.. currentmodule:: pandas
.. ipython:: python :suppress: import numpy as np np.random.seed(123456) np.set_printoptions(precision=4, suppress=True) import pandas as pd pd.options.display.max_rows=15
The axis labeling information in pandas objects serves many purposes:
- Identifies data (i.e. provides metadata) using known indicators, important for analysis, visualization, and interactive console display
- Enables automatic and explicit data alignment
- Allows intuitive getting and setting of subsets of the data set
In this section, we will focus on the final point: namely, how to slice, dice,
and generally get and set subsets of pandas objects. The primary focus will be
on Series and DataFrame as they have received more development attention in
this area. Expect more work to be invested in higher-dimensional data
structures (including Panel
) in the future, especially in label-based
advanced indexing.
Note
The Python and NumPy indexing operators []
and attribute operator .
provide quick and easy access to pandas data structures across a wide range
of use cases. This makes interactive work intuitive, as there's little new
to learn if you already know how to deal with Python dictionaries and NumPy
arrays. However, since the type of the data to be accessed isn't known in
advance, directly using standard operators has some optimization limits. For
production code, we recommended that you take advantage of the optimized
pandas data access methods exposed in this chapter.
Warning
Whether a copy or a reference is returned for a setting operation, may
depend on the context. This is sometimes called chained assignment
and
should be avoided. See :ref:`Returning a View versus Copy
<indexing.view_versus_copy>`
Warning
In 0.15.0 Index
has internally been refactored to no longer subclass ndarray
but instead subclass PandasObject
, similarly to the rest of the pandas objects. This should be
a transparent change with only very limited API implications (See the :ref:`Internal Refactoring <whatsnew_0150.refactoring>`)
See the :ref:`MultiIndex / Advanced Indexing <advanced>` for MultiIndex
and more advanced indexing documentation.
See the :ref:`cookbook<cookbook.selection>` for some advanced strategies
.. versionadded:: 0.11.0
Object selection has had a number of user-requested additions in order to support more explicit location based indexing. pandas now supports three types of multi-axis indexing.
.loc
is primarily label based, but may also be used with a boolean array..loc
will raiseKeyError
when the items are not found. Allowed inputs are:- A single label, e.g.
5
or'a'
, (note that5
is interpreted as a label of the index. This use is not an integer position along the index) - A list or array of labels
['a', 'b', 'c']
- A slice object with labels
'a':'f'
, (note that contrary to usual python slices, both the start and the stop are included!) - A boolean array
See more at :ref:`Selection by Label <indexing.label>`
- A single label, e.g.
.iloc
is primarily integer position based (from0
tolength-1
of the axis), but may also be used with a boolean array..iloc
will raiseIndexError
if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing. (this conforms with python/numpy slice semantics). Allowed inputs are:- An integer e.g.
5
- A list or array of integers
[4, 3, 0]
- A slice object with ints
1:7
- A boolean array
See more at :ref:`Selection by Position <indexing.integer>`
- An integer e.g.
.ix
supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type..ix
is the most general and will support any of the inputs in.loc
and.iloc
..ix
also supports floating point label schemes..ix
is exceptionally useful when dealing with mixed positional and label based hierachical indexes.However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it's usually better to be explicit and use
.iloc
or.loc
.See more at :ref:`Advanced Indexing <advanced>` and :ref:`Advanced Hierarchical <advanced.advanced_hierarchical>`.
Getting values from an object with multi-axes selection uses the following
notation (using .loc
as an example, but applies to .iloc
and .ix
as
well). Any of the axes accessors may be the null slice :
. Axes left out of
the specification are assumed to be :
. (e.g. p.loc['a']
is equiv to
p.loc['a', :, :]
)
Object Type | Indexers |
---|---|
Series | s.loc[indexer] |
DataFrame | df.loc[row_indexer,column_indexer] |
Panel | p.loc[item_indexer,major_indexer,minor_indexer] |
As mentioned when introducing the data structures in the :ref:`last section
<basics>`, the primary function of indexing with []
(a.k.a. __getitem__
for those familiar with implementing class behavior in Python) is selecting out
lower-dimensional slices. Thus,
Object Type | Selection | Return Value Type |
---|---|---|
Series | series[label] |
scalar value |
DataFrame | frame[colname] |
Series corresponding to colname |
Panel | panel[itemname] |
DataFrame corresponing to the itemname |
Here we construct a simple time series data set to use for illustrating the indexing functionality:
.. ipython:: python dates = pd.date_range('1/1/2000', periods=8) df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) df panel = pd.Panel({'one' : df, 'two' : df - df.mean()}) panel
Note
None of the indexing functionality is time series specific unless specifically stated.
Thus, as per above, we have the most basic indexing using []
:
.. ipython:: python s = df['A'] s[dates[5]] panel['two']
You can pass a list of columns to []
to select columns in that order.
