
Initial File System 1

Initial File System
The Initial File System feature for Golem introduces a significant enhancement to worker functionality, allowing pre-
populated file systems upon worker instantiation.

This document outlines the feature's purpose, use cases, implementation details, and necessary changes across
various Golem components. It covers the rationale behind the feature, permissions handling, live update
considerations, and technical specifications for updating the Golem Manifest, REST API, CLI, Worker Gateway, and
Worker Executor.

The document provides a comprehensive guide for developers and system architects to understand and implement
this feature, including code snippets, API examples, and gRPC service definitions.

By enabling static content, configuration data, and reference datasets to be readily available to workers, this feature
aims to align Golem's functionality more closely with developer expectations and container-like environments.

Use Cases
Developers may use the Initial File System feature for static content (such as HTML, CSS, and images),
configuration data (YAML/TOML/HOCON), reference data sets, or even databases (SQLite) containing data that the
application requires in order to function.

HTML, CSS, Javascript

Images, videos

TOML, YAML, JSON, properties, and other configuration files

Databases (SQLite, etc.)

Standard libraries, for interpreted languages like Python, JS, etc.

Implementation Notes
Permissions
Each file in the initial file set may have a permission, which affects the ability for the file to be changed:

Initial File System 2

Read-only. A read-only permission implies that the file may be read, but not updated. This permission is
appropriate for static content that is not intended to change. Use of the read-only permission will result in more
efficient storage in Golem, because the content does not have to be duplicated across every worker. This is
ideal for videos, images, and other data files that are large and not intended to dynamically change from the
business logic of the worker.

Read-write. A read-write permission implies that the file may be both read and written. Such files will be
duplicated on a worker-by-worker basis, and cannot be shared globally across all workers, therefore they incur
additional storage and memory costs.

Live Update
An update of a component must allow update of the file set. This could happen if newer versions of a component
require new configuration, or if there have been updates to static data, such as HTML, CSS, images, or databases.

If a worker is custom or auto-updated to the newer component version (”live update”), then after the update of logic
and state has been performed, and the worker’s state has been fully updated, but before the worker resumes
execution, it is theoretically possible to update the file set.

Files that are “read-only” can be safely updated at such a safe point. However, files that are “read-write” may never
be updated, and must be skipped over, even if the newer version of the component has changed the contents of
those files.

💡 It could be useful to issue a warning if live-update is attempted on a worker and the contents of read-write
files have changed in the update.

Implementation Guide
In order to implement the Initial File System feature, a number of changes must be propagated across the various
components that comprise Golem:

Golem Manifest. The golem.yaml manifest file, which is used to declaratively describe build and deployment
options for Golem applications, must be updated to support specifying the initial file set.

REST API. The Golem REST API must be updated so that component and creation allow for specification of the
initial file set.

Golem CLI. The Golem CLI must be updated so that it properly utilizes the Golem Manifest and the REST API in
order to properly upload the initial file set upon component creation or update.

Worker Gateway. The Worker Gateway must be updated so that it can serve files from a worker.

Worker Executor. The Worker Executor must be updated so that it correctly populates the file system for a new
worker, and exposes a new API for retrieving worker files that can be used by the Worker Gateway for serving
content.

The following sections detail these changes in more depth, and contain links to repositories.

Golem Manifest
The Golem manifest file is currently a YAML file that is prototyped in the wasm-rpc project, but which needs to be
supported and integrated into golem-cli . The intention behind the manifest file is to provide a single source of truth
about what a component depends on, what its configuration starts out being, what its initial files are, and so on.

Initial File System 3

This YAML file, as prototyped in wasm-rpc , currently only serves the needs of RPC, providing a way to declaratively
describe the RPC dependencies of a component. However, as part of the Initial File System feature, the format can
be extended to include a declarative specification of the initial file system of the component. This will involve not
just extending the specification of the YAML file, but also adding support into Golem CLI for parsing and validating
and using the YAML file, since currently, the YAML file is only used in the wasm-rpc in-development work.

Note that references to files that are not stored locally are supported, but will be resolved at deployment time, as
Golem CLI downloads all such resources and packages them up.

