-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathextruded_path.Rd
279 lines (249 loc) · 13.6 KB
/
extruded_path.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/objects.R
\name{extruded_path}
\alias{extruded_path}
\title{Extruded Path Object}
\usage{
extruded_path(
points,
x = 0,
y = 0,
z = 0,
polygon = NA,
polygon_end = NA,
breaks = NA,
closed = FALSE,
closed_smooth = TRUE,
polygon_add_points = 0,
twists = 0,
texture_repeats = 1,
straight = FALSE,
precomputed_control_points = FALSE,
width = 1,
width_end = NA,
width_ease = "spline",
smooth_normals = FALSE,
u_min = 0,
u_max = 1,
linear_step = FALSE,
end_caps = c(TRUE, TRUE),
material = diffuse(),
material_caps = NA,
angle = c(0, 0, 0),
order_rotation = c(1, 2, 3),
flipped = FALSE,
scale = c(1, 1, 1)
)
}
\arguments{
\item{points}{Either a list of length-3 numeric vectors or 3-column matrix/data.frame specifying
the x/y/z points that the path should go through.}
\item{x}{Default `0`. x-coordinate offset for the path.}
\item{y}{Default `0`. y-coordinate offset for the path.}
\item{z}{Default `0`. z-coordinate offset for the path.}
\item{polygon}{Defaults to a circle. A polygon with no holes, specified by a data.frame() parsable by `xy.coords()`. Vertices
are taken as sequential rows. If the polygon isn't closed (the last vertex equal to the first), it will be closed automatically.}
\item{polygon_end}{Defaults to `polygon`. If specified, the number of vertices should equal the to the number of vertices
of the polygon set in `polygon`. Vertices are taken as sequential rows. If the polygon isn't closed (the last vertex equal to the first), it will be closed automatically.}
\item{breaks}{Defaults to `20` times the number of control points in the bezier curve.}
\item{closed}{Default `FALSE`. If `TRUE`, the path will be closed by smoothly connecting the first
and last points, also ensuring the final polygon is aligned to the first.}
\item{closed_smooth}{Default `TRUE`. If `closed = TRUE`, this will ensure C2 (second derivative)
continuity between the ends. If `closed = FALSE`, the curve will only have C1 (first derivative)
continuity between the ends.}
\item{polygon_add_points}{Default `0`. Positive integer specifying the number of points to fill in between polygon
vertices. Higher numbers can give smoother results (especially when combined with `smooth_normals = TRUE`.}
\item{twists}{Default `0`. Number of twists in the polygon from one end to another.}
\item{texture_repeats}{Default `1`. Number of times to repeat the texture along the length of the path.}
\item{straight}{Default `FALSE`. If `TRUE`, straight lines will be used to connect the points instead
of bezier curves.}
\item{precomputed_control_points}{Default `FALSE`. If `TRUE`, `points` argument will expect
a list of control points calculated with the internal rayrender function `rayrender:::calculate_control_points()`.}
\item{width}{Default `0.1`. Curve width. If `width_ease == "spline"`, `width` is specified in a format that can be read by
`xy.coords()` (with `y` as the width), and the `x` coordinate is between `0` and `1`, this can also specify the exact
positions along the curve for the corresponding width values. If a numeric vector, specifies the different values of the width evenly along the curve.
If not a single value, `width_end` will be ignored.}
\item{width_end}{Default `NA`. Width at end of path. Same as `width`, unless specified. Ignored if multiple width values
specified in `width`.}
\item{width_ease}{Default `spline`. Ease function between width values. Other options: `linear`, `quad`, `cubic`, `exp`.}
\item{smooth_normals}{Default `FALSE`. Whether to smooth the normals of the polygon to remove sharp angles.}
\item{u_min}{Default `0`. Minimum parametric coordinate for the path. If `closed = TRUE`, values greater than one will refer to the beginning
of the loop (but the path will be generated as two objects).}
\item{u_max}{Default `1`. Maximum parametric coordinate for the path. If `closed = TRUE`, values greater than one will refer to the beginning
of the loop (but the path will be generated as two objects).}
\item{linear_step}{Default `FALSE`. Whether the polygon intervals should be set at linear intervals,
rather than intervals based on the underlying bezier curve parameterization.}
\item{end_caps}{Default `c(TRUE, TRUE)`. Specifies whether to add an end cap to the beginning and end of a path.}
\item{material}{Default \code{\link{diffuse}}. The material, called from one of the material
functions.}
\item{material_caps}{Defaults to the same material set in `material`.