If a column is not contained in the DataFrame, an exception will be
raised. Multiple columns can also be set in this manner:
.. ipython:: python df df[['B', 'A']] = df[['A', 'B']] df
You may find this useful for applying a transform (in-place) to a subset of the columns.
You may access an index on a Series
, column on a DataFrame
, and a item on a Panel
directly
as an attribute:
.. ipython:: python sa = pd.Series([1,2,3],index=list('abc')) dfa = df.copy()
.. ipython:: python sa.b dfa.A panel.one
You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful; if you try to use attribute access to create a new column, it fails silently, creating a new attribute rather than a new column.
.. ipython:: python sa.a = 5 sa dfa.A = list(range(len(dfa.index))) # ok if A already exists dfa dfa['A'] = list(range(len(dfa.index))) # use this form to create a new column dfa
Warning
- You can use this access only if the index element is a valid python identifier, e.g.
s.1
is not allowed. See here for an explanation of valid identifiers. - The attribute will not be available if it conflicts with an existing method name, e.g.
s.min
is not allowed. - Similarly, the attribute will not be available if it conflicts with any of the following list:
index
,major_axis
,minor_axis
,items
,labels
. - In any of these cases, standard indexing will still work, e.g.
s['1']
,s['min']
, ands['index']
will access the corresponding element or column. - The
Series/Panel
accesses are available starting in 0.13.0.
If you are using the IPython environment, you may also use tab-completion to see these accessible attributes.
You can also assign a dict
to a row of a DataFrame
:
.. ipython:: python x = pd.DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]}) x.iloc[1] = dict(x=9, y=99) x
The most robust and consistent way of slicing ranges along arbitrary axes is
described in the :ref:`Selection by Position <indexing.integer>` section
detailing the .iloc
method. For now, we explain the semantics of slicing using the []
operator.
With Series, the syntax works exactly as with an ndarray, returning a slice of the values and the corresponding labels:
.. ipython:: python s[:5] s[::2] s[::-1]
Note that setting works as well:
.. ipython:: python s2 = s.copy() s2[:5] = 0 s2
With DataFrame, slicing inside of []
slices the rows. This is provided
largely as a convenience since it is such a common operation.
.. ipython:: python df[:3] df[::-1]
Warning
Whether a copy or a reference is returned for a setting operation, may depend on the context.
This is sometimes called chained assignment
and should be avoided.
See :ref:`Returning a View versus Copy <indexing.view_versus_copy>`
Warning
.loc
is strict when you present slicers that are not compatible (or convertible) with the index type. For example using integers in aDatetimeIndex
. These will raise aTypeError
.
.. ipython:: python dfl = pd.DataFrame(np.random.randn(5,4), columns=list('ABCD'), index=pd.date_range('20130101',periods=5)) dfl
In [4]: dfl.loc[2:3]
TypeError: cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'> with these indexers [2] of <type 'int'>
String likes in slicing can be convertible to the type of the index and lead to natural slicing.
.. ipython:: python dfl.loc['20130102':'20130104']
pandas provides a suite of methods in order to have purely label based indexing. This is a strict inclusion based protocol.
At least 1 of the labels for which you ask, must be in the index or a KeyError
will be raised! When slicing, the start bound is included, AND the stop bound is included. Integers are valid labels, but they refer to the label and not the position.
The .loc
attribute is the primary access method. The following are valid inputs:
- A single label, e.g.
5
or'a'
, (note that5
is interpreted as a label of the index. This use is not an integer position along the index) - A list or array of labels
['a', 'b', 'c']
- A slice object with labels
'a':'f'
(note that contrary to usual python slices, both the start and the stop are included!) - A boolean array
.. ipython:: python s1 = pd.Series(np.random.randn(6),index=list('abcdef')) s1 s1.loc['c':] s1.loc['b']
Note that setting works as well:
.. ipython:: python s1.loc['c':] = 0 s1
With a DataFrame
.. ipython:: python df1 = pd.DataFrame(np.random.randn(6,4), index=list('abcdef'), columns=list('ABCD')) df1 df1.loc[['a','b','d'],:]
Accessing via label slices
.. ipython:: python df1.loc['d':,'A':'C']
For getting a cross section using a label (equiv to df.xs('a')
)
.. ipython:: python df1.loc['a']
For getting values with a boolean array
.. ipython:: python df1.loc['a']>0 df1.loc[:,df1.loc['a']>0]
For getting a value explicitly (equiv to deprecated df.get_value('a','A')
)
.. ipython:: python # this is also equivalent to ``df1.at['a','A']`` df1.loc['a','A']
Warning
Whether a copy or a reference is returned for a setting operation, may depend on the context.
This is sometimes called chained assignment
and should be avoided.
