-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpgd_attack_vilt.py
483 lines (435 loc) · 22.1 KB
/
pgd_attack_vilt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import torch
from copy import deepcopy
import torch.nn as nn
import torch.nn.functional as F
import pickle
import os
class PGDAttack:
def __init__(self, config, contrastive_framework):
self.contrastive_framework = contrastive_framework
self.adv_steps_img = config["adv_steps_img"]
self.adv_lr_img = config["adv_lr_img"]
self.adv_max_norm_img = config["adv_max_norm_img"]
# a mini ViLTransformerSS
self.pl_module = None
self.max_image_len = config["max_image_len"]
self.text_embeddings = None
self.transformer = None
self.token_type_embeddings = None
self.pooler = None
def build_mini_vilt(self, pl_module):
raise NotImplementedError(f"Build_mini_vilt of {self.contrastive_framework} isn't implemented.")
def vilt_zero_grad(self):
raise NotImplementedError(f"vilt_zero_grad of {self.contrastive_framework} isn't implemented.")
def pgd_attack(self, pl_module, batch, k_image):
raise NotImplementedError(f"pgd_attack of {self.contrastive_framework} isn't implemented.")
def infer(
self,
batch,
mask_text=False,
mask_image=False,
image_token_type_idx=1,
image_embeds=None,
image_masks=None,
):
if f"image_{image_token_type_idx - 1}" in batch:
imgkey = f"image_{image_token_type_idx - 1}"
else:
imgkey = "image"
do_mlm = "_mlm" if mask_text else ""
text_ids = batch[f"text_ids{do_mlm}"]
text_labels = batch[f"text_labels{do_mlm}"]
text_masks = batch[f"text_masks"]
text_embeds = self.text_embeddings(text_ids)
if image_embeds is None and image_masks is None:
img = batch[imgkey][0]
(
image_embeds,
image_masks,
patch_index,
image_labels,
) = self.transformer.visual_embed(
img,
max_image_len=self.max_image_len,
mask_it=mask_image,
)
else:
patch_index, image_labels = (
None,
None,
)
text_embeds, image_embeds = (
text_embeds + self.token_type_embeddings(torch.zeros_like(text_masks)),
image_embeds
+ self.token_type_embeddings(
torch.full_like(image_masks, image_token_type_idx)
),
)
co_embeds = torch.cat([text_embeds, image_embeds], dim=1)
co_masks = torch.cat([text_masks, image_masks], dim=1)
x = co_embeds
for i, blk in enumerate(self.transformer.blocks):
x, _attn = blk(x, mask=co_masks)
x = self.transformer.norm(x)
text_feats, image_feats = (
x[:, : text_embeds.shape[1]],
x[:, text_embeds.shape[1]:],
)
if self.pooler is not None:
cls_feats = self.pooler(x)
else:
cls_feats = None
ret = {
"text_feats": text_feats,
"image_feats": image_feats,
"cls_feats": cls_feats,
"raw_cls_feats": x[:, 0],
"image_labels": image_labels,
"image_masks": image_masks,
"text_labels": text_labels,
"text_ids": text_ids,
"text_masks": text_masks,
"patch_index": patch_index,
}
return ret
class PGDAttack_moco(PGDAttack):
def __init__(self, config):
super().__init__(config, "moco")
# a mini ViLTransformerSS
self.moco_head = None
def build_mini_vilt(self, pl_module):
self.pl_module = pl_module
self.text_embeddings = deepcopy(pl_module.text_embeddings)
self.token_type_embeddings = deepcopy(pl_module.token_type_embeddings)
self.transformer = deepcopy(pl_module.transformer)
self.moco_head = deepcopy(pl_module.moco_head)
self.pooler = deepcopy(pl_module.pooler)
def vilt_zero_grad(self):
self.text_embeddings.zero_grad()
self.transformer.zero_grad()
self.token_type_embeddings.zero_grad()
self.moco_head.zero_grad()
