-
Notifications
You must be signed in to change notification settings - Fork 11
/
weighted_mean.rs
395 lines (361 loc) · 11.7 KB
/
weighted_mean.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
use super::{Estimate, MeanWithError, Merge};
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};
/// Estimate the weighted and unweighted arithmetic mean of a sequence of
/// numbers ("population").
///
///
/// ## Example
///
/// ```
/// use average::WeightedMean;
///
/// let a: WeightedMean = (1..6).zip(1..6)
/// .map(|(x, w)| (f64::from(x), f64::from(w))).collect();
/// println!("The weighted mean is {}.", a.mean());
/// ```
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct WeightedMean {
/// Sum of the weights.
weight_sum: f64,
/// Weighted mean value.
weighted_avg: f64,
}
impl WeightedMean {
/// Create a new weighted and unweighted mean estimator.
pub fn new() -> WeightedMean {
WeightedMean {
weight_sum: 0.,
weighted_avg: 0.,
}
}
/// Add an observation sampled from the population.
#[inline]
pub fn add(&mut self, sample: f64, weight: f64) {
// The algorithm for the unweighted mean was suggested by Welford in 1962.
//
// See
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
// and
// http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.pdf.
self.weight_sum += weight;
let prev_avg = self.weighted_avg;
self.weighted_avg = prev_avg + (weight / self.weight_sum) * (sample - prev_avg);
}
/// Determine whether the sample is empty.
///
/// Might be a false positive if the sum of weights is zero.
#[inline]
pub fn is_empty(&self) -> bool {
self.weight_sum == 0.
}
/// Return the sum of the weights.
///
/// Returns 0 for an empty sample.
#[inline]
pub fn sum_weights(&self) -> f64 {
self.weight_sum
}
/// Estimate the weighted mean of the population.
///
/// Returns NaN for an empty sample, or if the sum of weights is zero.
#[inline]
pub fn mean(&self) -> f64 {
if !self.is_empty() { self.weighted_avg } else { f64::NAN }
}
}
impl core::default::Default for WeightedMean {
fn default() -> WeightedMean {
WeightedMean::new()
}
}
impl core::iter::FromIterator<(f64, f64)> for WeightedMean {
fn from_iter<T>(iter: T) -> WeightedMean
where
T: IntoIterator<Item = (f64, f64)>,
{
let mut a = WeightedMean::new();
for (i, w) in iter {
a.add(i, w);
}
a
}
}
impl core::iter::Extend<(f64, f64)> for WeightedMean {
fn extend<T: IntoIterator<Item = (f64, f64)>>(&mut self, iter: T) {
for (i, w) in iter {
self.add(i, w);
}
}
}
impl<'a> core::iter::FromIterator<&'a (f64, f64)> for WeightedMean {
fn from_iter<T>(iter: T) -> WeightedMean
where
T: IntoIterator<Item = &'a (f64, f64)>,
{
let mut a = WeightedMean::new();
for &(i, w) in iter {
a.add(i, w);
}
a
}
}
impl<'a> core::iter::Extend<&'a (f64, f64)> for WeightedMean {
fn extend<T: IntoIterator<Item = &'a (f64, f64)>>(&mut self, iter: T) {
for &(i, w) in iter {
self.add(i, w);
}
}
}
impl Merge for WeightedMean {
/// Merge another sample into this one.
