Skip to content

Commit 59244d3

Browse files
committed
Pushing the docs to dev/ for branch: main, commit d4e7158bcaa6f91a42e8afba21b7803bf82c3813
1 parent d786052 commit 59244d3

File tree

1,263 files changed

+4563
-4560
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,263 files changed

+4563
-4560
lines changed
Binary file not shown.

Diff for: dev/_downloads/14f620cd922ca2c9a39ae5784034dd0d/plot_lda.py

+14-13
Original file line numberDiff line numberDiff line change
@@ -47,8 +47,8 @@ def generate_data(n_samples, n_features):
4747
for _ in range(n_averages):
4848
X, y = generate_data(n_train, n_features)
4949

50-
clf1 = LinearDiscriminantAnalysis(solver="lsqr", shrinkage="auto").fit(X, y)
51-
clf2 = LinearDiscriminantAnalysis(solver="lsqr", shrinkage=None).fit(X, y)
50+
clf1 = LinearDiscriminantAnalysis(solver="lsqr", shrinkage=None).fit(X, y)
51+
clf2 = LinearDiscriminantAnalysis(solver="lsqr", shrinkage="auto").fit(X, y)
5252
oa = OAS(store_precision=False, assume_centered=False)
5353
clf3 = LinearDiscriminantAnalysis(solver="lsqr", covariance_estimator=oa).fit(
5454
X, y
@@ -69,36 +69,37 @@ def generate_data(n_samples, n_features):
6969
features_samples_ratio,
7070
acc_clf1,
7171
linewidth=2,
72-
label="Linear Discriminant Analysis with Ledoit Wolf",
73-
color="navy",
74-
linestyle="dashed",
72+
label="LDA",
73+
color="gold",
74+
linestyle="solid",
7575
)
7676
plt.plot(
7777
features_samples_ratio,
7878
acc_clf2,
7979
linewidth=2,
80-
label="Linear Discriminant Analysis",
81-
color="gold",
82-
linestyle="solid",
80+
label="LDA with Ledoit Wolf",
81+
color="navy",
82+
linestyle="dashed",
8383
)
8484
plt.plot(
8585
features_samples_ratio,
8686
acc_clf3,
8787
linewidth=2,
88-
label="Linear Discriminant Analysis with OAS",
88+
label="LDA with OAS",
8989
color="red",
9090
linestyle="dotted",
9191
)
9292

9393
plt.xlabel("n_features / n_samples")
9494
plt.ylabel("Classification accuracy")
9595

96-
plt.legend(loc=3, prop={"size": 12})
96+
plt.legend(loc="lower left")
97+
plt.ylim((0.65, 1.0))
9798
plt.suptitle(
98-
"Linear Discriminant Analysis vs. "
99+
"LDA (Linear Discriminant Analysis) vs. "
99100
+ "\n"
100-
+ "Shrinkage Linear Discriminant Analysis vs. "
101+
+ "LDA with Ledoit Wolf vs. "
101102
+ "\n"
102-
+ "OAS Linear Discriminant Analysis (1 discriminative feature)"
103+
+ "LDA with OAS (1 discriminative feature)"
103104
)
104105
plt.show()
Binary file not shown.