self.pooler.zero_grad()
def pgd_attack(self, pl_module, batch, k_modality = None):
self.build_mini_vilt(pl_module)
loss_fct = nn.CrossEntropyLoss()
# Get the original img
img_init = batch['image'][0]
# Initialize the delta as zero vectors
img_delta = torch.zeros_like(img_init)
self.vilt_zero_grad()
for astep in range(self.adv_steps_img):
# Need to get the gradient for each batch of image features
img_delta.requires_grad_(True)
with torch.cuda.amp.autocast(enabled=False):
with torch.enable_grad():
try:
batch['image'][0] = (img_init + img_delta)
infer = self.infer(batch, mask_text=False, mask_image=False)
projection_cls_feats = self.moco_head(infer["cls_feats"])
q_img_attack = nn.functional.normalize(projection_cls_feats, dim=1)
except:
print("problem in step ", astep)
sys.exit("STOPP")
# RMCL Loss
l_pos = torch.einsum('nc,nc->n', [q_img_attack, k_modality]).unsqueeze(-1) # k_image
l_neg = torch.einsum('nc,ck->nk', [q_img_attack, self.pl_module.proj_queue.clone().detach()])
logits = torch.cat([l_pos, l_neg], dim=1)
logits /= self.pl_module.temperature
labels = torch.zeros(logits.shape[0], dtype=torch.long)
labels = labels.type_as(logits)
loss = loss_fct(logits.float(), labels.long()) / (1.0 * self.adv_steps_img)
# calculate x.grad
loss.backward()
# Get gradient
img_delta_grad = img_delta.grad.clone().detach().float()
# Get inf_norm gradient (It will be used to normalize the img_delta_grad)
denorm = torch.norm(img_delta_grad.view(img_delta_grad.size(0), -1), dim=1, p=float("inf")).view(-1, 1, 1, 1)
# Clip gradient to Lower Bound
denorm = torch.clamp(denorm, min=1e-8)
# calculate delta_step with format img_delta
img_delta_step = (self.adv_lr_img * img_delta_grad / denorm).to(img_delta)
# Add the calculated step to img_delta (The perturbation)
img_delta = (img_delta + img_delta_step).detach()
# clip the delta if needed
if self.adv_max_norm_img > 0:
img_delta = torch.clamp(img_delta, -self.adv_max_norm_img, self.adv_max_norm_img).detach()
return img_delta
class PGDAttack_bartlowtwins(PGDAttack):
def __init__(self, config):
super().__init__(config, "barlowtwins")
# a mini ViLTransformerSS
self.barlowtwins_head = None
def build_mini_vilt(self, pl_module):
self.pl_module = pl_module
self.text_embeddings = deepcopy(pl_module.text_embeddings)
self.token_type_embeddings = deepcopy(pl_module.token_type_embeddings)
self.transformer = deepcopy(pl_module.transformer)
self.barlowtwins_head = deepcopy(pl_module.barlowtwins_head)
self.pooler = deepcopy(pl_module.pooler)
def vilt_zero_grad(self):
self.text_embeddings.zero_grad()
self.transformer.zero_grad()
self.token_type_embeddings.zero_grad()
self.barlowtwins_head.zero_grad()
self.pooler.zero_grad()
def pgd_attack(self, pl_module, batch, k_modality=None):
def off_diagonal(x):
n, m = x.shape
assert n == m
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()
self.build_mini_vilt(pl_module)
# Get the original img
img_init = batch['image'][0]
# Initialize the delta as zero vectors
img_delta = torch.zeros_like(img_init)
self.vilt_zero_grad()
for astep in range(self.adv_steps_img):
# Need to get the gradient for each batch of image features
img_delta.requires_grad_(True)
with torch.cuda.amp.autocast(enabled=False):
with torch.enable_grad():
batch['image'][0] = (img_init + img_delta)
infer = self.infer(batch, mask_text=False, mask_image=False)