The Golem Manifest file will need to be parsed by Golem CLI, so that when it creates or uploads a component, it
can gather together, compress, and upload the files and permissions to the REST API.

component:

 name: component-abc

 ...

 properties:

 files:

 - sourcePath: ./a.txt

 targetPath: /a.txt

 permissions: read-only

 - sourcePath: ../../b.dat

 targetPath: /b.dat

 permissions: read-write

 - sourcePath: https://foo.com/bar?baz=quux

 targetPath: /bar.html

 permissions: read-only

💡 Links to Resources

PR that introduces the Golem manifest format in wasm-rpc: https://github.com/golemcloud/wasm-
rpc/pull/85

The golem-cli project, which wraps wasm-rpc as a subcommand

Crate: https://github.com/golemcloud/golem/tree/main/golem-cli

Command wrapping:
https://github.com/golemcloud/golem/blob/033576f388fc380bb7ddc72d01a505da30d281bc/golem-
cli/src/oss/command.rs#L60-L65

The files properties should defined and accessed as an extension of the models introduced in the above
wasm-rpc PR; for possible extension points see:

model::wasm_rpc::WasmComponentProperties unknown_properties and

model::oam::Component::typed_properties

Open Application Model

REST API
There are three APIs that must be updated:

Component API. The component API must allow specifying the initial file set, together with their permissions,
on both component creation and component update.

https://github.com/golemcloud/wasm-rpc/pull/85
https://github.com/golemcloud/wasm-rpc/pull/85
https://github.com/golemcloud/golem/tree/main/golem-cli
https://github.com/golemcloud/golem/blob/033576f388fc380bb7ddc72d01a505da30d281bc/golem-cli/src/oss/command.rs#L60-L65
https://github.com/golemcloud/golem/blob/033576f388fc380bb7ddc72d01a505da30d281bc/golem-cli/src/oss/command.rs#L60-L65
https://oam.dev/

Initial File System 4

Worker API. The worker API must support enumerating and retrieving files from a worker.

API Definition API. The API Definition API must support a new binding type that will allow the Worker Gateway
to easily serve file content from workers.

Some guidelines and technical details for these updates are provided in the sections that follow.

Component API
Currently, the REST API for component management uses multi-part encoding to accept new components with
name and component fields. For updating existing components, it expects only the binary to be specified as the
content for the request.

These APIs will have to be modified in the following ways:

Creation. The component creation API will have to accept an arbitrary number of file uploads, each associated
with a particular path in the initial file system. From the perspective of the REST API, the initial file system can
be specified as a compressed archive (ZIP), which contains all files, together with their paths. A single new
files field then becomes optional, whose content is the binary file containing all initial files. This archive is
decompressed on the server side and expanded to the initial file system of the component, stored using the
existing blob storage mechanism used to store the component binaries themselves. Another field, perhaps
called filesPermissions , will be required to specify any custom permissions for the file set.

💡 Simpler Approach?

An alternate way to encode files and permissions might be repeating the multi-part fields file and
permission . Each file could still be compressed, and while this would increase total request size (due to
the inability to compress across files), it’s a simpler format for purposes of specifying both file and
permission.

Update. The existing update API will have to be modified to support multi-part encoding, while still supporting
the older API (in which the component binary is the only element being updated) for backward compatibility. In
this multi-part encoding, and to match the creation API, the component field could specify the binary, the files
field could specify the ZIP archive, and the filesPermissions field could specify file permissions.

💡 If permissions are not specified during creation or update, they should default to read-only, because
read-only files will be stored more efficiently, and due to their immutable nature, could eventually be
propagated to CDN.

When completed, these new and newly modified APIs must have rigorous validation and fail in constructive ways,
consistent with the existing REST APIs.

The existing blob storage mechanism will be used to store the initial files and their permissions.

Worker API
The Worker API must be updated to expose the file system of a worker. This enhancement to the Worker API will
allow tools like Golem CLI to access the worker file system (note that modifying the CLI to expose the worker file
system is beyond the scope of this specification).

GET /v1/components/{component_id}/workers/{worker_name}/files/ . Retrieves the top-level listing of nodes in the worker’s
file system. The listing contains information on the type of each node, as well as other metadata.