Diff for: dev/_downloads/acc912c1f80e1cb0e32675b5f7686075/plot_lda.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"import numpy as np\nimport matplotlib.pyplot as plt\n\nfrom sklearn.datasets import make_blobs\nfrom sklearn.discriminant_analysis import LinearDiscriminantAnalysis\nfrom sklearn.covariance import OAS\n\n\nn_train = 20 # samples for training\nn_test = 200 # samples for testing\nn_averages = 50 # how often to repeat classification\nn_features_max = 75 # maximum number of features\nstep = 4 # step size for the calculation\n\n\ndef generate_data(n_samples, n_features):\n \"\"\"Generate random blob-ish data with noisy features.\n\n This returns an array of input data with shape `(n_samples, n_features)`\n and an array of `n_samples` target labels.\n\n Only one feature contains discriminative information, the other features\n contain only noise.\n \"\"\"\n X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]])\n\n # add non-discriminative features\n if n_features > 1:\n X = np.hstack([X, np.random.randn(n_samples, n_features - 1)])\n return X, y\n\n\nacc_clf1, acc_clf2, acc_clf3 = [], [], []\nn_features_range = range(1, n_features_max + 1, step)\nfor n_features in n_features_range:\n score_clf1, score_clf2, score_clf3 = 0, 0, 0\n for _ in range(n_averages):\n X, y = generate_data(n_train, n_features)\n\n clf1 = LinearDiscriminantAnalysis(solver=\"lsqr\", shrinkage=\"auto\").fit(X, y)\n clf2 = LinearDiscriminantAnalysis(solver=\"lsqr\", shrinkage=None).fit(X, y)\n oa = OAS(store_precision=False, assume_centered=False)\n clf3 = LinearDiscriminantAnalysis(solver=\"lsqr\", covariance_estimator=oa).fit(\n X, y\n )\n\n X, y = generate_data(n_test, n_features)\n score_clf1 += clf1.score(X, y)\n score_clf2 += clf2.score(X, y)\n score_clf3 += clf3.score(X, y)\n\n acc_clf1.append(score_clf1 / n_averages)\n acc_clf2.append(score_clf2 / n_averages)\n acc_clf3.append(score_clf3 / n_averages)\n\nfeatures_samples_ratio = np.array(n_features_range) / n_train\n\nplt.plot(\n features_samples_ratio,\n acc_clf1,\n linewidth=2,\n label=\"Linear Discriminant Analysis with Ledoit Wolf\",\n color=\"navy\",\n linestyle=\"dashed\",\n)\nplt.plot(\n features_samples_ratio,\n acc_clf2,\n linewidth=2,\n label=\"Linear Discriminant Analysis\",\n color=\"gold\",\n linestyle=\"solid\",\n)\nplt.plot(\n features_samples_ratio,\n acc_clf3,\n linewidth=2,\n label=\"Linear Discriminant Analysis with OAS\",\n color=\"red\",\n linestyle=\"dotted\",\n)\n\nplt.xlabel(\"n_features / n_samples\")\nplt.ylabel(\"Classification accuracy\")\n\nplt.legend(loc=3, prop={\"size\": 12})\nplt.suptitle(\n \"Linear Discriminant Analysis vs. \"\n + \"\\n\"\n + \"Shrinkage Linear Discriminant Analysis vs. \"\n + \"\\n\"\n + \"OAS Linear Discriminant Analysis (1 discriminative feature)\"\n)\nplt.show()"
