-
Notifications
You must be signed in to change notification settings - Fork 11
/
histogram_const.rs
385 lines (346 loc) · 9.98 KB
/
histogram_const.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
//! Histogram implementation via const generics.
/// Invalid ranges were specified for constructing the histogram.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum InvalidRangeError {
/// The number of ranges is less than the number of bins + 1.
NotEnoughRanges,
/// The ranges are not sorted or `(low, high)` where `low` > `high` is
/// encountered.
NotSorted,
/// A range contains `nan`.
NaN,
}
/// A sample is out of range of the histogram.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct SampleOutOfRangeError;
impl<const LEN: usize> ::core::fmt::Debug for Histogram<LEN>
where
[u8; LEN + 1]: Sized,
{
fn fmt(&self, formatter: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
formatter.write_str("Histogram {{ range: ")?;
self.range[..].fmt(formatter)?;
formatter.write_str(", bins: ")?;
self.bin[..].fmt(formatter)?;
formatter.write_str(" }}")
}
}
impl<const LEN: usize> Histogram<LEN>
where
[u8; LEN + 1]: Sized,
{
/// Construct a histogram with constant bin width.
#[inline]
pub fn with_const_width(start: f64, end: f64) -> Self {
let step = (end - start) / (LEN as f64);
let mut range = [0.; LEN + 1];
for (i, r) in range.iter_mut().enumerate() {
*r = start + step * (i as f64);
}
Self {
range,
bin: [0; LEN],
}
}
/// Construct a histogram from given ranges.
///
/// The ranges are given by an iterator of floats where neighboring
/// pairs `(a, b)` define a bin for all `x` where `a <= x < b`.
///
/// Fails if the iterator is too short (less than `n + 1` where `n`
/// is the number of bins), is not sorted or contains `nan`. `inf`
/// and empty ranges are allowed.
#[inline]
pub fn from_ranges<T>(ranges: T) -> Result<Self, InvalidRangeError>
where
T: IntoIterator<Item = f64>,
{
let mut range = [0.; LEN + 1];
let mut last_i = 0;
for (i, r) in ranges.into_iter().enumerate() {
if i > LEN {
break;
}
if r.is_nan() {
return Err(InvalidRangeError::NaN);
}
if i > 0 && range[i - 1] > r {
return Err(InvalidRangeError::NotSorted);
}
range[i] = r;
last_i = i;
}
if last_i != LEN {
return Err(InvalidRangeError::NotEnoughRanges);
}
Ok(Self {
range,
bin: [0; LEN],
})
}
/// Find the index of the bin corresponding to the given sample.
///
/// Fails if the sample is out of range of the histogram.
#[inline]
pub fn find(&self, x: f64) -> Result<usize, SampleOutOfRangeError> {
// We made sure our ranges are valid at construction, so we can
// safely unwrap.
match self.range.binary_search_by(|p| p.partial_cmp(&x).unwrap()) {
Ok(i) if i < LEN => Ok(i),
Err(i) if i > 0 && i < LEN + 1 => Ok(i - 1),
_ => Err(SampleOutOfRangeError),
}
}
/// Add a sample to the histogram.
///
/// Fails if the sample is out of range of the histogram.
#[inline]
pub fn add(&mut self, x: f64) -> Result<(), SampleOutOfRangeError> {
if let Ok(i) = self.find(x) {
self.bin[i] += 1;
Ok(())
} else {
Err(SampleOutOfRangeError)
}
}
/// Return the ranges of the histogram.
#[inline]
pub fn ranges(&self) -> &[f64] {
&self.range[..]
}
/// Return an iterator over the bins and corresponding ranges:
/// `((lower, upper), count)`
#[inline]
pub fn iter(&self) -> IterHistogram<'_> {
self.into_iter()
}
/// Reset all bins to zero.
#[inline]
pub fn reset(&mut self) {
self.bin = [0; LEN];
}
/// Return the lower range limit.
///
/// (The corresponding bin might be empty.)
#[inline]
pub fn range_min(&self) -> f64 {
self.range[0]
}
/// Return the upper range limit.
///
/// (The corresponding bin might be empty.)
#[inline]
pub fn range_max(&self) -> f64 {
self.range[LEN]
}
/// Return the bins of the histogram.
#[inline]
pub fn bins(&self) -> &[u64] {
&self.bin[..]
}
/// Estimate the variance for the given bin.
///
/// The square root of this estimates the error of the bin count.
#[inline]
pub fn variance(&self, bin: usize) -> f64 {
let count = self.bins()[bin];
let sum: u64 = self.bins().iter().sum();
multinomial_variance(count as f64, 1. / (sum as f64))
}
/// Return an iterator over the bins normalized by the bin widths.
#[inline]
pub fn normalized_bins(&self) -> IterNormalized<<&Self as IntoIterator>::IntoIter> {
IterNormalized {
histogram_iter: self.into_iter(),
}
}
/// Return an iterator over the bin widths.
#[inline]
pub fn widths(&self) -> IterWidths<<&Self as IntoIterator>::IntoIter> {
IterWidths {
histogram_iter: self.into_iter(),
}
}
/// Return an iterator over the bin centers.
#[inline]
pub fn centers(&self) -> IterBinCenters<<&Self as IntoIterator>::IntoIter> {
IterBinCenters {
histogram_iter: self.into_iter(),
}
}
/// Return an iterator over the bin variances.