Initial File System 5

[{"type": "directory", "name": "foo"}, {"type": "file", "name": "bar.txt"}, ...]

GET /v1/components/{component_id}/workers/{worker_name}/files/<path> . Retrieves the file at the specified path or lists the
contents of the directory at the specified path, depending on whether or not the path points to a file node or a
directory node.

API Definition API
The API Definition API allows creating and updating of API Definitions. In addition, it supports importing an OpenAPI
specification, augmented with custom Golem properties.

An API Definition consist of one or more routes, which define not only the HTTP Method, path segments (including
variables), and other OpenAPI-like pieces of information, but also how the Worker Gateway should implement the
route based on invoking a function of a specified worker.

In order to implement support for serving content in the Worker Gateway, it is necessary to support a new binding
type. This new binding type, tentatively called file-server , allows specifying a Rib script, which will return the path
and content type of the file that the Worker Gateway will serve.

The new binding type does not require the user to specification a workerName . In case the workerName is not specified,
then the Worker Gateway is free to spawn a new worker for each request to the route (this will be a performance
bottleneck but addressing it is not part of this ticket), so that it can access the files of the worker through the
Worker Executor.

Once these changes have been implemented in the data models for API definitions, the following APIs can be
updated:

API Definition Creation. Creating a new API Definition must support the new binding type.

API Definition Update. Updating an existing API Definition must support the new binding type.

API Definition Read. The new binding type should be visible when retrieved by API.

API Definition Import from OpenAPI. Golem extensions to OpenAPI must support the new binding type.

The following shows what the new format for API Definitions could look like under this change:

{

 "id": "twitter-pages",

 "draft": true,

 "version": "0.0.1",

 "routes": [

 {

 "method": "Get",

 "path": "/static/{+file}",

 "binding": {

 "type": "file-server",

 "componentId": {

 "componentId": "1b04d021-9e8e-4f44-832a-e73b32eeb0ba",

 "version": 0

 },

 "workerName": "<optional>",

 "response": "{status: 200, file-path: request.path.file, headers: {ContentType: \"

 }

 }

Initial File System 6

]

}

The following shows what the new format for OpenAPI import could look like under this change:

{

 "openapi": "3.0.0",

 "info": {

 "title": "twitter pages",

 "version": "1.0.0"

 },

 "x-golem-api-definition-id": "twitter-pages",

 "x-golem-api-definition-version": "0.0.1",

 "paths": {

 "/static/{+file}": {

 "x-golem-worker-bridge": {

 "type": "file-server",

 "workerName": "<optional>",

 "component-id": "1b04d021-9e8e-4f44-832a-e73b32eeb0ba",

 "component-version": "0.0.1",

 "response": "{status: 200, file-path: request.path.file, headers: {ContentType: \"

 },

 "get": {

 "summary": "Get Twitter Home Page",

 "description": "Get the home page of twitter",

 "parameters": [

 {

 "name": "+file",

 "in": "path",

 "required": true,

 "schema": {

 "type": "string"

 }

 }

],

 "responses": {

 "200": {

 "description": "OK",

 "content": {

 "image/png": {

 "schema": {

 "type": "string",

 "format": "binary"

 }

 }

 }

 },

 "404": {

 "description": "Contents not found"

Initial File System 7

 }

 }

 }

 }

 }

}

💡 Links to Resources

Upload an API definition (Registering an API definition):
https://github.com/golemcloud/golem/blob/main/golem-worker-service/src/api/api_definition.rs#L75

Deploy the API in gateway: https://github.com/golemcloud/golem/blob/main/golem-worker-
service/src/api/api_deployment.rs#L33

Golem CLI
The Golem CLI tool uses the REST API in order to create and update components. Once the Initial File System
feature is implemented, then the CLI must be updated to support uploading the initial file system anytime a
component is created or updated (see the golem-cli component create and golem-cli component update commands).

Since the Initial File System will be described inside the Golem Manifest file (golem.yaml), the CLI will need to identify
and read this file, then package up all the files (both local and remote, by downloading remote files), and encode
them appropriately for the REST API.