29+
"import numpy as np\nimport matplotlib.pyplot as plt\n\nfrom sklearn.datasets import make_blobs\nfrom sklearn.discriminant_analysis import LinearDiscriminantAnalysis\nfrom sklearn.covariance import OAS\n\n\nn_train = 20 # samples for training\nn_test = 200 # samples for testing\nn_averages = 50 # how often to repeat classification\nn_features_max = 75 # maximum number of features\nstep = 4 # step size for the calculation\n\n\ndef generate_data(n_samples, n_features):\n \"\"\"Generate random blob-ish data with noisy features.\n\n This returns an array of input data with shape `(n_samples, n_features)`\n and an array of `n_samples` target labels.\n\n Only one feature contains discriminative information, the other features\n contain only noise.\n \"\"\"\n X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]])\n\n # add non-discriminative features\n if n_features > 1:\n X = np.hstack([X, np.random.randn(n_samples, n_features - 1)])\n return X, y\n\n\nacc_clf1, acc_clf2, acc_clf3 = [], [], []\nn_features_range = range(1, n_features_max + 1, step)\nfor n_features in n_features_range:\n score_clf1, score_clf2, score_clf3 = 0, 0, 0\n for _ in range(n_averages):\n X, y = generate_data(n_train, n_features)\n\n clf1 = LinearDiscriminantAnalysis(solver=\"lsqr\", shrinkage=None).fit(X, y)\n clf2 = LinearDiscriminantAnalysis(solver=\"lsqr\", shrinkage=\"auto\").fit(X, y)\n oa = OAS(store_precision=False, assume_centered=False)\n clf3 = LinearDiscriminantAnalysis(solver=\"lsqr\", covariance_estimator=oa).fit(\n X, y\n )\n\n X, y = generate_data(n_test, n_features)\n score_clf1 += clf1.score(X, y)\n score_clf2 += clf2.score(X, y)\n score_clf3 += clf3.score(X, y)\n\n acc_clf1.append(score_clf1 / n_averages)\n acc_clf2.append(score_clf2 / n_averages)\n acc_clf3.append(score_clf3 / n_averages)\n\nfeatures_samples_ratio = np.array(n_features_range) / n_train\n\nplt.plot(\n features_samples_ratio,\n acc_clf1,\n linewidth=2,\n label=\"LDA\",\n color=\"gold\",\n linestyle=\"solid\",\n)\nplt.plot(\n features_samples_ratio,\n acc_clf2,\n linewidth=2,\n label=\"LDA with Ledoit Wolf\",\n color=\"navy\",\n linestyle=\"dashed\",\n)\nplt.plot(\n features_samples_ratio,\n acc_clf3,\n linewidth=2,\n label=\"LDA with OAS\",\n color=\"red\",\n linestyle=\"dotted\",\n)\n\nplt.xlabel(\"n_features / n_samples\")\nplt.ylabel(\"Classification accuracy\")\n\nplt.legend(loc=\"lower left\")\nplt.ylim((0.65, 1.0))\nplt.suptitle(\n \"LDA (Linear Discriminant Analysis) vs. \"\n + \"\\n\"\n + \"LDA with Ledoit Wolf vs. \"\n + \"\\n\"\n + \"LDA with OAS (1 discriminative feature)\"\n)\nplt.show()"
3030
]
3131
}
3232
],