q_image = self.barlowtwins_head(infer['cls_feats'])
c = torch.mm(q_image.to(torch.float32).T, k_modality.to(torch.float32)) / q_image.shape[0]
on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
off_diag = off_diagonal(c).pow_(2).sum()
loss = (on_diag + pl_module.adv_lr * off_diag) / self.adv_steps_img
loss.backward()
# Get gradient
img_delta_grad = img_delta.grad.clone().detach().float()
# Get inf_norm gradient (It will be used to normalize the img_delta_grad)
denorm = torch.norm(img_delta_grad.view(img_delta_grad.size(0), -1), dim=1, p=float("inf")).view(-1, 1, 1, 1)
# Clip gradient to Lower Bound
denorm = torch.clamp(denorm, min=1e-8)
# calculate delta_step with format img_delta
img_delta_step = (self.adv_lr_img * img_delta_grad / denorm).to(img_delta)
# Add the calculated step to img_delta (The perturbation)
img_delta = (img_delta + img_delta_step).detach()
# clip the delta if needed
if self.adv_max_norm_img > 0:
img_delta = torch.clamp(img_delta, -self.adv_max_norm_img, self.adv_max_norm_img).detach()
return img_delta
number = 0
class PGDAttack_nlvr2(PGDAttack):
def __init__(self, config):
super().__init__(config, "nlvr2")
self.attack_idx = config["attack_idx"]
# a mini ViLTransformerSS
self.nlvr2_classifier = None
def build_mini_vilt(self, pl_module):
self.pl_module = pl_module
self.text_embeddings = deepcopy(pl_module.text_embeddings)
self.token_type_embeddings = deepcopy(pl_module.token_type_embeddings)
self.transformer = deepcopy(pl_module.transformer)
self.nlvr2_classifier = deepcopy(pl_module.nlvr2_classifier)
self.pooler = deepcopy(pl_module.pooler)
def vilt_zero_grad(self):
self.text_embeddings.zero_grad()
self.transformer.zero_grad()
self.token_type_embeddings.zero_grad()
self.nlvr2_classifier.zero_grad()
self.pooler.zero_grad()
def pgd_attack(self, pl_module, batch, k_modality=None):
# To save an img_delta
save_delta = {}
global number
number += 1
self.build_mini_vilt(pl_module)
loss_fct = nn.CrossEntropyLoss()
# Get the original img
img_init_0 = batch['image_0'][0]
img_init_1 = batch['image_1'][0]
# Initialize the delta as zero vectors
img_delta_0 = torch.zeros_like(img_init_0)
img_delta_1 = torch.zeros_like(img_init_1)
self.vilt_zero_grad()
for astep in range(self.adv_steps_img):
# Need to get the gradient for each batch of image features
if self.attack_idx[0]:
img_delta_0.requires_grad_(True)
if self.attack_idx[1]:
img_delta_1.requires_grad_(True)
with torch.cuda.amp.autocast(enabled=False):
with torch.enable_grad():
batch['image_0'][0] = (img_init_0 + img_delta_0)
batch['image_1'][0] = (img_init_1 + img_delta_1)
infer1 = self.infer(batch, mask_text=False, mask_image=False, image_token_type_idx=1)
infer2 = self.infer(batch, mask_text=False, mask_image=False, image_token_type_idx=2)
# NlVR2 output
cls_feats = torch.cat([infer1["cls_feats"], infer2["cls_feats"]], dim=-1)
nlvr2_logits = self.nlvr2_classifier(cls_feats)
# Compute the cross-entropy
nlvr2_labels = batch["answers"]
nlvr2_labels = torch.tensor(nlvr2_labels).to(self.pl_module.device).long()
loss = loss_fct(nlvr2_logits, nlvr2_labels)/self.adv_steps_img
# calculate x.grad
loss.backward()
if self.attack_idx[0]:
verbose = False
# Get gradient
img_delta_grad = img_delta_0.grad.clone().detach().float()
# Get inf_norm gradient (It will be used to normalize the img_delta_grad)
denorm = torch.norm(img_delta_grad.view(img_delta_grad.size(0), -1), dim=1, p=float("inf")).view(-1, 1, 1, 1)