💡 Links to Resources

Create/Update component command: https://github.com/golemcloud/golem/blob/main/golem-
cli/src/command/component.rs#L31

golem-cli component service that’s responsible for doing the necessary steps before calling the server
APIs:

https://github.com/golemcloud/golem/blob/main/golem-cli/src/service/component.rs#L33

Worker Gateway
The Worker Gateway is the primary REST API interface to components deployed to Golem. The Worker Gateway is
responsible for serving API Definitions by delegating to and invoking functions on specific workers.

In order to allow the Initial File System feature to be used for hosting content stored inside the file system of a
worker, while still allowing this content to be under the control of the worker, it is necessary to add support for
serving content directly to the Worker Gateway.

The Worker Gateway needs to be modified so that, for binding type of file-server , it no longer expects the Rib
script to return a response that is converted to the response of the associated route. Rather, when the Worker
Gateway encounters a binding type of a file-server for a route, it will understand the Rib script will return a file path
(or an error). If the Rib script returns a file path, then the Worker Gateway will use the Worker Executor API in order

https://github.com/golemcloud/golem/blob/main/golem-worker-service/src/api/api_definition.rs#L75
https://github.com/golemcloud/golem/blob/main/golem-worker-service/src/api/api_deployment.rs#L33
https://github.com/golemcloud/golem/blob/main/golem-worker-service/src/api/api_deployment.rs#L33
https://github.com/golemcloud/golem/blob/main/golem-cli/src/command/component.rs#L31
https://github.com/golemcloud/golem/blob/main/golem-cli/src/command/component.rs#L31

Initial File System 8

to stream the contents of the file located at the file path. This will allow the Worker Gateway to serve content from
workers directly.

With the file-server binding type, the Rib script associated with a route must return a record containing at least the
file-path , relative to the worker file system, and optionally, status and headers that may specify the content type
(among other headers):

// Assumes route is something like: /static/{+file}

{file-path: request.path.file, status: 200, headers: {ContentType: "image/png"}}

If the record does not contain a header specifying content type, then the content type will be inferred based on the
extension of the file, using a Rust library such as mime-infer.

💡 For convenience reasons, the worker gateway should support the Rib script returning the following
alternatives to the “full record”:

A string, representing the file path. This can be used in very simple cases, where the Worker Gateway
is responsible for inferring the media type of the file.

A string wrapped in a result . This can be used, again, for simple cases, where the script can fail. If the
script fails by returning err rather than ok , then the error message can be used by the Worker
Gateway when generating the response. If the script returns ok , then the string result can be used as
the file path.

💡 Links to Resources

Serving a route (specified in the deployed API), where we resolve the worker binding (worker related
information specified under each route in API definition) and then execute
https://github.com/golemcloud/golem/blob/main/golem-worker-service-
base/src/api/custom_http_request_api.rs#L98

Rib expression which is part of worker binding is a separate module:
https://github.com/golemcloud/golem/tree/main/golem-rib/src

Worker Executor
The Worker Executor contains an implementation of WASI file functions, which expose the underlying file system
and allow the guest code to enumerate, read, and write files.

The Worker Executor needs to be modified in the following ways:

Presenting Initial Files. The implementation of the file system interface must be changed to accurately present
the contents of the initial file system.

Exposing Worker File System. A new gRPC API for accessing the worker file system needs to be added to the
worker executor.

Presenting Initial Files
Golem provides the following WASI interfaces that are related to the initial file system feature:

https://wa.dev/wasi:filesystem

https://docs.rs/mime-infer/latest/mime_infer/
https://github.com/golemcloud/golem/blob/main/golem-worker-service-base/src/api/custom_http_request_api.rs#L98
https://github.com/golemcloud/golem/blob/main/golem-worker-service-base/src/api/custom_http_request_api.rs#L98
https://github.com/golemcloud/golem/tree/main/golem-rib/src
https://wa.dev/wasi:filesystem

Initial File System 9

The core implementation of these host functions is coming from wasmtime , which uses cap_std under the hood.
Golem’s worker executor (golem-worker-executor-base) wraps this implementation to add observability and durability
features on top of them. The API itself is based on the descriptor WIT resource, which points to either a file or a
directory. The preopens interface returns the initial set of available descriptors - in Golem, that is the component’s
root directory (/). The component can only derive new descriptors using the existing ones.

