-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathreal_world.html
1596 lines (1355 loc) · 99.5 KB
/
real_world.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta property="og:title" content="7.2. Real world datasets" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/datasets/real_world.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="scikit-learn provides tools to load larger datasets, downloading them if necessary. They can be loaded using the following functions: The Olivetti faces dataset: This dataset contains a set of face..." />
<meta property="og:image" content="https://scikit-learn.org/stable/_static/scikit-learn-logo-small.png" />
<meta property="og:image:alt" content="scikit-learn" />
<meta name="description" content="scikit-learn provides tools to load larger datasets, downloading them if necessary. They can be loaded using the following functions: The Olivetti faces dataset: This dataset contains a set of face..." />
<title>7.2. Real world datasets — scikit-learn 1.6.1 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=a746c00c" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/plot_directive.css" />
<link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Vibur" />
<link rel="stylesheet" type="text/css" href="../_static/jupyterlite_sphinx.css?v=e3ca86de" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery.css?v=d2d258e8" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-binder.css?v=f4aeca0c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-dataframe.css?v=2082cf3c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-rendered-html.css?v=1277b6f3" />
<link rel="stylesheet" type="text/css" href="../_static/sphinx-design.min.css?v=95c83b7e" />
<link rel="stylesheet" type="text/css" href="../_static/styles/colors.css?v=cc94ab7d" />
<link rel="stylesheet" type="text/css" href="../_static/styles/custom.css?v=d67e4bb0" />
<!-- So that users can add custom icons -->
<script src="../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../_static/documentation_options.js?v=d6a008b6"></script>
<script src="../_static/doctools.js?v=9a2dae69"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=97f0b27d"></script>
<script src="../_static/jupyterlite_sphinx.js?v=d6bdf5f8"></script>
<script src="../_static/design-tabs.js?v=f930bc37"></script>
<script data-domain="scikit-learn.org" defer="defer" src="https://views.scientific-python.org/js/script.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'datasets/real_world';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = 'https://scikit-learn.org/dev/_static/versions.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.6.1';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
true;
</script>
<script src="../_static/scripts/dropdown.js?v=e2048168"></script>
<script src="../_static/scripts/version-switcher.js?v=a6dd8357"></script>
<script src="../_static/scripts/sg_plotly_resize.js?v=eeb41cab"></script>
<link rel="canonical" href="https://scikit-learn.org/stable/datasets/real_world.html" />
<link rel="icon" href="../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../about.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="7.3. Generated datasets" href="sample_generators.html" />
<link rel="prev" title="7.1. Toy datasets" href="toy_dataset.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.6" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class=" navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-light" alt="scikit-learn homepage"/>
<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-dark pst-js-only" alt="scikit-learn homepage"/>
</a></div>
</div>
<div class=" navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item dropdown">
<button class="btn dropdown-toggle nav-item" type="button"
data-bs-toggle="dropdown" aria-expanded="false"
aria-controls="pst-nav-more-links">
More
</button>
<ul id="pst-nav-more-links" class="dropdown-menu">
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../support.html">
Support
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn btn-sm pst-navbar-icon search-button search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn btn-sm pst-navbar-icon search-button search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../support.html">
Support
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../supervised_learning.html">1. Supervised learning</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../modules/linear_model.html">1.1. Linear Models</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/lda_qda.html">1.2. Linear and Quadratic Discriminant Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/kernel_ridge.html">1.3. Kernel ridge regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/svm.html">1.4. Support Vector Machines</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/sgd.html">1.5. Stochastic Gradient Descent</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/neighbors.html">1.6. Nearest Neighbors</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/gaussian_process.html">1.7. Gaussian Processes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/cross_decomposition.html">1.8. Cross decomposition</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/naive_bayes.html">1.9. Naive Bayes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/tree.html">1.10. Decision Trees</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/ensemble.html">1.11. Ensembles: