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1 Introduction

In a typical simulation, one of the results consists of a count of neutrons histories (“rays”)
with different weights w. The sum of these weights, Ii, is an estimate of the mean number of
neutrons hitting bin number i in the monitor (or detector) per second in a “real” experiment,

Ii =
∑

j

wi,j , (1)

where wi,j is the weight of ray number j arriving in bin number i. If we increase the number
of rays (by increasing the value assigned to the --ncount parameter), the statistical mean
value of Ii will remain unchanged, but the precision (in the meaning of repeatability) of the
simulation will be enhanced. Another result of the simulation is an estimate of the statistical
errors of the intensities, i.e. a measure of the simulation precision. Sec. 4.2.1 in the User and
programmers guide to the neutron ray-tracing package McStas, version 2.0 1 explains how these
statistical errors are estimated within McStas, and the standard deviation σ is approximated
by

σ2(Ii) =
∑

j

w2
i,j . (2)

The paper2 by K. Lefmann et al describes in detail how simulated data may be scaled to
absolute measurement times.

2 Estimation of counting times and derivation of virtual

data from simulations

2.1 Real vs simulated data

A dataset from a “real” experiment is often analyzed using Poisson statistics. When the num-
ber of counts ni per bin exceeds ∼20, the Normal Approximation to the Poisson distribution
is adequate. Here the standard deviation σi for each point is

σ2
i = ni , (3)

and the total number of counts is
N =

∑

i

ni (4)

with the standard deviation σ
σ2 =

∑

i

σ2
i = N . (5)

The approximation improves as ni increases. As is illustrated in Sec. 2.4 in general the
“counts” per bin in a simulated data set rarely demonstrates this relation.

1http://mcstas.org/documentation/manual/mcstas-2.0-manual.pdf
2Journal of Neutron Research, Vol. 16, Nos. 3–4, September–December 2008, 97–111
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2.2 Counting time and data quality

With a simulated data set (Ii, Ierr,i) and a counting time t we will have ni = tIi counts in bin
number i, with the standard deviation t Ierr,i. Simulations can (also) be useful to estimate
a necessary counting time to get data of a specified quality. To make a reliable estimate of
this counting time, first of all the simulated instrument model must be realistic. Further, the
noise content of the simulated data set must be less than it would be in a real experiment,
so we require that

t Ierr,i ≤
√
ni =

√

t Ii (6)

from which we get

t ≤
Ii

I2err,i
. (7)

Eq. 6 must hold for every individual bin in the data set. As is illustrated in Sec. 2.4, in general
Eq. 6 is not fulfilled. Either the noise content of the simulated data bins is lower or higher
than it would be in a real experiment. If Eq. 6 is fulfilled, the noise content of the simulated
data is less than it is in a measured data set, and the simulated data set can then be used as
the fundament at which base our estimate of a “real” data set.

2.3 Estimating the appearance of a “real” data set

Assume that we have a simulated data set (I, Ierr) which, for a certain counting time t fulfill
Eq. 6, so we have a fundament at which we can base the estimate of a “real“ data set. Assume
that we have ni = tIi counts in bin number i and the standard deviation of that bin is tIerr,i.
We then require that the noise content of a “real” data set is

σi =
√
ni > tIerr,i , (8)

so we must add noise to the simulated data in order to derive a more realistic set of data. The
amount of noise which must be added to each bin is estimated from the simulated standard
deviations. For each bin the noise could be added as a random number from a normal
distribution with standard deviation E+,i and mean parameter 0. The magnitude of E+,i is

E2
+,i = n2

i − (tIerr,i)
2 . (9)

Sec. 2.4 gives an example to illustrate the use of Eq. 9.

2.4 Example

Fig. 1A shows 2 data sets simulated with very different statistics, i.e. 1e7 and 1e11 neutron
rays. The circles indicate the simulated intensities whereas the standard deviations are shown
with dots. The relative error of the two data sets is about 0.5% and 50% respectively. As
expected, the intensities simulated with the fewer neutron rays has a higher content of noise,
which is also visualized by a comparison of the standard deviations belonging to the two
data sets: the difference in magnitude amounts to a factor

√
104, which is consistent with the

errorbars scaling with the 1/
√
--ncount .
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Figure 1: Data simulated using the FREIA instrument file with different statistics, 1e7 rays and 1e11 rays. The data is the direct
beam incident with a grazing angle θ = 4◦ at a 4 × 4 cm2 horizontal time-of-flight sensitive monitor at the sample position.
The data is binned to constant δQ/Q = 6%, where Q = 4π sin θ/λ is the wavevector transfer. The wavelengths λ are calculated
from the time-of-flight and grazing angle θ. θ is defined by a pair of collimating slits at 2.28 m and 0.28 m upstream the sample
position.
A: The circles show the simulated intensities and the dots show the associated standard deviations for 2 simulations of the direct
beam. The simulations have been conducted with identical instrument parameters but different number of rays (1e7 and 1e11
respectively). The grey dashed line show the squareroot of the intensity simulated with 1e11 rays.
B: The data from A but scaled with a counting time of t = 5 ms. The circles show the number of counts tI, the dots are the
simulated standard deviations tIerr and the grey dashed line show the squareroot of tI.
C: The data from B (1e11 rays only) with added noise according to Eq. 9.

Now imagine that the simulated intensities shown in Fig. 1A were data from a real experiment
with counting time 1 second. Then the y-axis label would be “counts” and the standard
deviations would lie at the dashed grey line which indicate the squareroot of the green ’counts’.
Due to the very high intensity of the direct beam, the relative error of a 1 s measurement
would be extremely low, of the order of

√
107/107 ≈ 0.03%. Even when simulating with

1011 neutron rays, the standard deviations of the simulated data points are about one order
of magnitude above the grey dashed line. This indicates that the content of noise in the
actual simulation is much higher than it would be in a real measurement with counting time
t = 1 s. Therefore we conclude that the quality of the simulated data set is not good enough
to estimate the appearance of a real data set with counting times of the order of seconds or
longer. Fig. 1B shows the same simulated data sets, but now both of them have been scaled
by a counting time of t = 5 ms. That is the circles now indicate the estimated number of
counts t I and the dots indicate the standard deviations t Ierr. The grey dashed line shows
the squareroot of the number of counts

√
t I, that is the magnitude of the standard deviation

if it was a real measurement. With this short counting time t = 5 ms, the noise content of
the good statistics data set is less than or equal to

√
t I. That is the bins with the highest

standard deviations corresponds to a real measurement with counting time t = 5 ms. After
scaling with a counting time of 5 ms the majority of the simulated data points now contains
less noise than a real meaurement with the same counting time.

If the purpose of the simulation is to get a realistic picture of the appearance of a “real” 5 ms
measurement, we must add an amount of noise to the simulated data. The amount of noise
is derived from the simulated standard deviation and is given by Eq. 9. Fig. 1C shows the
estimate of the “real” 5 ms measurement and the standard deviations of the points which
now coincide with the dashed grey line indicating

√
t I.
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