We can avoid the need to copy/reimplement the whole filesystem interface if assume the following:

In the manifest (and on all relevant APIs), directories in the initial file system and files are marked as “read-only”
or “read-write”.

For read-only files, there is one copy of these files per Worker Executor (cached on the local disk of the Worker
Executor) if there is at least one worker running using the component it belongs to.

Read-write files are immediately placed in the worker’s own directory, each worker having its own copy, which
diverges from others.

In this case, the only worker-context change is to add more preopened directories with the proper permissions,
which is already supported by wasmtime (although need to check what happens if one preopened directory is in the
subtree of another).

💡 Links to Resources

Link to the place where the initial file descriptors are specified:
https://github.com/golemcloud/golem/blob/main/golem-worker-executor-
base/src/wasi_host/mod.rs#L105

Link to the code that downloads and caches information from the component service:
https://github.com/golemcloud/golem/blob/main/golem-worker-executor-
base/src/services/component.rs

Exposing Worker File System
The API for the Worker Executor is based on gRPC, and includes all of the functionality required by higher level
components in Golem, such as the REST API or Worker Gateway.

Currently, there is no API which exposes the contents of a worker’s file system. In order for the Worker Gateway to
serve files, a new gRPC API must be added which supports the operations:

Listing the children of a node in the file system of the specified worker, including any metadata that is easy to
access.

Retrieving (as a stream) the contents of a file in the file system of the specified worker.

The following is a sketch of what this gRPC API could look like:

syntax = "proto3";

service WorkerFileSystem {

 // List the contents of a directory

 rpc ListDirectory(ListDirectoryRequest) returns (ListDirectoryResponse) {}

 // Retrieve the contents of a file

 rpc GetFileContents(GetFileContentsRequest) returns (stream FileChunk) {}

https://github.com/golemcloud/golem/blob/main/golem-worker-executor-base/src/wasi_host/mod.rs#L105
https://github.com/golemcloud/golem/blob/main/golem-worker-executor-base/src/wasi_host/mod.rs#L105
https://github.com/golemcloud/golem/blob/main/golem-worker-executor-base/src/services/component.rs
https://github.com/golemcloud/golem/blob/main/golem-worker-executor-base/src/services/component.rs

Initial File System 10

}

message ListDirectoryRequest {

 golem.worker.WorkerId worker_id = 1;

 golem.common.AccountId account_id = 2;

 string path = 3;

}

message ListDirectoryResponse {

 repeated FileSystemNode nodes = 1;

}

message FileSystemNode {

 string name = 1;

 NodeType type = 2;

 uint64 size = 3; // Size in bytes, applicable for files

 string permissions = 4; // String representation of file permissions

 int64 last_modified = 5; // Unix timestamp

}

enum NodeType {

 FILE = 0;

 DIRECTORY = 1;

}

message GetFileContentsRequest {

 golem.worker.WorkerId worker_id = 1;

 golem.common.AccountId account_id = 2;

 string file_path = 2;

}

message FileChunk {

 bytes content = 1;

}

Integration Testing Requirements
In addition to unit tests, there are three separate levels of integration tests in Golem and the Initial File System
feature should be tested separately on each level:

Worker Executor Tests (https://github.com/golemcloud/golem/blob/main/golem-worker-executor-
base/tests/lib.rs#L42-L59) directly test the Worker Executor by running test components on it.

Integration Tests (https://github.com/golemcloud/golem/blob/main/integration-tests/tests/worker.rs) start all
the services of Golem locally and have access to the same test DSL as worker executor tests to upload and run
test components on the system.

CLI Tests (https://github.com/golemcloud/golem/blob/main/golem-cli/tests/main.rs#L14-L20) also work with all
the services started locally, but they only interact with them by running the golem-cli app.

https://github.com/golemcloud/golem/blob/main/golem-worker-executor-base/tests/lib.rs#L42-L59
https://github.com/golemcloud/golem/blob/main/golem-worker-executor-base/tests/lib.rs#L42-L59
https://github.com/golemcloud/golem/blob/main/integration-tests/tests/worker.rs
https://github.com/golemcloud/golem/blob/main/golem-cli/tests/main.rs#L14-L20