Gradient boosting, random forests, bagging, voting, stacking</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/multiclass.html">1.12. Multiclass and multioutput algorithms</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/feature_selection.html">1.13. Feature selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/semi_supervised.html">1.14. Semi-supervised learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/isotonic.html">1.15. Isotonic regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/calibration.html">1.16. Probability calibration</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/neural_networks_supervised.html">1.17. Neural network models (supervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../unsupervised_learning.html">2. Unsupervised learning</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../modules/mixture.html">2.1. Gaussian mixture models</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/manifold.html">2.2. Manifold learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/clustering.html">2.3. Clustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/biclustering.html">2.4. Biclustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/decomposition.html">2.5. Decomposing signals in components (matrix factorization problems)</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/covariance.html">2.6. Covariance estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/outlier_detection.html">2.7. Novelty and Outlier Detection</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/density.html">2.8. Density Estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/neural_networks_unsupervised.html">2.9. Neural network models (unsupervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../model_selection.html">3. Model selection and evaluation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../modules/cross_validation.html">3.1. Cross-validation: evaluating estimator performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/grid_search.html">3.2. Tuning the hyper-parameters of an estimator</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/classification_threshold.html">3.3. Tuning the decision threshold for class prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/model_evaluation.html">3.4. Metrics and scoring: quantifying the quality of predictions</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/learning_curve.html">3.5. Validation curves: plotting scores to evaluate models</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../inspection.html">4. Inspection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../modules/partial_dependence.html">4.1. Partial Dependence and Individual Conditional Expectation plots</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/permutation_importance.html">4.2. Permutation feature importance</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../visualizations.html">5. Visualizations</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../data_transforms.html">6. Dataset transformations</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../modules/compose.html">6.1. Pipelines and composite estimators</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/feature_extraction.html">6.2. Feature extraction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/preprocessing.html">6.3. Preprocessing data</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/impute.html">6.4. Imputation of missing values</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/unsupervised_reduction.html">6.5. Unsupervised dimensionality reduction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/random_projection.html">6.6. Random Projection</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/kernel_approximation.html">6.7. Kernel Approximation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/metrics.html">6.8. Pairwise metrics, Affinities and Kernels</a></li>
<li class="toctree-l2"><a class="reference internal" href="../modules/preprocessing_targets.html">6.9. Transforming the prediction target (<code class="docutils literal notranslate"><span class="pre">y</span></code>)</a></li>
</ul>
</details></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="../datasets.html">7. Dataset loading utilities</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="toy_dataset.html">7.1. Toy datasets</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">7.2. Real world datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="sample_generators.html">7.3. Generated datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="loading_other_datasets.html">7.4. Loading other datasets</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../computing.html">8. Computing with scikit-learn</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../computing/scaling_strategies.html">8.1. Strategies to scale computationally: bigger data</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/computational_performance.html">8.2. Computational Performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/parallelism.html">8.3. Parallelism, resource management, and configuration</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../model_persistence.html">9. Model persistence</a></li>