///
///
/// ## Example
///
/// ```
/// use average::{WeightedMean, Merge};
///
/// let weighted_sequence: &[(f64, f64)] = &[
/// (1., 0.1), (2., 0.2), (3., 0.3), (4., 0.4), (5., 0.5),
/// (6., 0.6), (7., 0.7), (8., 0.8), (9., 0.9)];
/// let (left, right) = weighted_sequence.split_at(3);
/// let avg_total: WeightedMean = weighted_sequence.iter().collect();
/// let mut avg_left: WeightedMean = left.iter().collect();
/// let avg_right: WeightedMean = right.iter().collect();
/// avg_left.merge(&avg_right);
/// assert!((avg_total.mean() - avg_left.mean()).abs() < 1e-15);
/// ```
#[inline]
fn merge(&mut self, other: &WeightedMean) {
if other.is_empty() {
return;
}
if self.is_empty() {
*self = other.clone();
return;
}
let total_weight_sum = self.weight_sum + other.weight_sum;
self.weighted_avg = (self.weight_sum * self.weighted_avg
+ other.weight_sum * other.weighted_avg)
/ total_weight_sum;
self.weight_sum = total_weight_sum;
}
}
/// Estimate the weighted and unweighted arithmetic mean and the unweighted
/// variance of a sequence of numbers ("population").
///
/// This can be used to estimate the standard error of the weighted mean.
///
///
/// ## Example
///
/// ```
/// use average::WeightedMeanWithError;
///
/// let a: WeightedMeanWithError = (1..6).zip(1..6)
/// .map(|(x, w)| (f64::from(x), f64::from(w))).collect();
/// println!("The weighted mean is {} ± {}.", a.weighted_mean(), a.error());
/// ```
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct WeightedMeanWithError {
/// Sum of the squares of the weights.
weight_sum_sq: f64,
/// Estimator of the weighted mean.
weighted_avg: WeightedMean,
/// Estimator of unweighted mean and its variance.
unweighted_avg: MeanWithError,
}
impl WeightedMeanWithError {
/// Create a new weighted and unweighted mean estimator.
#[inline]
pub fn new() -> WeightedMeanWithError {
WeightedMeanWithError {
weight_sum_sq: 0.,
weighted_avg: WeightedMean::new(),
unweighted_avg: MeanWithError::new(),
}
}
/// Add an observation sampled from the population.
#[inline]
pub fn add(&mut self, sample: f64, weight: f64) {
// The algorithm for the unweighted mean was suggested by Welford in 1962.
// The algorithm for the weighted mean was suggested by West in 1979.
//
// See
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
// and
// http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.pdf.
self.weight_sum_sq += weight * weight;
self.weighted_avg.add(sample, weight);
self.unweighted_avg.add(sample);
}
/// Determine whether the sample is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.unweighted_avg.is_empty()
}
/// Return the sum of the weights.
///
/// Returns 0 for an empty sample.
#[inline]
pub fn sum_weights(&self) -> f64 {
self.weighted_avg.sum_weights()
}
/// Return the sum of the squared weights.
///
/// Returns 0 for an empty sample.
#[inline]
pub fn sum_weights_sq(&self) -> f64 {
self.weight_sum_sq
}
/// Estimate the weighted mean of the population.
///
/// Returns NaN for an empty sample, or if the sum of weights is zero.
#[inline]
pub fn weighted_mean(&self) -> f64 {
self.weighted_avg.mean()
}
/// Estimate the unweighted mean of the population.
///
/// Returns NaN for an empty sample.
#[inline]
pub fn unweighted_mean(&self) -> f64 {
self.unweighted_avg.mean()
}
/// Return the sample size.
#[inline]
pub fn len(&self) -> u64 {
self.unweighted_avg.len()
}
/// Calculate the effective sample size.
#[inline]
pub fn effective_len(&self) -> f64 {
if self.is_empty() {
return 0.;
}
let weight_sum = self.weighted_avg.sum_weights();
weight_sum * weight_sum / self.weight_sum_sq
}
/// Calculate the *unweighted* population variance of the sample.
///
/// This is a biased estimator of the variance of the population.
///
/// Returns NaN for an empty sample.
#[inline]
pub fn population_variance(&self) -> f64 {
self.unweighted_avg.population_variance()
}
/// Calculate the *unweighted* sample variance.
///
/// This is an unbiased estimator of the variance of the population.
///
/// Returns NaN for samples of size 1 or less.
#[inline]
pub fn sample_variance(&self) -> f64 {
self.unweighted_avg.sample_variance()
}
/// Estimate the standard error of the *weighted* mean of the population.