Note: emissive objects may not currently function correctly when scaled.}
\item{angle}{Default `c(0, 0, 0)`. Angle of rotation around the x, y, and z axes, applied in the order specified in `order_rotation`.}
\item{order_rotation}{Default `c(1, 2, 3)`. The order to apply the rotations, referring to "x", "y", and "z".}
\item{flipped}{Default `FALSE`. Whether to flip the normals.}
\item{scale}{Default `c(1, 1, 1)`. Scale transformation in the x, y, and z directions. If this is a single value,
number, the object will be scaled uniformly.}
}
\value{
Single row of a tibble describing the cube in the scene.
}
\description{
Note: Bump mapping with non-diffuse materials does not work correctly, and smoothed normals will be flat when
using a bump map.
}
\examples{
if(run_documentation()) {
#Specify the points for the path to travel though and the ground material
points = list(c(0,0,1),c(-0.5,0,-1),c(0,1,-1),c(1,0.5,0),c(0.6,0.3,1))
ground_mat = material=diffuse(color="grey50",
checkercolor = "grey20",checkerperiod = 1.5)
}
if(run_documentation()) {
#Default path shape is a circle
generate_studio(depth=-0.4,material=ground_mat) \%>\%
add_object(extruded_path(points = points, width=0.25,
material=diffuse(color="red"))) \%>\%
add_object(sphere(y=3,z=5,x=2,material=light(intensity=15))) \%>\%
render_scene(lookat=c(0.3,0.5,0.5),fov=12, width=800,height=800, clamp_value = 10,
aperture=0.025, samples=16, sample_method="sobol_blue")
}
if(run_documentation()) {
#Change the width evenly along the tube
generate_studio(depth=-0.4,material=ground_mat) \%>\%
add_object(extruded_path(points = points, width=0.25,
width_end = 0.5,
material=diffuse(color="red"))) \%>\%
add_object(sphere(y=3,z=5,x=2,material=light(intensity=15))) \%>\%
render_scene(lookat=c(0.3,0.5,0.5),fov=12, width=800,height=800, clamp_value = 10,
aperture=0.025, samples=16, sample_method="sobol_blue")
}
if(run_documentation()) {
#Change the width along the full length of the tube
generate_studio(depth=-0.4,material=ground_mat) \%>\%
add_object(extruded_path(points = points,
width=0.25*sinpi(0:72*20/180),
material=diffuse(color="red"))) \%>\%
add_object(sphere(y=3,z=5,x=2,material=light(intensity=15))) \%>\%
render_scene(lookat=c(0.3,0.5,0.5),fov=12, width=800,height=800, clamp_value = 10,
aperture=0.025, samples=16, sample_method="sobol_blue")
}
if(run_documentation()) {
#Specify the exact parametric x positions for the width values:
custom_width = data.frame(x=c(0,0.2,0.5,0.8,1), y=c(0.25,0.5,0,0.5,0.25))
generate_studio(depth=-0.4,material=ground_mat) \%>\%
add_object(extruded_path(points = points,
width=custom_width,
material=diffuse(color="red"))) \%>\%
add_object(sphere(y=3,z=5,x=2,material=light(intensity=15))) \%>\%
render_scene(lookat=c(0.3,0.5,0.5),fov=12, width=800,height=800, clamp_value = 10,
aperture=0.025, samples=16, sample_method="sobol_blue")
}
if(run_documentation()) {
#Generate a star polygon
angles = seq(360,0,length.out=21)
xx = c(rep(c(1,0.75,0.5,0.75),5),1) * sinpi(angles/180)/4
yy = c(rep(c(1,0.75,0.5,0.75),5),1) * cospi(angles/180)/4
star_polygon = data.frame(x=xx,y=yy)
#Extrude a path using a star polygon
generate_studio(depth=-0.4,material=ground_mat) \%>\%
add_object(extruded_path(points = points, width=0.5,
polygon = star_polygon,
material=diffuse(color="red"))) \%>\%
add_object(sphere(y=3,z=5,x=2,material=light(intensity=15))) \%>\%
render_scene(lookat=c(0.3,0.5,1),fov=12, width=800,height=800, clamp_value = 10,
aperture=0.025, samples=16, sample_method="sobol_blue")
}
if(run_documentation()) {
#Specify a circle polygon
angles = seq(360,0,length.out=21)
xx = sinpi(angles/180)/4
yy = cospi(angles/180)/4
circ_polygon = data.frame(x=xx,y=yy)
#Transform from the circle polygon to the star polygon and change the end cap material
generate_studio(depth=-0.4,material=ground_mat) \%>\%
add_object(extruded_path(points = points, width=0.5,