See :ref:`Returning a View versus Copy <indexing.view_versus_copy>`
pandas provides a suite of methods in order to get purely integer based indexing. The semantics follow closely python and numpy slicing. These are 0-based
indexing. When slicing, the start bounds is included, while the upper bound is excluded. Trying to use a non-integer, even a valid label will raise a IndexError
.
The .iloc
attribute is the primary access method. The following are valid inputs:
- An integer e.g.
5
- A list or array of integers
[4, 3, 0]
- A slice object with ints
1:7
- A boolean array
.. ipython:: python s1 = pd.Series(np.random.randn(5), index=list(range(0,10,2))) s1 s1.iloc[:3] s1.iloc[3]
Note that setting works as well:
.. ipython:: python s1.iloc[:3] = 0 s1
With a DataFrame
.. ipython:: python df1 = pd.DataFrame(np.random.randn(6,4), index=list(range(0,12,2)), columns=list(range(0,8,2))) df1
Select via integer slicing
.. ipython:: python df1.iloc[:3] df1.iloc[1:5,2:4]
Select via integer list
.. ipython:: python df1.iloc[[1,3,5],[1,3]]
.. ipython:: python df1.iloc[1:3,:]
.. ipython:: python df1.iloc[:,1:3]
.. ipython:: python # this is also equivalent to ``df1.iat[1,1]`` df1.iloc[1,1]
For getting a cross section using an integer position (equiv to df.xs(1)
)
.. ipython:: python df1.iloc[1]
Out of range slice indexes are handled gracefully just as in Python/Numpy.
.. ipython:: python # these are allowed in python/numpy. # Only works in Pandas starting from v0.14.0. x = list('abcdef') x x[4:10] x[8:10] s = pd.Series(x) s s.iloc[4:10] s.iloc[8:10]
Note
Prior to v0.14.0, iloc
would not accept out of bounds indexers for
slices, e.g. a value that exceeds the length of the object being indexed.
Note that this could result in an empty axis (e.g. an empty DataFrame being returned)
.. ipython:: python dfl = pd.DataFrame(np.random.randn(5,2), columns=list('AB')) dfl dfl.iloc[:,2:3] dfl.iloc[:,1:3] dfl.iloc[4:6]
A single indexer that is out of bounds will raise an IndexError
.
A list of indexers where any element is out of bounds will raise an
IndexError
dfl.iloc[[4,5,6]]
IndexError: positional indexers are out-of-bounds
dfl.iloc[:,4]
IndexError: single positional indexer is out-of-bounds
A random selection of rows or columns from a Series, DataFrame, or Panel with the :meth:`~DataFrame.sample` method. The method will sample rows by default, and accepts a specific number of rows/columns to return, or a fraction of rows.
.. ipython :: python s = pd.Series([0,1,2,3,4,5]) # When no arguments are passed, returns 1 row. s.sample() # One may specify either a number of rows: s.sample(n=3) # Or a fraction of the rows: s.sample(frac=0.5)
By default, sample
will return each row at most once, but one can also sample with replacement
using the replace
option:
.. ipython :: python s = pd.Series([0,1,2,3,4,5]) # Without replacement (default): s.sample(n=6, replace=False) # With replacement: s.sample(n=6, replace=True)
By default, each row has an equal probability of being selected, but if you want rows
to have different probabilities, you can pass the sample
function sampling weights as
weights
. These weights can be a list, a numpy array, or a Series, but they must be of the same length as the object you are sampling. Missing values will be treated as a weight of zero, and inf values are not allowed. If weights do not sum to 1, they will be re-normalized by dividing all weights by the sum of the weights. For example:
.. ipython :: python s = pd.Series([0,1,2,3,4,5]) example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4] s.sample(n=3, weights=example_weights) # Weights will be re-normalized automatically example_weights2 = [0.5, 0, 0, 0, 0, 0] s.sample(n=1, weights=example_weights2)
When applied to a DataFrame, you can use a column of the DataFrame as sampling weights (provided you are sampling rows and not columns) by simply passing the name of the column as a string.
.. ipython :: python df2 = pd.DataFrame({'col1':[9,8,7,6], 'weight_column':[0.5, 0.4, 0.1, 0]}) df2.sample(n = 3, weights = 'weight_column')
sample
also allows users to sample columns instead of rows using the axis
argument.
.. ipython :: python df3 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]}) df3.sample(n=1, axis=1)
Finally, one can also set a seed for sample
's random number generator using the random_state
argument, which will accept either an integer (as a seed) or a numpy RandomState object.
.. ipython :: python df4 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]}) # With a given seed, the sample will always draw the same rows. df4.sample(n=2, random_state=2) df4.sample(n=2, random_state=2)
.. versionadded:: 0.13
The .loc/.ix/[]
operations can perform enlargement when setting a non-existant key for that axis.
