Skip to content

Bad predict result after finetune #151

@zeng-zr

Description

@zeng-zr

I’m using 100 labeled frames from my videos(4 cameras, duplicated 1 to match weights for 5cam) to finetune a 5cam dannce MAX model following these advice: (https://github.com/spoonsso/dannce/issues/62#issuecomment-904950551) but the predict results are bad.

new_n_channels_out: 14
batch_size: 4
epochs: 600
net_type: AVG
train_mode:
new_n_channels_out: 14
batch_size: 4
epochs: 600
net_type: AVG
train_mode: 'finetune'
#dannce_finetune_weights: ./DANNCE/weights/weights.rat.AVG.MONO/ # doesn't work due to layers mismatch? try duplicating views manully
dannce_finetune_weights: ./DANNCE/weights/weights.rat.AVG.MONO.5cams/
# During prediction, will look for the last epoch weights saved to ./DANNCE/train_results/. To load in a different weights file, add the path here
# Note that this must be a FULL MODEL file, not just weights.
dannce_predict_model: './DANNCE/train_results/AVG_5cams/fullmodel_weights/fullmodel_end.hdf5'

predict_mode: torch
exp:
    - label3d_file: '1_0223_5cams_dannce.mat'
      com_file: './COM/predict_results/train_3cams/com3d.mat' #for dannce training
    - label3d_file: '2_0221_5cams_dannce.mat' 
      com_file:  './COM/predict_results/train_3cams/com3d.mat' # used 9000frames vid
      
com_file: './COM/predict_results/train_3cams/com3d.mat' 
num_validation_per_exp: 0
augment_brightness: True
n_rand_views: None
gpu_id: "2"
n_views: 5
comthresh: 0.2
loss: mask_nan_l1_loss
crop_height: [0, 2048]
crop_width: [0, 2432]
vol_size: 150
nvox: 96
max_num_samples: 1500
dannce_finetune_weights: ./DANNCE/weights/weights.rat.AVG.MONO.5cams/
dannce_predict_model: './DANNCE/train_results/AVG_5cams/fullmodel_weights/fullmodel_end.hdf5'

predict_mode: torch
exp:
    - label3d_file: '1_0223_5cams_dannce.mat'
      com_file: './COM/predict_results/train_3cams/com3d.mat' #for dannce training
    - label3d_file: '2_0221_5cams_dannce.mat' 
      com_file:  './COM/predict_results/train_3cams/com3d.mat' # used 9000frames video
      
com_file: './COM/predict_results/train_3cams/com3d.mat' 
num_validation_per_exp: 0
augment_brightness: True
n_rand_views: None
n_views: 5
comthresh: 0.2
loss: mask_nan_l1_loss
crop_height: [0, 2048]
crop_width: [0, 2432]
vol_size: 150
nvox: 96
max_num_samples: 1500
mono : True 

imagetraining.csv

I label 1 frame every 30 frames , and the above picture is the predict result of the first frame of the video, which I also labeled. Should I shorten the label frame interval to get better result?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions