, e.g. ``file://`` or ``hdfs://<namenode>:8020/``.
:working_dir: the current working directory for local filesystems, or YARN containers.
:mgr: TFManager instance for this Python worker.
:tmp_socket: temporary socket used to select random port for TF GRPC server.
"""
def __init__(self, executor_id=0, job_name='', task_index=0, cluster_spec={}, defaultFS='file://', working_dir='.', mgr=None, tmp_socket=None):
self.worker_num = executor_id # for backwards-compatibility
self.executor_id = executor_id
self.job_name = job_name
self.task_index = task_index
self.cluster_spec = cluster_spec
self.num_workers = sum([len(v) for k, v in cluster_spec.items() if k == 'master' or k == 'chief' or k == 'worker'])
self.defaultFS = defaultFS
self.working_dir = working_dir
self.mgr = mgr
self.tmp_socket = tmp_socket
def absolute_path(self, path):
"""Convenience function to access ``TFNode.hdfs_path`` directly from this object instance."""
return TFNode.hdfs_path(self, path)
def start_cluster_server(self, num_gpus=1, rdma=False):
"""Convenience function to access ``TFNode.start_cluster_server`` directly from this object instance."""
return TFNode.start_cluster_server(self, num_gpus, rdma)
def export_saved_model(self, sess, export_dir, tag_set, signatures):
"""Convenience function to access ``TFNode.export_saved_model`` directly from this object instance."""
TFNode.export_saved_model(sess, export_dir, tag_set, signatures)
def get_data_feed(self, train_mode=True, qname_in='input', qname_out='output', input_mapping=None):
"""Convenience function to access ``TFNode.DataFeed`` directly from this object instance."""
return TFNode.DataFeed(self.mgr, train_mode, qname_in, qname_out, input_mapping)
def release_port(self):
"""Convenience function to access ``TFNode.release_assigned_port`` directly from this object instance."""
return TFNode.release_port(self)
class TFSparkNode(object):
"""Low-level functions used by the high-level TFCluster APIs to manage cluster state.
**This class is not intended for end-users (see TFNode for end-user APIs)**.
For cluster management, this wraps the per-node cluster logic as Spark RDD mapPartitions functions, where the RDD is expected to be
a "nodeRDD" of the form: ``nodeRDD = sc.parallelize(range(num_executors), num_executors)``.
For data feeding, this wraps the feeding logic as Spark RDD mapPartitions functions on a standard "dataRDD".
This also manages a reference to the TFManager "singleton" per executor. Since Spark can spawn more than one python-worker
per executor, this will reconnect to the "singleton" instance as needed.
"""
mgr = None #: TFManager instance
cluster_id = None #: Unique ID for a given TensorFlowOnSpark cluster, used for invalidating state for new clusters.
def _get_manager(cluster_info, host, executor_id):
"""Returns this executor's "singleton" instance of the multiprocessing.Manager, reconnecting per python-worker if needed.
Args:
:cluster_info: cluster node reservations
:host: host IP address
:executor_id: unique id per executor (created during initial call to run())
Returns:
TFManager instance for this executor/python-worker
"""
for node in cluster_info:
if node['host'] == host and node['executor_id'] == executor_id:
addr = node['addr']
authkey = node['authkey']
TFSparkNode.mgr = TFManager.connect(addr, authkey)
break
if TFSparkNode.mgr is None:
msg = "No TFManager found on this node, please ensure that:\n" + \
"1. Spark num_executors matches TensorFlow cluster_size\n" + \
"2. Spark tasks per executor is 1\n" + \
"3. Spark dynamic allocation is disabled\n" + \
"4. There are no other root-cause exceptions on other nodes\n"
raise Exception(msg)
logger.info("Connected to TFSparkNode.mgr on {0}, executor={1}, state={2}".format(host, executor_id, str(TFSparkNode.mgr.get('state'))))
return TFSparkNode.mgr
def run(fn, tf_args, cluster_meta, tensorboard, log_dir, queues, background):
"""Wraps the user-provided TensorFlow main function in a Spark mapPartitions function.
Args:
:fn: TensorFlow "main" function provided by the user.
:tf_args: ``argparse`` args, or command line ``ARGV``. These will be passed to the ``fn``.
:cluster_meta: dictionary of cluster metadata (e.g. cluster_id, reservation.Server address, etc).
:tensorboard: boolean indicating if the chief worker should spawn a Tensorboard server.
:log_dir: directory to save tensorboard event logs. If None, defaults to a fixed path on local filesystem.
:queues: *INTERNAL_USE*
:background: boolean indicating if the TensorFlow "main" function should be run in a background process.