polygon=circ_polygon, polygon_end = star_polygon,
material_cap = diffuse(color="white"),
material=diffuse(color="red"))) \%>\%
add_object(sphere(y=3,z=5,x=2,material=light(intensity=15))) \%>\%
render_scene(lookat=c(0.3,0.5,0.5),fov=12, width=800,height=800, clamp_value = 10,
aperture=0.025, samples=16, sample_method="sobol_blue")
}
if(run_documentation()) {
#Add three and a half twists along the path, and make sure the breaks are evenly spaced
generate_studio(depth=-0.4,material=ground_mat) \%>\%
add_object(extruded_path(points = points, width=0.5, twists = 3.5,
polygon=star_polygon, linear_step = TRUE, breaks=360,
material_cap = diffuse(color="white"),
material=diffuse(color="red"))) \%>\%
add_object(sphere(y=3,z=5,x=2,material=light(intensity=15))) \%>\%
render_scene(lookat=c(0.3,0.5,0),fov=12, width=800,height=800, clamp_value = 10,
aperture=0.025, samples=16, sample_method="sobol_blue")
}
if(run_documentation()) {
#Smooth the normals for a less sharp appearance:
generate_studio(depth=-0.4,material=ground_mat) \%>\%
add_object(extruded_path(points = points, width=0.5, twists = 3.5,
polygon=star_polygon,
linear_step = TRUE, breaks=360,
smooth_normals = TRUE,
material_cap = diffuse(color="white"),
material=diffuse(color="red"))) \%>\%
add_object(sphere(y=3,z=5,x=2,material=light(intensity=15))) \%>\%
render_scene(lookat=c(0.3,0.5,0),fov=12, width=800,height=800, clamp_value = 10,
aperture=0.025, samples=16, sample_method="sobol_blue")
}
if(run_documentation()) {
#Only generate part of the curve, specified by the u_min and u_max arguments
generate_studio(depth=-0.4,material=ground_mat) \%>\%
add_object(extruded_path(points = points, width=0.5, twists = 3.5,
u_min = 0.2, u_max = 0.8,
polygon=star_polygon, linear_step = TRUE, breaks=360,
material_cap = diffuse(color="white"),
material=diffuse(color="red"))) \%>\%
add_object(sphere(y=3,z=5,x=2,material=light(intensity=15))) \%>\%
render_scene(lookat=c(0.3,0.5,0),fov=12, width=800,height=800, clamp_value = 10,
aperture=0.025, samples=16, sample_method="sobol_blue")
}
if(run_documentation()) {
#Render a Mobius strip with 1.5 turns
points = list(c(0,0,0),c(0.5,0.5,0),c(0,1,0),c(-0.5,0.5,0))
square_polygon = matrix(c(-1, -0.1, 0,
1, -0.1, 0,
1, 0.1, 0,
-1, 0.1, 0)/10, ncol=3,byrow = T)
generate_studio(depth=-0.2,
material=diffuse(color = "dodgerblue4", checkercolor = "#002a61",
checkerperiod = 1)) \%>\%
add_object(extruded_path(points = points, polygon=square_polygon, closed = TRUE,
linear_step = TRUE, twists = 1.5, breaks = 720,
material = diffuse(noisecolor = "black", noise = 10,
noiseintensity = 10))) \%>\%
add_object(sphere(y=20,x=0,z=21,material=light(intensity = 1000))) \%>\%
render_scene(lookat=c(0,0.5,0), fov=10, samples=16, sample_method = "sobol_blue",
width = 800, height=800)
}
if(run_documentation()) {
#Create a green glass tube with the dielectric priority interface
#and fill it with a purple neon tube light
generate_ground(depth=-0.4,material=diffuse(color="grey50",
checkercolor = "grey20",checkerperiod = 1.5)) \%>\%
add_object(extruded_path(points = points, width=0.7, linear_step = TRUE,
polygon = star_polygon, twists = 2, closed = TRUE,
polygon_end = star_polygon, breaks=500,
material=dielectric(priority = 1, refraction = 1.2,
attenuation=c(1,0.3,1),
attenuation_intensity=20))) \%>\%
add_object(extruded_path(points = points, width=0.4, linear_step = TRUE,
polygon = star_polygon,twists = 2, closed = TRUE,
polygon_end = star_polygon, breaks=500,
material=dielectric(priority = 0,refraction = 1))) \%>\%
add_object(extruded_path(points = points, width=0.05, closed = TRUE,
material=light(color="purple", intensity = 5,
importance_sample = FALSE))) \%>\%
add_object(sphere(y=10,z=-5,x=0,radius=5,material=light(color = "white",intensity = 5))) \%>\%
render_scene(lookat=c(0,0.5,1),fov=10,
width=800,height=800, clamp_value = 10,
aperture=0.025, samples=16, sample_method="sobol_blue")
}
}