In the Series
case this is effectively an appending operation
.. ipython:: python se = pd.Series([1,2,3]) se se[5] = 5. se
A DataFrame
can be enlarged on either axis via .loc
.. ipython:: python dfi = pd.DataFrame(np.arange(6).reshape(3,2), columns=['A','B']) dfi dfi.loc[:,'C'] = dfi.loc[:,'A'] dfi
This is like an append
operation on the DataFrame
.
.. ipython:: python dfi.loc[3] = 5 dfi
Since indexing with []
must handle a lot of cases (single-label access,
slicing, boolean indexing, etc.), it has a bit of overhead in order to figure
out what you're asking for. If you only want to access a scalar value, the
fastest way is to use the at
and iat
methods, which are implemented on
all of the data structures.
Similarly to loc
, at
provides label based scalar lookups, while, iat
provides integer based lookups analogously to iloc
.. ipython:: python s.iat[5] df.at[dates[5], 'A'] df.iat[3, 0]
You can also set using these same indexers.
.. ipython:: python df.at[dates[5], 'E'] = 7 df.iat[3, 0] = 7
at
may enlarge the object in-place as above if the indexer is missing.
.. ipython:: python df.at[dates[-1]+1, 0] = 7 df
Another common operation is the use of boolean vectors to filter the data.
The operators are: |
for or
, &
for and
, and ~
for not
. These must be grouped by using parentheses.
Using a boolean vector to index a Series works exactly as in a numpy ndarray:
.. ipython:: python s = pd.Series(range(-3, 4)) s s[s > 0] s[(s < -1) | (s > 0.5)] s[~(s < 0)]
You may select rows from a DataFrame using a boolean vector the same length as the DataFrame's index (for example, something derived from one of the columns of the DataFrame):
.. ipython:: python df[df['A'] > 0]
List comprehensions and map
method of Series can also be used to produce
more complex criteria:
.. ipython:: python df2 = pd.DataFrame({'a' : ['one', 'one', 'two', 'three', 'two', 'one', 'six'], 'b' : ['x', 'y', 'y', 'x', 'y', 'x', 'x'], 'c' : np.random.randn(7)}) # only want 'two' or 'three' criterion = df2['a'].map(lambda x: x.startswith('t')) df2[criterion] # equivalent but slower df2[[x.startswith('t') for x in df2['a']]] # Multiple criteria df2[criterion & (df2['b'] == 'x')]
Note, with the choice methods :ref:`Selection by Label <indexing.label>`, :ref:`Selection by Position <indexing.integer>`, and :ref:`Advanced Indexing <advanced>` you may select along more than one axis using boolean vectors combined with other indexing expressions.
.. ipython:: python df2.loc[criterion & (df2['b'] == 'x'),'b':'c']
Consider the isin
method of Series, which returns a boolean vector that is
true wherever the Series elements exist in the passed list. This allows you to
select rows where one or more columns have values you want:
.. ipython:: python s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64') s s.isin([2, 4, 6]) s[s.isin([2, 4, 6])]
The same method is available for Index
objects and is useful for the cases
when you don't know which of the sought labels are in fact present:
.. ipython:: python s[s.index.isin([2, 4, 6])] # compare it to the following s[[2, 4, 6]]
In addition to that, MultiIndex
allows selecting a separate level to use
in the membership check:
.. ipython:: python s_mi = pd.Series(np.arange(6), index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']])) s_mi s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c')])] s_mi.iloc[s_mi.index.isin(['a', 'c', 'e'], level=1)]
DataFrame also has an isin
method. When calling isin
, pass a set of
values as either an array or dict. If values is an array, isin
returns
a DataFrame of booleans that is the same shape as the original DataFrame, with True
wherever the element is in the sequence of values.
.. ipython:: python df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'], 'ids2': ['a', 'n', 'c', 'n']}) values = ['a', 'b', 1, 3] df.isin(values)
Oftentimes you'll want to match certain values with certain columns.
Just make values a dict
where the key is the column, and the value is
a list of items you want to check for.
.. ipython:: python values = {'ids': ['a', 'b'], 'vals': [1, 3]} df.isin(values)
Combine DataFrame's isin
with the any()
and all()
methods to
quickly select subsets of your data that meet a given criteria.
To select a row where each column meets its own criterion:
.. ipython:: python values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]} row_mask = df.isin(values).all(1) df[row_mask]
The :meth:`~pandas.DataFrame.where` Method and Masking
Selecting values from a Series with a boolean vector generally returns a
subset of the data. To guarantee that selection output has the same shape as
the original data, you can use the where
method in Series
and DataFrame
.