///
/// Returns NaN if the sample is empty, or if the sum of weights is zero.
///
/// This unbiased estimator assumes that the samples were independently
/// drawn from the same population with constant variance.
#[inline]
pub fn variance_of_weighted_mean(&self) -> f64 {
// This uses the same estimate as WinCross, which should provide better
// results than the ones used by SPSS or Mentor.
//
// See http://www.analyticalgroup.com/download/WEIGHTED_VARIANCE.pdf.
let weight_sum = self.weighted_avg.sum_weights();
if weight_sum == 0. {
return f64::NAN;
}
let inv_effective_len = self.weight_sum_sq / (weight_sum * weight_sum);
self.sample_variance() * inv_effective_len
}
/// Estimate the standard error of the *weighted* mean of the population.
///
/// Returns NaN if the sample is empty, or if the sum of weights is zero.
///
/// This unbiased estimator assumes that the samples were independently
/// drawn from the same population with constant variance.
#[cfg(any(feature = "std", feature = "libm"))]
#[cfg_attr(doc_cfg, doc(cfg(any(feature = "std", feature = "libm"))))]
#[inline]
pub fn error(&self) -> f64 {
num_traits::Float::sqrt(self.variance_of_weighted_mean())
}
}
impl Merge for WeightedMeanWithError {
/// Merge another sample into this one.
///
///
/// ## Example
///
/// ```
/// use average::{WeightedMeanWithError, Merge};
///
/// let weighted_sequence: &[(f64, f64)] = &[
/// (1., 0.1), (2., 0.2), (3., 0.3), (4., 0.4), (5., 0.5),
/// (6., 0.6), (7., 0.7), (8., 0.8), (9., 0.9)];
/// let (left, right) = weighted_sequence.split_at(3);
/// let avg_total: WeightedMeanWithError = weighted_sequence.iter().collect();
/// let mut avg_left: WeightedMeanWithError = left.iter().collect();
/// let avg_right: WeightedMeanWithError = right.iter().collect();
/// avg_left.merge(&avg_right);
/// assert!((avg_total.weighted_mean() - avg_left.weighted_mean()).abs() < 1e-15);
/// assert!((avg_total.error() - avg_left.error()).abs() < 1e-15);
/// ```
#[inline]
fn merge(&mut self, other: &WeightedMeanWithError) {
self.weight_sum_sq += other.weight_sum_sq;
self.weighted_avg.merge(&other.weighted_avg);
self.unweighted_avg.merge(&other.unweighted_avg);
}
}
impl core::default::Default for WeightedMeanWithError {
fn default() -> WeightedMeanWithError {
WeightedMeanWithError::new()
}
}
impl core::iter::FromIterator<(f64, f64)> for WeightedMeanWithError {
fn from_iter<T>(iter: T) -> WeightedMeanWithError
where
T: IntoIterator<Item = (f64, f64)>,
{
let mut a = WeightedMeanWithError::new();
for (i, w) in iter {
a.add(i, w);
}
a
}
}
impl core::iter::Extend<(f64, f64)> for WeightedMeanWithError {
fn extend<T: IntoIterator<Item = (f64, f64)>>(&mut self, iter: T) {
for (i, w) in iter {
self.add(i, w);
}
}
}
impl<'a> core::iter::FromIterator<&'a (f64, f64)> for WeightedMeanWithError {
fn from_iter<T>(iter: T) -> WeightedMeanWithError
where
T: IntoIterator<Item = &'a (f64, f64)>,
{
let mut a = WeightedMeanWithError::new();
for &(i, w) in iter {
a.add(i, w);
}
a
}
}
impl<'a> core::iter::Extend<&'a (f64, f64)> for WeightedMeanWithError {
fn extend<T: IntoIterator<Item = &'a (f64, f64)>>(&mut self, iter: T) {
for &(i, w) in iter {
self.add(i, w);
}
}
}