Diff for: dev/_downloads/scikit-learn-docs.zip

-28.9 KB
Binary file not shown.
-1 Bytes
151 Bytes
-275 Bytes
-275 Bytes
-9 Bytes

Diff for: dev/_images/sphx_glr_plot_anomaly_comparison_001.png

-282 Bytes
-16 Bytes
2.11 KB

Diff for: dev/_images/sphx_glr_plot_calibration_curve_002.png

-4 Bytes

Diff for: dev/_images/sphx_glr_plot_cluster_comparison_001.png

182 Bytes
-52 Bytes

Diff for: dev/_images/sphx_glr_plot_coin_segmentation_001.png

-172 Bytes

Diff for: dev/_images/sphx_glr_plot_coin_segmentation_002.png

-227 Bytes

Diff for: dev/_images/sphx_glr_plot_coin_segmentation_003.png

-148 Bytes
-22 Bytes
-378 Bytes
-26 Bytes

Diff for: dev/_images/sphx_glr_plot_dict_face_patches_001.png

-17 Bytes
-48 Bytes

Diff for: dev/_images/sphx_glr_plot_digits_pipe_001.png

-282 Bytes

Diff for: dev/_images/sphx_glr_plot_digits_pipe_thumb.png

40 Bytes
-96 Bytes
-262 Bytes

Diff for: dev/_images/sphx_glr_plot_gmm_init_001.png

-70 Bytes

Diff for: dev/_images/sphx_glr_plot_gmm_init_thumb.png

-3 Bytes
2.08 KB
1.68 KB
437 Bytes
529 Bytes
2 Bytes
5 Bytes
7 Bytes

Diff for: dev/_images/sphx_glr_plot_image_denoising_002.png

166 Bytes

Diff for: dev/_images/sphx_glr_plot_image_denoising_004.png

-159 Bytes

Diff for: dev/_images/sphx_glr_plot_image_denoising_005.png

-173 Bytes
-302 Bytes
59 Bytes
53 Bytes
-428 Bytes
-6 Bytes
30 Bytes
89 Bytes

Diff for: dev/_images/sphx_glr_plot_lda_001.png

-4.7 KB

Diff for: dev/_images/sphx_glr_plot_lda_thumb.png

-5.42 KB

Diff for: dev/_images/sphx_glr_plot_learning_curve_002.png

-7.7 KB

Diff for: dev/_images/sphx_glr_plot_learning_curve_003.png

-2.45 KB

Diff for: dev/_images/sphx_glr_plot_linkage_comparison_001.png

-12 Bytes
22 Bytes

Diff for: dev/_images/sphx_glr_plot_lle_digits_004.png

-82 Bytes

Diff for: dev/_images/sphx_glr_plot_lle_digits_005.png

-48 Bytes

Diff for: dev/_images/sphx_glr_plot_lle_digits_006.png

205 Bytes

Diff for: dev/_images/sphx_glr_plot_lle_digits_007.png

-50 Bytes

Diff for: dev/_images/sphx_glr_plot_lle_digits_008.png

6 Bytes

Diff for: dev/_images/sphx_glr_plot_lle_digits_009.png

-98 Bytes

Diff for: dev/_images/sphx_glr_plot_lle_digits_010.png

113 Bytes

Diff for: dev/_images/sphx_glr_plot_lle_digits_011.png

-56 Bytes

Diff for: dev/_images/sphx_glr_plot_lle_digits_012.png

-42 Bytes

Diff for: dev/_images/sphx_glr_plot_lle_digits_013.png

-22 Bytes

Diff for: dev/_images/sphx_glr_plot_lle_digits_014.png

14 Bytes

Diff for: dev/_images/sphx_glr_plot_manifold_sphere_001.png

315 Bytes

Diff for: dev/_images/sphx_glr_plot_manifold_sphere_thumb.png

-45 Bytes
9 Bytes
547 Bytes
-915 Bytes
-37 Bytes
-1.29 KB
-334 Bytes
-193 Bytes

Diff for: dev/_images/sphx_glr_plot_prediction_latency_001.png

-881 Bytes

Diff for: dev/_images/sphx_glr_plot_prediction_latency_002.png

-1.61 KB

Diff for: dev/_images/sphx_glr_plot_prediction_latency_003.png

954 Bytes

Diff for: dev/_images/sphx_glr_plot_prediction_latency_004.png

516 Bytes
-392 Bytes
-1.88 KB
-965 Bytes
-175 Bytes
52 Bytes

Diff for: dev/_images/sphx_glr_plot_sgd_early_stopping_002.png

-5.64 KB

Diff for: dev/_images/sphx_glr_plot_stack_predictors_001.png

53 Bytes

Diff for: dev/_images/sphx_glr_plot_stack_predictors_thumb.png

3 Bytes
28 Bytes
56 Bytes

Diff for: dev/_images/sphx_glr_plot_theilsen_001.png

-23 Bytes

Diff for: dev/_images/sphx_glr_plot_theilsen_002.png

55 Bytes

Diff for: dev/_images/sphx_glr_plot_theilsen_thumb.png

-9 Bytes
-50 Bytes
-10 Bytes

Diff for: dev/_sources/auto_examples/applications/plot_cyclical_feature_engineering.rst.txt

+1-1

Diff for: dev/_sources/auto_examples/applications/plot_digits_denoising.rst.txt

+1-1

Diff for: dev/_sources/auto_examples/applications/plot_face_recognition.rst.txt

+5-5

Diff for: dev/_sources/auto_examples/applications/plot_model_complexity_influence.rst.txt

+13-13

0 commit comments

Comments
 (0)