To return only the selected rows
.. ipython:: python s[s > 0]
To return a Series of the same shape as the original
.. ipython:: python s.where(s > 0)
Selecting values from a DataFrame with a boolean criterion now also preserves
input data shape. where
is used under the hood as the implementation.
Equivalent is df.where(df < 0)
.. ipython:: python :suppress: dates = pd.date_range('1/1/2000', periods=8) df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D'])
.. ipython:: python df[df < 0]
In addition, where
takes an optional other
argument for replacement of
values where the condition is False, in the returned copy.
.. ipython:: python df.where(df < 0, -df)
You may wish to set values based on some boolean criteria. This can be done intuitively like so:
.. ipython:: python s2 = s.copy() s2[s2 < 0] = 0 s2 df2 = df.copy() df2[df2 < 0] = 0 df2
By default, where
returns a modified copy of the data. There is an
optional parameter inplace
so that the original data can be modified
without creating a copy:
.. ipython:: python df_orig = df.copy() df_orig.where(df > 0, -df, inplace=True); df_orig
alignment
Furthermore, where
aligns the input boolean condition (ndarray or DataFrame),
such that partial selection with setting is possible. This is analogous to
partial setting via .ix
(but on the contents rather than the axis labels)
.. ipython:: python df2 = df.copy() df2[ df2[1:4] > 0 ] = 3 df2
.. versionadded:: 0.13
Where can also accept axis
and level
parameters to align the input when
performing the where
.
.. ipython:: python df2 = df.copy() df2.where(df2>0,df2['A'],axis='index')
This is equivalent (but faster than) the following.
.. ipython:: python df2 = df.copy() df.apply(lambda x, y: x.where(x>0,y), y=df['A'])
mask
mask
is the inverse boolean operation of where
.
.. ipython:: python s.mask(s >= 0) df.mask(df >= 0)
The :meth:`~pandas.DataFrame.query` Method (Experimental)
.. versionadded:: 0.13
:class:`~pandas.DataFrame` objects have a :meth:`~pandas.DataFrame.query` method that allows selection using an expression.
You can get the value of the frame where column b
has values
between the values of columns a
and c
. For example:
.. ipython:: python n = 10 df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc')) df # pure python df[(df.a < df.b) & (df.b < df.c)] # query df.query('(a < b) & (b < c)')
Do the same thing but fall back on a named index if there is no column
with the name a
.
.. ipython:: python df = pd.DataFrame(np.random.randint(n / 2, size=(n, 2)), columns=list('bc')) df.index.name = 'a' df df.query('a < b and b < c')
If instead you don't want to or cannot name your index, you can use the name
index
in your query expression:
.. ipython:: python :suppress: old_index = index del index
.. ipython:: python df = pd.DataFrame(np.random.randint(n, size=(n, 2)), columns=list('bc')) df df.query('index < b < c')
.. ipython:: python :suppress: index = old_index del old_index
Note
If the name of your index overlaps with a column name, the column name is given precedence. For example,
.. ipython:: python df = pd.DataFrame({'a': np.random.randint(5, size=5)}) df.index.name = 'a' df.query('a > 2') # uses the column 'a', not the index
You can still use the index in a query expression by using the special identifier 'index':
.. ipython:: python df.query('index > 2')
If for some reason you have a column named index
, then you can refer to
the index as ilevel_0
as well, but at this point you should consider
renaming your columns to something less ambiguous.
You can also use the levels of a DataFrame
with a
:class:`~pandas.MultiIndex` as if they were columns in the frame:
.. ipython:: python n = 10 colors = np.random.choice(['red', 'green'], size=n) foods = np.random.choice(['eggs', 'ham'], size=n) colors foods index = pd.MultiIndex.from_arrays([colors, foods], names=['color', 'food']) df = pd.DataFrame(np.random.randn(n, 2), index=index) df df.query('color == "red"')
If the levels of the MultiIndex
are unnamed, you can refer to them using
special names:
.. ipython:: python df.index.names = [None, None] df df.query('ilevel_0 == "red"')
The convention is ilevel_0
, which means "index level 0" for the 0th level
of the index
.
:meth:`~pandas.DataFrame.query` Use Cases
A use case for :meth:`~pandas.DataFrame.query` is when you have a collection of :class:`~pandas.DataFrame` objects that have a subset of column names (or index levels/names) in common. You can pass the same query to both frames without having to specify which frame you're interested in querying
.. ipython:: python df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc')) df df2 = pd.DataFrame(np.random.rand(n + 2, 3), columns=df.columns) df2 expr = '0.0 <= a <= c <= 0.5' map(lambda frame: frame.query(expr), [df, df2])
:meth:`~pandas.DataFrame.query` Python versus pandas Syntax Comparison
Full numpy-like syntax
.. ipython:: python df = pd.DataFrame(np.random.randint(n, size=(n, 3)), columns=list('abc')) df df.query('(a < b) & (b < c)') df[(df.a < df.b) & (df.b < df.c)]
Slightly nicer by removing the parentheses (by binding making comparison
operators bind tighter than &
/|
)
.. ipython:: python df.query('a < b & b < c')
Use English instead of symbols
.. ipython:: python df.query('a < b and b < c')
Pretty close to how you might write it on paper
.. ipython:: python df.query('a < b < c')
:meth:`~pandas.DataFrame.query` also supports special use of Python's in
and
not in
comparison operators, providing a succinct syntax for calling the
isin
method of a Series
or DataFrame
.