Returns:
A nodeRDD.mapPartitions() function.
"""
def _mapfn(iter):
# Note: consuming the input iterator helps Pyspark re-use this worker,
for i in iter:
executor_id = i
def _get_gpus(cluster_spec=None):
gpus = []
is_k8s = 'SPARK_EXECUTOR_POD_IP' in os.environ
# handle explicitly configured tf_args.num_gpus
if 'num_gpus' in tf_args:
requested_gpus = tf_args.num_gpus
user_requested = True
else:
requested_gpus = 0
user_requested = False
# first, try Spark 3 resources API, returning all visible GPUs
# note: num_gpus arg is only used (if supplied) to limit/truncate visible devices
if _has_spark_resource_api():
from pyspark import TaskContext
context = TaskContext.get()
if context:
resources = context.resources()
if resources and 'gpu' in resources:
# get all GPUs assigned by resource manager
gpus = context.resources()['gpu'].addresses
logger.info("Spark gpu resources: {}".format(gpus))
if user_requested:
if requested_gpus < len(gpus):
# override/truncate list, if explicitly configured
logger.warn("Requested {} GPU(s), but {} available".format(requested_gpus, len(gpus)))
gpus = gpus[:requested_gpus]
else:
# implicitly requested by Spark 3
requested_gpus = len(gpus)
# if not in K8s pod and GPUs available, just use original allocation code (defaulting to 1 GPU if available)
# Note: for K8s, there is a bug with the Nvidia device_plugin which can show GPUs for non-GPU pods that are hosted on GPU nodes
if not is_k8s and gpu_info.is_gpu_available() and not gpus:
# default to one GPU if not specified explicitly
requested_gpus = max(1, requested_gpus) if not user_requested else requested_gpus
if requested_gpus > 0:
if cluster_spec:
# compute my index relative to other nodes on the same host (for GPU allocation)
my_addr = cluster_spec[job_name][task_index]
my_host = my_addr.split(':')[0]
flattened = [v for sublist in cluster_spec.values() for v in sublist]
local_peers = [p for p in flattened if p.startswith(my_host)]
my_index = local_peers.index(my_addr)
else:
my_index = 0
# try to allocate a GPU
gpus = gpu_info.get_gpus(requested_gpus, my_index, format=gpu_info.AS_LIST)
if user_requested and len(gpus) < requested_gpus:
raise Exception("Unable to allocate {} GPU(s) from available GPUs: {}".format(requested_gpus, gpus))
gpus_to_use = ','.join(gpus)
if gpus:
logger.info("Requested {} GPU(s), setting CUDA_VISIBLE_DEVICES={}".format(requested_gpus if user_requested else len(gpus), gpus_to_use))
os.environ['CUDA_VISIBLE_DEVICES'] = gpus_to_use
# try GPU allocation at executor startup so we can try to fail out if unsuccessful
_get_gpus()
# assign TF job/task based on provided cluster_spec template (or use default/null values)
job_name = 'default'
task_index = -1
cluster_id = cluster_meta['id']
cluster_template = cluster_meta['cluster_template']
for jobtype in cluster_template:
nodes = cluster_template[jobtype]
if executor_id in nodes:
job_name = jobtype
task_index = nodes.index(executor_id)
break
# get unique key (hostname, executor_id) for this executor
host = util.get_ip_address()
util.write_executor_id(executor_id)
port = 0
# check for existing TFManagers
if TFSparkNode.mgr is not None and str(TFSparkNode.mgr.get('state')) != "'stopped'":
if TFSparkNode.cluster_id == cluster_id:
# raise an exception to force Spark to retry this "reservation" task on another executor
raise Exception("TFManager already started on {0}, executor={1}, state={2}".format(host, executor_id, str(TFSparkNode.mgr.get("state"))))
else:
# old state, just continue with creating new manager
logger.warn("Ignoring old TFManager with cluster_id {0}, requested cluster_id {1}".format(TFSparkNode.cluster_id, cluster_id))
# start a TFManager and get a free port
# use a random uuid as the authkey
authkey = uuid.uuid4().bytes
addr = None
if job_name in ('ps', 'evaluator'):
# PS nodes must be remotely accessible in order to shutdown from Spark driver.
TFSparkNode.mgr = TFManager.start(authkey, ['control', 'error'], 'remote')
addr = (host, TFSparkNode.mgr.address[1])
else:
# worker nodes only need to be locally accessible within the executor for data feeding
TFSparkNode.mgr = TFManager.start(authkey, queues)
addr = TFSparkNode.mgr.address
# initialize mgr state
TFSparkNode.mgr.set('state', 'running')
TFSparkNode.cluster_id = cluster_id
# expand Hadoop classpath wildcards for JNI (Spark 2.x)
if 'HADOOP_PREFIX' in os.environ:
classpath = os.environ['CLASSPATH']
hadoop_path = os.path.join(os.environ['HADOOP_PREFIX'], 'bin', 'hadoop')
hadoop_classpath = subprocess.check_output([hadoop_path, 'classpath', '--glob']).decode()
logger.debug("CLASSPATH: {0}".format(hadoop_classpath))
os.environ['CLASSPATH'] = classpath + os.pathsep + hadoop_classpath
# start TensorBoard if requested, on 'worker:0' if available (for backwards-compatibility), otherwise on 'chief:0' or 'master:0'
job_names = sorted([k for k in cluster_template.keys() if k in ['chief', 'master', 'worker']])
tb_job_name = 'worker' if 'worker' in job_names else job_names[0]
tb_pid = 0
tb_port = 0
if tensorboard and job_name == tb_job_name and task_index == 0:
if 'TENSORBOARD_PORT' in os.environ:
# use port defined in env var
tb_port = int(os.environ['TENSORBOARD_PORT'])
else:
# otherwise, find a free port
tb_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
tb_sock.bind(('', 0))
tb_port = tb_sock.getsockname()[1]
tb_sock.close()
logdir = log_dir if log_dir else "tensorboard_%d" % executor_id
# search for tensorboard in python/bin, PATH, and PYTHONPATH
pypath = sys.executable
pydir = os.path.dirname(pypath)
sys_path = os.pathsep.join(sys.path)
search_path = os.pathsep.join([pydir, sys_path, os.environ['PATH'], os.environ['PYTHONPATH']])
tb_path = util.find_in_path(search_path, 'tensorboard') # executable in PATH
if not tb_path:
tb_path = util.find_in_path(search_path, 'tensorboard/main.py') # TF 1.3+
if not tb_path:
tb_path = util.find_in_path(search_path, 'tensorflow/tensorboard/__main__.py') # TF 1.2-
if not tb_path:
raise Exception("Unable to find 'tensorboard' in: {}".format(search_path))
# launch tensorboard
if version.parse(TF_VERSION) >= version.parse('2.0.0'):
tb_proc = subprocess.Popen([pypath, tb_path, "--reload_multifile=True", "--logdir=%s" % logdir, "--port=%d" % tb_port], env=os.environ)
else:
tb_proc = subprocess.Popen([pypath, tb_path, "--logdir=%s" % logdir, "--port=%d" % tb_port], env=os.environ)
tb_pid = tb_proc.pid
# check server to see if this task is being retried (i.e. already reserved)
client = reservation.Client(cluster_meta['server_addr'])
cluster_info = client.get_reservations()
tmp_sock = None
node_meta = None
for node in cluster_info:
(nhost, nexec) = (node['host'], node['executor_id'])
if nhost == host and nexec == executor_id:
node_meta = node
port = node['port']
# if not already done, register everything we need to set up the cluster
if node_meta is None:
if 'TENSORFLOW_PORT' in os.environ:
# use port defined in env var
port = int(os.environ['TENSORFLOW_PORT'])
else:
# otherwise, find a free port
tmp_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
tmp_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
tmp_sock.bind(('', port))
port = tmp_sock.getsockname()[1]
node_meta = {
'executor_id': executor_id,
'host': host,
'job_name': job_name,
'task_index': task_index,
'port': port,
'tb_pid': tb_pid,
'tb_port': tb_port,
'addr': addr,
'authkey': authkey
}
# register node metadata with server
logger.info("TFSparkNode.reserve: {0}".format(node_meta))
client.register(node_meta)
# wait for other nodes to finish reservations
cluster_info = client.await_reservations()
client.close()
# construct a TensorFlow clusterspec from cluster_info
sorted_cluster_info = sorted(cluster_info, key=lambda k: k['executor_id'])
cluster_spec = _get_cluster_spec(sorted_cluster_info)
# update TF_CONFIG if cluster spec has a 'master' node (i.e. tf.estimator)
if 'master' in cluster_spec or 'chief' in cluster_spec:
tf_config = json.dumps({
'cluster': cluster_spec,
'task': {'type': job_name, 'index': task_index},
'environment': 'cloud'
})
logger.info("export TF_CONFIG: {}".format(tf_config))
os.environ['TF_CONFIG'] = tf_config
# reserve GPU(s) again, just before launching TF process (in case situation has changed)
# and setup CUDA_VISIBLE_DEVICES accordingly
_get_gpus(cluster_spec=cluster_spec)
# create a context object to hold metadata for TF
ctx = TFNodeContext(executor_id,
job_name,
task_index,
cluster_spec,
cluster_meta['default_fs'],
cluster_meta['working_dir'],
TFSparkNode.mgr,
tmp_sock if not cluster_meta.get('release_port', True) else None)
# release port reserved for TF as late as possible
if tmp_sock is not None:
if cluster_meta.get('release_port', True):
tmp_sock.close()
else:
logger.warning("User code must invoke ctx.release_port() prior to starting TF GRPC server")