///
/// This is more efficient than calling `variance()` for each bin.
#[inline]
pub fn variances(&self) -> IterVariances<<&Self as IntoIterator>::IntoIter> {
let sum: u64 = self.bins().iter().sum();
IterVariances {
histogram_iter: self.into_iter(),
sum_inv: 1. / (sum as f64),
}
}
}
/// Iterate over all `(range, count)` pairs in the histogram.
#[derive(Clone, Debug)]
pub struct IterHistogram<'a> {
remaining_bin: &'a [u64],
remaining_range: &'a [f64],
}
impl<'a> ::core::iter::Iterator for IterHistogram<'a> {
type Item = ((f64, f64), u64);
fn next(&mut self) -> Option<((f64, f64), u64)> {
if let Some((&bin, rest)) = self.remaining_bin.split_first() {
let left = self.remaining_range[0];
let right = self.remaining_range[1];
self.remaining_bin = rest;
self.remaining_range = &self.remaining_range[1..];
return Some(((left, right), bin));
}
None
}
}
impl<'a, const LEN: usize> ::core::iter::IntoIterator for &'a Histogram<LEN>
where
[u8; LEN + 1]: Sized,
{
type Item = ((f64, f64), u64);
type IntoIter = IterHistogram<'a>;
fn into_iter(self) -> IterHistogram<'a> {
IterHistogram {
remaining_bin: self.bins(),
remaining_range: self.ranges(),
}
}
}
impl<'a, const LEN: usize> ::core::ops::AddAssign<&'a Self> for Histogram<LEN>
where
[u8; LEN + 1]: Sized,
{
#[inline]
fn add_assign(&mut self, other: &Self) {
for (a, b) in self.range.iter().zip(other.range.iter()) {
assert_eq!(a, b, "Both histograms must have the same ranges");
}
for (x, y) in self.bin.iter_mut().zip(other.bin.iter()) {
*x += y;
}
}
}
impl<const LEN: usize> ::core::ops::MulAssign<u64> for Histogram<LEN>
where
[u8; LEN + 1]: Sized,
{
#[inline]
fn mul_assign(&mut self, other: u64) {
for x in &mut self.bin[..] {
*x *= other;
}
}
}
impl<const LEN: usize> crate::Merge for Histogram<LEN>
where
[u8; LEN + 1]: Sized,
{
fn merge(&mut self, other: &Self) {
assert_eq!(self.bin.len(), other.bin.len());
for (a, b) in self.range.iter().zip(other.range.iter()) {
assert_eq!(a, b, "Both histograms must have the same ranges");
}
for (a, b) in self.bin.iter_mut().zip(other.bin.iter()) {
*a += *b;
}
}
}
/// A histogram with a number of bins known at compile time.
#[derive(Clone)]
pub struct Histogram<const LEN: usize>
where
[u8; LEN + 1]: Sized,
{
/// The ranges defining the bins of the histogram.
range: [f64; LEN + 1],
/// The bins of the histogram.
bin: [u64; LEN],
}
/// Calculate the multinomial variance. Relevant for histograms.
#[inline(always)]
fn multinomial_variance(n: f64, n_tot_inv: f64) -> f64 {
n * (1. - n * n_tot_inv)
}
/// Iterate over the bins normalized by bin width.
#[derive(Clone, Debug)]
pub struct IterNormalized<T>
where
T: Iterator<Item = ((f64, f64), u64)>,
{
histogram_iter: T,
}
impl<T> Iterator for IterNormalized<T>
where
T: Iterator<Item = ((f64, f64), u64)>,
{
type Item = f64;
#[inline]
fn next(&mut self) -> Option<f64> {
self.histogram_iter
.next()
.map(|((a, b), count)| (count as f64) / (b - a))
}
}
/// Iterate over the widths of the bins.
#[derive(Clone, Debug)]
pub struct IterWidths<T>
where
T: Iterator<Item = ((f64, f64), u64)>,
{
histogram_iter: T,
}
impl<T> Iterator for IterWidths<T>
where
T: Iterator<Item = ((f64, f64), u64)>,
{
type Item = f64;
#[inline]
fn next(&mut self) -> Option<f64> {
self.histogram_iter.next().map(|((a, b), _)| b - a)
}
}
/// Iterate over the bin centers.
#[derive(Clone, Debug)]
pub struct IterBinCenters<T>
where
T: Iterator<Item = ((f64, f64), u64)>,
{
histogram_iter: T,
}
impl<T> Iterator for IterBinCenters<T>
where
T: Iterator<Item = ((f64, f64), u64)>,
{
type Item = f64;
#[inline]
fn next(&mut self) -> Option<f64> {
self.histogram_iter.next().map(|((a, b), _)| 0.5 * (a + b))
}
}
/// Iterate over the variances.
#[derive(Clone, Debug)]
pub struct IterVariances<T>
where
T: Iterator<Item = ((f64, f64), u64)>,
{
histogram_iter: T,
sum_inv: f64,
}
impl<T> Iterator for IterVariances<T>
where
T: Iterator<Item = ((f64, f64), u64)>,
{
type Item = f64;
#[inline]
fn next(&mut self) -> Option<f64> {
self.histogram_iter
.next()
.map(|(_, n)| multinomial_variance(n as f64, self.sum_inv))
}
}