.. ipython:: python :suppress: try: old_d = d del d except NameError: pass
.. ipython:: python # get all rows where columns "a" and "b" have overlapping values df = pd.DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaabbbbcccc'), 'c': np.random.randint(5, size=12), 'd': np.random.randint(9, size=12)}) df df.query('a in b') # How you'd do it in pure Python df[df.a.isin(df.b)] df.query('a not in b') # pure Python df[~df.a.isin(df.b)]
You can combine this with other expressions for very succinct queries:
.. ipython:: python # rows where cols a and b have overlapping values and col c's values are less than col d's df.query('a in b and c < d') # pure Python df[df.b.isin(df.a) & (df.c < df.d)]
Note
Note that in
and not in
are evaluated in Python, since numexpr
has no equivalent of this operation. However, only the in
/not in
expression itself is evaluated in vanilla Python. For example, in the
expression
df.query('a in b + c + d')
(b + c + d)
is evaluated by numexpr
and then the in
operation is evaluated in plain Python. In general, any operations that can
be evaluated using numexpr
will be.
Comparing a list
of values to a column using ==
/!=
works similarly
to in
/not in
.. ipython:: python df.query('b == ["a", "b", "c"]') # pure Python df[df.b.isin(["a", "b", "c"])] df.query('c == [1, 2]') df.query('c != [1, 2]') # using in/not in df.query('[1, 2] in c') df.query('[1, 2] not in c') # pure Python df[df.c.isin([1, 2])]
You can negate boolean expressions with the word not
or the ~
operator.
.. ipython:: python df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc')) df['bools'] = np.random.rand(len(df)) > 0.5 df.query('~bools') df.query('not bools') df.query('not bools') == df[~df.bools]
Of course, expressions can be arbitrarily complex too
.. ipython:: python # short query syntax shorter = df.query('a < b < c and (not bools) or bools > 2') # equivalent in pure Python longer = df[(df.a < df.b) & (df.b < df.c) & (~df.bools) | (df.bools > 2)] shorter longer shorter == longer
.. ipython:: python :suppress: try: d = old_d del old_d except NameError: pass
Performance of :meth:`~pandas.DataFrame.query`
DataFrame.query()
using numexpr
is slightly faster than Python for
large frames
Note
You will only see the performance benefits of using the numexpr
engine
with DataFrame.query()
if your frame has more than approximately 200,000
rows
This plot was created using a DataFrame
with 3 columns each containing
floating point values generated using numpy.random.randn()
.
.. ipython:: python :suppress: df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) df2 = df.copy()
If you want to identify and remove duplicate rows in a DataFrame, there are
two methods that will help: duplicated
and drop_duplicates
. Each
takes as an argument the columns to use to identify duplicated rows.
duplicated
returns a boolean vector whose length is the number of rows, and which indicates whether a row is duplicated.drop_duplicates
removes duplicate rows.
By default, the first observed row of a duplicate set is considered unique, but
each method has a keep
parameter to specify targets to be kept.
keep='first'
(default): mark / drop duplicates except for the first occurrence.keep='last'
: mark / drop duplicates except for the last occurrence.keep=False
: mark / drop all duplicates.
.. ipython:: python df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'two', 'two', 'three', 'four'], 'b': ['x', 'y', 'x', 'y', 'x', 'x', 'x'], 'c': np.random.randn(7)}) df2 df2.duplicated('a') df2.duplicated('a', keep='last') df2.duplicated('a', keep=False) df2.drop_duplicates('a') df2.drop_duplicates('a', keep='last') df2.drop_duplicates('a', keep=False)
Also, you can pass a list of columns to identify duplications.
.. ipython:: python df2.duplicated(['a', 'b']) df2.drop_duplicates(['a', 'b'])
To drop duplicates by index value, use Index.duplicated
then perform slicing.
Same options are available in keep
parameter.
.. ipython:: python df3 = pd.DataFrame({'a': np.arange(6), 'b': np.random.randn(6)}, index=['a', 'a', 'b', 'c', 'b', 'a']) df3 df3.index.duplicated() df3[~df3.index.duplicated()] df3[~df3.index.duplicated(keep='last')] df3[~df3.index.duplicated(keep=False)]
Dictionary-like :meth:`~pandas.DataFrame.get` method
Each of Series, DataFrame, and Panel have a get
method which can return a
default value.