# Clip gradient to Lower Bound
denorm = torch.clamp(denorm, min=1e-8)
# calculate delta_step with format img_delta
img_delta_step = (self.adv_lr_img * img_delta_grad / denorm).to(img_delta_0)
# Add the calculated step to img_delta (The perturbation)
img_delta_0 = (img_delta_0 + img_delta_step).detach()
# clip the delta if needed
if self.adv_max_norm_img > 0:
img_delta_0 = torch.clamp(img_delta_0, -self.adv_max_norm_img, self.adv_max_norm_img).detach()
if self.attack_idx[1]:
# Get gradient
img_delta_grad = img_delta_1.grad.clone().detach().float()
# Get inf_norm gradient (It will be used to normalize the img_delta_grad)
denorm = torch.norm(img_delta_grad.view(img_delta_grad.size(0), -1), dim=1, p=float("inf")).view(-1, 1, 1, 1)
# Clip gradient to Lower Bound
denorm = torch.clamp(denorm, min=1e-8)
# calculate delta_step with format img_delta
img_delta_step = (self.adv_lr_img * img_delta_grad / denorm).to(img_delta_1)
# Add the calculated step to img_delta (The perturbation)
img_delta_1 = (img_delta_1 + img_delta_step).detach()
# clip the delta if needed
if self.adv_max_norm_img > 0:
img_delta_1 = torch.clamp(img_delta_1, -self.adv_max_norm_img, self.adv_max_norm_img).detach()
## Save Img_delta
verbose = False
if verbose == True :
save = "./SLURM/vector_norm_delta2"
norm_delta = torch.linalg.norm(img_delta_1, dim=1).mean().cpu()
save_delta["step_{}".format(astep)] = norm_delta
if verbose == True :
with open(os.path.join(save,"{}.pkl".format(number)), "wb") as fp:
pickle.dump(save_delta, fp,protocol=pickle.HIGHEST_PROTOCOL)
return img_delta_0, img_delta_1
class PGDAttack_irtr(PGDAttack):
def __init__(self, config):
super().__init__(config, "moco")
# a mini ViLTransformerSS
self.moco_head = None
def build_mini_vilt(self, pl_module):
self.pl_module = pl_module
self.text_embeddings = deepcopy(pl_module.text_embeddings)
self.token_type_embeddings = deepcopy(pl_module.token_type_embeddings)
self.transformer = deepcopy(pl_module.transformer)
self.moco_head = deepcopy(pl_module.moco_head)
self.pooler = deepcopy(pl_module.pooler)
def vilt_zero_grad(self):
self.text_embeddings.zero_grad()
self.transformer.zero_grad()
self.token_type_embeddings.zero_grad()
self.moco_head.zero_grad()
self.pooler.zero_grad()
def pgd_attack(self, pl_module, batch, k_modality):
self.build_mini_vilt(pl_module)
loss_fct = nn.CrossEntropyLoss()
# Get the original img
img_init = batch['image'][0]
# Initialize the delta as zero vectors
img_delta = torch.zeros_like(img_init)
self.vilt_zero_grad()
for astep in range(self.adv_steps_img):
# Need to get the gradient for each batch of image features
img_delta.requires_grad_(True)
with torch.cuda.amp.autocast(enabled=False):
with torch.enable_grad():
try:
batch['image'][0] = (img_init + img_delta) # .to(pl_module.device)
infer = self.infer(batch, mask_text=False, mask_image=False)
projection_cls_feats = self.moco_head(infer["cls_feats"])
q_img_attack = nn.functional.normalize(projection_cls_feats, dim=1)
except:
print("problem in step ", astep)
sys.exit("STOPP")
batch_scores = []
batch_labels = []
for q_idx, q_att in enumerate(q_img_attack): ## Wrong
scores = torch.einsum('nc,ck->nk', [q_att.unsqueeze(0), text_representation.T])
batch_scores.append(scores)
batch_labels.append(q_idx)
logits = torch.cat(batch_scores).view(len(batch_labels), -1)