# Background mode relies reuse of python worker in Spark.
if background:
# However, reuse of python worker can't work on Windows, we need to check if the current
# script runs on Windows or not.
if os.name == 'nt' or platform.system() == 'Windows':
raise Exception("Background mode is not supported on Windows.")
# Check if the config of reuse python worker is enabled on Spark.
if not os.environ.get("SPARK_REUSE_WORKER"):
raise Exception("Background mode relies reuse of python worker on Spark. This config 'spark.python.worker.reuse' is not enabled on Spark. Please enable it before using background.")
def wrapper_fn(args, context):
"""Wrapper function that sets the sys.argv of the executor."""
if isinstance(args, list):
sys.argv = args
fn(args, context)
def wrapper_fn_background(args, context):
"""Wrapper function that signals exceptions to foreground process."""
errq = TFSparkNode.mgr.get_queue('error')
try:
wrapper_fn(args, context)
except Exception:
errq.put(traceback.format_exc())
if job_name in ('ps', 'evaluator') or background:
# invoke the TensorFlow main function in a background thread
logger.info("Starting TensorFlow {0}:{1} as {2} on cluster node {3} on background process".format(
job_name, task_index, job_name, executor_id))
p = multiprocessing.Process(target=wrapper_fn_background, args=(tf_args, ctx))
if job_name in ('ps', 'evaluator'):
p.daemon = True
p.start()
# for ps and evaluator nodes, wait indefinitely in foreground thread for a "control" event (None == "stop")
if job_name in ('ps', 'evaluator'):
queue = TFSparkNode.mgr.get_queue('control')
equeue = TFSparkNode.mgr.get_queue('error')
done = False
while not done:
while (queue.empty() and equeue.empty()):
time.sleep(1)
if (not equeue.empty()):
e_str = equeue.get()
raise Exception("Exception in " + job_name + ":\n" + e_str)
msg = queue.get(block=True)
logger.info("Got msg: {0}".format(msg))
if msg is None:
logger.info("Terminating {}".format(job_name))
TFSparkNode.mgr.set('state', 'stopped')
done = True
queue.task_done()
else:
# otherwise, just run TF function in the main executor/worker thread
logger.info("Starting TensorFlow {0}:{1} on cluster node {2} on foreground thread".format(job_name, task_index, executor_id))
wrapper_fn(tf_args, ctx)
logger.info("Finished TensorFlow {0}:{1} on cluster node {2}".format(job_name, task_index, executor_id))
return _mapfn
def train(cluster_info, cluster_meta, feed_timeout=600, qname='input'):
"""Feeds Spark partitions into the shared multiprocessing.Queue.
Args:
:cluster_info: node reservation information for the cluster (e.g. host, executor_id, pid, ports, etc)
:cluster_meta: dictionary of cluster metadata (e.g. cluster_id, reservation.Server address, etc)
:feed_timeout: number of seconds after which data feeding times out (600 sec default)
:qname: *INTERNAL_USE*
Returns:
A dataRDD.mapPartitions() function
"""
def _train(iter):
# get shared queue, reconnecting if necessary
mgr = _get_manager(cluster_info, util.get_ip_address(), util.read_executor_id())
try:
queue = mgr.get_queue(qname)
equeue = mgr.get_queue('error')
except (AttributeError, KeyError):
msg = "Queue '{}' not found on this node, check for exceptions on other nodes.".format(qname)
raise Exception(msg)
state = str(mgr.get('state'))
logger.info("mgr.state={0}".format(state))
terminating = state == "'terminating'"
if terminating:
logger.info("mgr is terminating, skipping partition")
count = sum(1 for item in iter)
logger.info("Skipped {0} items from partition".format(count))
else:
logger.info("Feeding partition {0} into {1} queue {2}".format(iter, qname, queue))
count = 0
for item in iter:
count += 1
queue.put(item, block=True)
# wait for consumers to finish processing all items in queue before "finishing" this iterator
joinThr = Thread(target=queue.join)
joinThr.start()
timeout = feed_timeout
while (joinThr.is_alive()):
if (not equeue.empty()):
e_str = equeue.get()
raise Exception("Exception in worker:\n" + e_str)
time.sleep(1)
timeout -= 1
if timeout <= 0:
raise Exception("Timeout while feeding partition")
logger.info("Processed {0} items in partition".format(count))
# check if TF is terminating feed after this partition
if not terminating:
state = str(mgr.get('state'))
terminating = state == "'terminating'"
if terminating:
try:
logger.info("TFSparkNode: requesting stop")
client = reservation.Client(cluster_meta['server_addr'])
client.request_stop()
client.close()
except Exception as e:
# ignore any errors while requesting stop
logger.debug("Error while requesting stop: {0}".format(e))
return [terminating]
return _train
def inference(cluster_info, feed_timeout=600, qname='input'):
"""Feeds Spark partitions into the shared multiprocessing.Queue and returns inference results.