.. ipython:: python s = pd.Series([1,2,3], index=['a','b','c']) s.get('a') # equivalent to s['a'] s.get('x', default=-1)
The :meth:`~pandas.DataFrame.select` Method
Another way to extract slices from an object is with the select
method of
Series, DataFrame, and Panel. This method should be used only when there is no
more direct way. select
takes a function which operates on labels along
axis
and returns a boolean. For instance:
.. ipython:: python df.select(lambda x: x == 'A', axis=1)
The :meth:`~pandas.DataFrame.lookup` Method
Sometimes you want to extract a set of values given a sequence of row labels
and column labels, and the lookup
method allows for this and returns a
numpy array. For instance,
.. ipython:: python dflookup = pd.DataFrame(np.random.rand(20,4), columns = ['A','B','C','D']) dflookup.lookup(list(range(0,10,2)), ['B','C','A','B','D'])
The pandas :class:`~pandas.Index` class and its subclasses can be viewed as
implementing an ordered multiset. Duplicates are allowed. However, if you try
to convert an :class:`~pandas.Index` object with duplicate entries into a
set
, an exception will be raised.
:class:`~pandas.Index` also provides the infrastructure necessary for
lookups, data alignment, and reindexing. The easiest way to create an
:class:`~pandas.Index` directly is to pass a list
or other sequence to
:class:`~pandas.Index`:
.. ipython:: python index = pd.Index(['e', 'd', 'a', 'b']) index 'd' in index
You can also pass a name
to be stored in the index:
.. ipython:: python index = pd.Index(['e', 'd', 'a', 'b'], name='something') index.name
The name, if set, will be shown in the console display:
.. ipython:: python index = pd.Index(list(range(5)), name='rows') columns = pd.Index(['A', 'B', 'C'], name='cols') df = pd.DataFrame(np.random.randn(5, 3), index=index, columns=columns) df df['A']
.. versionadded:: 0.13.0
Indexes are "mostly immutable", but it is possible to set and change their
metadata, like the index name
(or, for MultiIndex
, levels
and
labels
).
You can use the rename
, set_names
, set_levels
, and set_labels
to set these attributes directly. They default to returning a copy; however,
you can specify inplace=True
to have the data change in place.
See :ref:`Advanced Indexing <advanced>` for usage of MultiIndexes.
.. ipython:: python ind = pd.Index([1, 2, 3]) ind.rename("apple") ind ind.set_names(["apple"], inplace=True) ind.name = "bob" ind
.. versionadded:: 0.15.0
set_names
, set_levels
, and set_labels
also take an optional
level` argument
.. ipython:: python index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second']) index index.levels[1] index.set_levels(["a", "b"], level=1)
Warning
In 0.15.0. the set operations +
and -
were deprecated in order to provide these for numeric type operations on certain
index types. +
can be replace by .union()
or |
, and -
by .difference()
.
The two main operations are union (|)
, intersection (&)
These can be directly called as instance methods or used via overloaded
operators. Difference is provided via the .difference()
method.
.. ipython:: python a = pd.Index(['c', 'b', 'a']) b = pd.Index(['c', 'e', 'd']) a | b a & b a.difference(b)
Also available is the sym_diff (^)
operation, which returns elements
that appear in either idx1
or idx2
but not both. This is
equivalent to the Index created by idx1.difference(idx2).union(idx2.difference(idx1))
,
with duplicates dropped.
.. ipython:: python idx1 = pd.Index([1, 2, 3, 4]) idx2 = pd.Index([2, 3, 4, 5]) idx1.sym_diff(idx2) idx1 ^ idx2
Occasionally you will load or create a data set into a DataFrame and want to add an index after you've already done so. There are a couple of different ways.
DataFrame has a set_index
method which takes a column name (for a regular
Index
) or a list of column names (for a MultiIndex
), to create a new,
indexed DataFrame:
.. ipython:: python :suppress: data = pd.DataFrame({'a' : ['bar', 'bar', 'foo', 'foo'], 'b' : ['one', 'two', 'one', 'two'], 'c' : ['z', 'y', 'x', 'w'], 'd' : [1., 2., 3, 4]})
.. ipython:: python data indexed1 = data.set_index('c') indexed1 indexed2 = data.set_index(['a', 'b']) indexed2
The append
keyword option allow you to keep the existing index and append
the given columns to a MultiIndex:
.. ipython:: python frame = data.set_index('c', drop=False) frame = frame.set_index(['a', 'b'], append=True) frame
Other options in set_index
allow you not drop the index columns or to add
the index in-place (without creating a new object):
.. ipython:: python data.set_index('c', drop=False) data.set_index(['a', 'b'], inplace=True) data
As a convenience, there is a new function on DataFrame called reset_index
which transfers the index values into the DataFrame's columns and sets a simple
integer index. This is the inverse operation to set_index
.. ipython:: python data data.reset_index()
The output is more similar to a SQL table or a record array. The names for the
columns derived from the index are the ones stored in the names
attribute.