<li class="toctree-l1"><a class="reference internal" href="../common_pitfalls.html">10. Common pitfalls and recommended practices</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../dispatching.html">11. Dispatching</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../modules/array_api.html">11.1. Array API support (experimental)</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../machine_learning_map.html">12. Choosing the right estimator</a></li>
<li class="toctree-l1"><a class="reference internal" href="../presentations.html">13. External Resources, Videos and Talks</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../user_guide.html" class="nav-link">User Guide</a></li>
<li class="breadcrumb-item"><a href="../datasets.html" class="nav-link"><span class="section-number">7. </span>Dataset loading utilities</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis"><span class="section-number">7.2. </span>Real world datasets</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="real-world-datasets">
<span id="id1"></span><h1><span class="section-number">7.2. </span>Real world datasets<a class="headerlink" href="#real-world-datasets" title="Link to this heading">#</a></h1>
<p>scikit-learn provides tools to load larger datasets, downloading them if
necessary.</p>
<p>They can be loaded using the following functions:</p>
<div class="pst-scrollable-table-container"><table class="autosummary longtable table autosummary">
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_olivetti_faces.html#sklearn.datasets.fetch_olivetti_faces" title="sklearn.datasets.fetch_olivetti_faces"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fetch_olivetti_faces</span></code></a>(*[, data_home, ...])</p></td>
<td><p>Load the Olivetti faces data-set from AT&T (classification).</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_20newsgroups.html#sklearn.datasets.fetch_20newsgroups" title="sklearn.datasets.fetch_20newsgroups"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fetch_20newsgroups</span></code></a>(*[, data_home, subset, ...])</p></td>
<td><p>Load the filenames and data from the 20 newsgroups dataset (classification).</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_20newsgroups_vectorized.html#sklearn.datasets.fetch_20newsgroups_vectorized" title="sklearn.datasets.fetch_20newsgroups_vectorized"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fetch_20newsgroups_vectorized</span></code></a>(*[, subset, ...])</p></td>
<td><p>Load and vectorize the 20 newsgroups dataset (classification).</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_lfw_people.html#sklearn.datasets.fetch_lfw_people" title="sklearn.datasets.fetch_lfw_people"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fetch_lfw_people</span></code></a>(*[, data_home, funneled, ...])</p></td>
<td><p>Load the Labeled Faces in the Wild (LFW) people dataset (classification).</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_lfw_pairs.html#sklearn.datasets.fetch_lfw_pairs" title="sklearn.datasets.fetch_lfw_pairs"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fetch_lfw_pairs</span></code></a>(*[, subset, data_home, ...])</p></td>
<td><p>Load the Labeled Faces in the Wild (LFW) pairs dataset (classification).</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_covtype.html#sklearn.datasets.fetch_covtype" title="sklearn.datasets.fetch_covtype"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fetch_covtype</span></code></a>(*[, data_home, ...])</p></td>
<td><p>Load the covertype dataset (classification).</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_rcv1.html#sklearn.datasets.fetch_rcv1" title="sklearn.datasets.fetch_rcv1"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fetch_rcv1</span></code></a>(*[, data_home, subset, ...])</p></td>
<td><p>Load the RCV1 multilabel dataset (classification).</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_kddcup99.html#sklearn.datasets.fetch_kddcup99" title="sklearn.datasets.fetch_kddcup99"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fetch_kddcup99</span></code></a>(*[, subset, data_home, ...])</p></td>
<td><p>Load the kddcup99 dataset (classification).</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_california_housing.html#sklearn.datasets.fetch_california_housing" title="sklearn.datasets.fetch_california_housing"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fetch_california_housing</span></code></a>(*[, data_home, ...])</p></td>
<td><p>Load the California housing dataset (regression).</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_species_distributions.html#sklearn.datasets.fetch_species_distributions" title="sklearn.datasets.fetch_species_distributions"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fetch_species_distributions</span></code></a>(*[, data_home, ...])</p></td>
<td><p>Loader for species distribution dataset from Phillips et.</p></td>
</tr>
</tbody>
</table>
</div>
<section id="the-olivetti-faces-dataset">
<span id="olivetti-faces-dataset"></span><h2><span class="section-number">7.2.1. </span>The Olivetti faces dataset<a class="headerlink" href="#the-olivetti-faces-dataset" title="Link to this heading">#</a></h2>
<p><a class="reference external" href="https://cam-orl.co.uk/facedatabase.html">This dataset contains a set of face images</a> taken between April 1992 and
April 1994 at AT&T Laboratories Cambridge. The