Args:
:cluster_info: node reservation information for the cluster (e.g. host, executor_id, pid, ports, etc)
:feed_timeout: number of seconds after which data feeding times out (600 sec default)
:qname: *INTERNAL_USE*
Returns:
A dataRDD.mapPartitions() function
"""
def _inference(iter):
# get shared queue, reconnecting if necessary
mgr = _get_manager(cluster_info, util.get_ip_address(), util.read_executor_id())
try:
queue_in = mgr.get_queue(qname)
equeue = mgr.get_queue('error')
except (AttributeError, KeyError):
msg = "Queue '{}' not found on this node, check for exceptions on other nodes.".format(qname)
raise Exception(msg)
logger.info("Feeding partition {0} into {1} queue {2}".format(iter, qname, queue_in))
count = 0
for item in iter:
count += 1
queue_in.put(item, block=True)
# signal "end of partition"
queue_in.put(marker.EndPartition())
# skip empty partitions
if count == 0:
return []
# wait for consumers to finish processing all items in queue before "finishing" this iterator
joinThr = Thread(target=queue_in.join)
joinThr.start()
timeout = feed_timeout
while (joinThr.is_alive()):
if (not equeue.empty()):
e_str = equeue.get()
raise Exception("Exception in worker:\n" + e_str)
time.sleep(1)
timeout -= 1
if timeout <= 0:
raise Exception("Timeout while feeding partition")
logger.info("Processed {0} items in partition".format(count))
# read result queue
results = []
queue_out = mgr.get_queue('output')
while count > 0:
result = queue_out.get(block=True)
results.append(result)
count -= 1
queue_out.task_done()
logger.info("Finished processing partition")
return results
return _inference
def shutdown(cluster_info, grace_secs=0, queues=['input']):
"""Stops all TensorFlow nodes by feeding ``None`` into the multiprocessing.Queues.
Args:
:cluster_info: node reservation information for the cluster (e.g. host, executor_id, pid, ports, etc).
:queues: *INTERNAL_USE*
Returns:
A nodeRDD.mapPartitions() function
"""
def _shutdown(iter):
host = util.get_ip_address()
executor_id = util.read_executor_id()
# reconnect to shared queue
mgr = _get_manager(cluster_info, host, executor_id)
# send SIGTERM to Tensorboard proc (if running)
for node in cluster_info:
if node['host'] == host and node['executor_id'] == executor_id:
tb_pid = node['tb_pid']
if tb_pid != 0:
logger.info("Stopping tensorboard (pid={0})".format(tb_pid))
subprocess.Popen(["kill", str(tb_pid)])
# terminate any listening queues
logger.info("Stopping all queues")
for q in queues:
if q != 'error':
try:
queue = mgr.get_queue(q)
logger.info("Feeding None into {0} queue".format(q))
queue.put(None, block=True)
except (AttributeError, KeyError):
msg = "Queue '{}' not found on this node, check for exceptions on other nodes.".format(q)
raise Exception(msg)
# wait for grace period (after terminating feed queues)
if grace_secs > 0:
logger.info("Waiting for {} second grace period".format(grace_secs))
time.sleep(grace_secs)
# then check for any late exceptions
equeue = mgr.get_queue('error')
if (not equeue.empty()):
# note: "peek" this queue, since otherwise Spark might retry this "failed" task, find no errors in queue, and finish the job with SUCCESS
e_str = equeue.get()
equeue.put(e_str)
raise Exception("Exception in worker:\n" + e_str)
logger.info("Setting mgr.state to 'stopped'")
mgr.set('state', 'stopped')
return [True]
return _shutdown