You can use the level
keyword to remove only a portion of the index:
.. ipython:: python frame frame.reset_index(level=1)
reset_index
takes an optional parameter drop
which if true simply
discards the index, instead of putting index values in the DataFrame's columns.
Note
The reset_index
method used to be called delevel
which is now
deprecated.
If you create an index yourself, you can just assign it to the index
field:
data.index = index
When setting values in a pandas object, care must be taken to avoid what is called
chained indexing
. Here is an example.
.. ipython:: python dfmi = pd.DataFrame([list('abcd'), list('efgh'), list('ijkl'), list('mnop')], columns=pd.MultiIndex.from_product([['one','two'], ['first','second']])) dfmi
Compare these two access methods:
.. ipython:: python dfmi['one']['second']
.. ipython:: python dfmi.loc[:,('one','second')]
These both yield the same results, so which should you use? It is instructive to understand the order
of operations on these and why method 2 (.loc
) is much preferred over method 1 (chained []
)
dfmi['one']
selects the first level of the columns and returns a data frame that is singly-indexed.
Then another python operation dfmi_with_one['second']
selects the series indexed by 'second'
happens.
This is indicated by the variable dfmi_with_one
because pandas sees these operations as separate events.
e.g. separate calls to __getitem__
, so it has to treat them as linear operations, they happen one after another.
Contrast this to df.loc[:,('one','second')]
which passes a nested tuple of (slice(None),('one','second'))
to a single call to
__getitem__
. This allows pandas to deal with this as a single entity. Furthermore this order of operations can be significantly
faster, and allows one to index both axes if so desired.
So, why does this show the SettingWithCopy
warning / and possibly not work when you do chained indexing and assignment:
dfmi['one']['second'] = value
Since the chained indexing is 2 calls, it is possible that either call may return a copy of the data because of the way it is sliced. Thus when setting, you are actually setting a copy, and not the original frame data. It is impossible for pandas to figure this out because their are 2 separate python operations that are not connected.
The SettingWithCopy
warning is a 'heuristic' to detect this (meaning it tends to catch most cases but is simply a lightweight check). Figuring this out for real is way complicated.
The .loc
operation is a single python operation, and thus can select a slice (which still may be a copy), but allows pandas to assign that slice back into the frame after it is modified, thus setting the values as you would think.
The reason for having the SettingWithCopy
warning is this. Sometimes when you slice an array you will simply get a view back, which means you can set it no problem. However, even a single dtyped array can generate a copy if it is sliced in a particular way. A multi-dtyped DataFrame (meaning it has say float
and object
data), will almost always yield a copy. Whether a view is created is dependent on the memory layout of the array.
Furthermore, in chained expressions, the order may determine whether a copy is returned or not.
If an expression will set values on a copy of a slice, then a SettingWithCopy
exception will be raised (this raise/warn behavior is new starting in 0.13.0)
You can control the action of a chained assignment via the option mode.chained_assignment
,
which can take the values ['raise','warn',None]
, where showing a warning is the default.
.. ipython:: python :okwarning: dfb = pd.DataFrame({'a' : ['one', 'one', 'two', 'three', 'two', 'one', 'six'], 'c' : np.arange(7)}) # This will show the SettingWithCopyWarning # but the frame values will be set dfb['c'][dfb.a.str.startswith('o')] = 42
This however is operating on a copy and will not work.
>>> pd.set_option('mode.chained_assignment','warn') >>> dfb[dfb.a.str.startswith('o')]['c'] = 42 Traceback (most recent call last) ... SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_index,col_indexer] = value instead
A chained assignment can also crop up in setting in a mixed dtype frame.
Note
These setting rules apply to all of .loc/.iloc/.ix
This is the correct access method
.. ipython:: python dfc = pd.DataFrame({'A':['aaa','bbb','ccc'],'B':[1,2,3]}) dfc.loc[0,'A'] = 11 dfc
This can work at times, but is not guaranteed, and so should be avoided
.. ipython:: python dfc = dfc.copy() dfc['A'][0] = 111 dfc
This will not work at all, and so should be avoided
>>> pd.set_option('mode.chained_assignment','raise') >>> dfc.loc[0]['A'] = 1111 Traceback (most recent call last) ... SettingWithCopyException: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_index,col_indexer] = value instead
Warning
The chained assignment warnings / exceptions are aiming to inform the user of a possibly invalid assignment. There may be false positives; situations where a chained assignment is inadvertantly reported.