labels = torch.tensor(batch_labels).type_as(logits)
loss = loss_fct(logits.float(), labels.long()) / (1.0 * self.adv_steps_img)
# print(loss)
# calculate x.grad
loss.backward()
# Get gradient
img_delta_grad = img_delta.grad.clone().detach().float()
# Get inf_norm gradient (It will be used to normalize the img_delta_grad)
denorm = torch.norm(img_delta_grad.view(img_delta_grad.size(0), -1), dim=1, p=float("inf")).view(-1, 1, 1,
1)
# Clip gradient to Lower Bound
denorm = torch.clamp(denorm, min=1e-8)
# calculate delta_step with format img_delta
img_delta_step = (self.adv_lr_img * img_delta_grad / denorm).to(img_delta)
# Add the calculated step to img_delta (The perturbation)
img_delta = (img_delta + img_delta_step).detach()
# clip the delta if needed
if self.adv_max_norm_img > 0:
img_delta = torch.clamp(img_delta, -self.adv_max_norm_img, self.adv_max_norm_img).detach()
return img_delta
class PGDAttack_vqa(PGDAttack):
def __init__(self, config):
super().__init__(config, "vqa")
# a mini ViLTransformerSS
self.vqa_classifier = None
def build_mini_vilt(self, pl_module):
self.pl_module = pl_module
self.text_embeddings = deepcopy(pl_module.text_embeddings)
self.token_type_embeddings = deepcopy(pl_module.token_type_embeddings)
self.transformer = deepcopy(pl_module.transformer)
self.pooler = deepcopy(pl_module.pooler)
self.vqa_classifier = deepcopy(pl_module.vqa_classifier)
def vilt_zero_grad(self):
self.text_embeddings.zero_grad()
self.transformer.zero_grad()
self.token_type_embeddings.zero_grad()
self.pooler.zero_grad()
self.vqa_classifier.zero_grad()
def pgd_attack(self, pl_module, batch, k_modality=None):
self.build_mini_vilt(pl_module)
loss_fct = nn.CrossEntropyLoss()
# Get the original img
img_init = batch['image'][0]
# Initialize the delta as zero vectors
img_delta = torch.zeros_like(img_init)
self.vilt_zero_grad()
for astep in range(self.adv_steps_img):
# Need to get the gradient for each batch of image features
img_delta.requires_grad_(True)
with torch.cuda.amp.autocast(enabled=False):
with torch.enable_grad():
batch['image'][0] = (img_init + img_delta) # .to(pl_module.device)
infer = pl_module.infer(batch, mask_text=False, mask_image=False)
# vqa output
vqa_logits = pl_module.vqa_classifier(infer["cls_feats"])
vqa_targets = torch.zeros(
len(vqa_logits), pl_module.hparams.config["vqav2_label_size"]
).to(pl_module.device)
vqa_labels = batch["vqa_labels"]
vqa_scores = batch["vqa_scores"]
for i, (_label, _score) in enumerate(zip(vqa_labels, vqa_scores)):
for l, s in zip(_label, _score):
vqa_targets[i, l] = s
vqa_loss = (
F.binary_cross_entropy_with_logits(vqa_logits, vqa_targets)
* vqa_targets.shape[1]
)
vqa_loss.backward()
# Get gradient
img_delta_grad = img_delta.grad.clone().detach().float()
# Get inf_norm gradient (It will be used to normalize the img_delta_grad)
denorm = torch.norm(img_delta_grad.view(img_delta_grad.size(0), -1), dim=1, p=float("inf")).view(-1, 1, 1, 1)
# Clip gradient to Lower Bound
denorm = torch.clamp(denorm, min=1e-8)
# calculate delta_step with format img_delta
img_delta_step = (self.adv_lr_img * img_delta_grad / denorm).to(img_delta)
# Add the calculated step to img_delta (The perturbation)
img_delta = (img_delta + img_delta_step).detach()
# clip the delta if needed
if self.adv_max_norm_img > 0:
img_delta = torch.clamp(img_delta, -self.adv_max_norm_img, self.adv_max_norm_img).detach()
return img_delta