<a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_olivetti_faces.html#sklearn.datasets.fetch_olivetti_faces" title="sklearn.datasets.fetch_olivetti_faces"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.datasets.fetch_olivetti_faces</span></code></a> function is the data
fetching / caching function that downloads the data
archive from AT&T.</p>
<p>As described on the original website:</p>
<blockquote>
<div><p>There are ten different images of each of 40 distinct subjects. For some
subjects, the images were taken at different times, varying the lighting,
facial expressions (open / closed eyes, smiling / not smiling) and facial
details (glasses / no glasses). All the images were taken against a dark
homogeneous background with the subjects in an upright, frontal position
(with tolerance for some side movement).</p>
</div></blockquote>
<p><strong>Data Set Characteristics:</strong></p>
<div class="pst-scrollable-table-container"><table class="table">
<tbody>
<tr class="row-odd"><td><p>Classes</p></td>
<td><p>40</p></td>
</tr>
<tr class="row-even"><td><p>Samples total</p></td>
<td><p>400</p></td>
</tr>
<tr class="row-odd"><td><p>Dimensionality</p></td>
<td><p>4096</p></td>
</tr>
<tr class="row-even"><td><p>Features</p></td>
<td><p>real, between 0 and 1</p></td>
</tr>
</tbody>
</table>
</div>
<p>The image is quantized to 256 grey levels and stored as unsigned 8-bit
integers; the loader will convert these to floating point values on the
interval [0, 1], which are easier to work with for many algorithms.</p>
<p>The “target” for this database is an integer from 0 to 39 indicating the
identity of the person pictured; however, with only 10 examples per class, this
relatively small dataset is more interesting from an unsupervised or
semi-supervised perspective.</p>
<p>The original dataset consisted of 92 x 112, while the version available here
consists of 64x64 images.</p>
<p>When using these images, please give credit to AT&T Laboratories Cambridge.</p>
</section>
<section id="the-20-newsgroups-text-dataset">
<span id="newsgroups-dataset"></span><h2><span class="section-number">7.2.2. </span>The 20 newsgroups text dataset<a class="headerlink" href="#the-20-newsgroups-text-dataset" title="Link to this heading">#</a></h2>
<p>The 20 newsgroups dataset comprises around 18000 newsgroups posts on
20 topics split in two subsets: one for training (or development)
and the other one for testing (or for performance evaluation). The split
between the train and test set is based upon a messages posted before
and after a specific date.</p>
<p>This module contains two loaders. The first one,
<a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_20newsgroups.html#sklearn.datasets.fetch_20newsgroups" title="sklearn.datasets.fetch_20newsgroups"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.datasets.fetch_20newsgroups</span></code></a>,
returns a list of the raw texts that can be fed to text feature
extractors such as <a class="reference internal" href="../modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer" title="sklearn.feature_extraction.text.CountVectorizer"><code class="xref py py-class docutils literal notranslate"><span class="pre">CountVectorizer</span></code></a>
with custom parameters so as to extract feature vectors.
The second one, <a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_20newsgroups_vectorized.html#sklearn.datasets.fetch_20newsgroups_vectorized" title="sklearn.datasets.fetch_20newsgroups_vectorized"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.datasets.fetch_20newsgroups_vectorized</span></code></a>,
returns ready-to-use features, i.e., it is not necessary to use a feature
extractor.</p>
<p><strong>Data Set Characteristics:</strong></p>
<div class="pst-scrollable-table-container"><table class="table">
<tbody>
<tr class="row-odd"><td><p>Classes</p></td>
<td><p>20</p></td>
</tr>
<tr class="row-even"><td><p>Samples total</p></td>
<td><p>18846</p></td>
</tr>
<tr class="row-odd"><td><p>Dimensionality</p></td>
<td><p>1</p></td>
</tr>
<tr class="row-even"><td><p>Features</p></td>
<td><p>text</p></td>
</tr>
</tbody>
</table>
</div>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="usage">
<summary class="sd-summary-title sd-card-header">
<span class="sd-summary-text">Usage<a class="headerlink" href="#usage" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<p class="sd-card-text">The <a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_20newsgroups.html#sklearn.datasets.fetch_20newsgroups" title="sklearn.datasets.fetch_20newsgroups"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.datasets.fetch_20newsgroups</span></code></a> function is a data
fetching / caching functions that downloads the data archive from
the original <a class="reference external" href="http://people.csail.mit.edu/jrennie/20Newsgroups/">20 newsgroups website</a>,
extracts the archive contents
in the <code class="docutils literal notranslate"><span class="pre">~/scikit_learn_data/20news_home</span></code> folder and calls the
<a class="reference internal" href="../modules/generated/sklearn.datasets.load_files.html#sklearn.datasets.load_files" title="sklearn.datasets.load_files"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.datasets.load_files</span></code></a> on either the training or
testing set folder, or both of them:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <span class="n">fetch_20newsgroups</span>
<span class="gp">>>> </span><span class="n">newsgroups_train</span> <span class="o">=</span> <span class="n">fetch_20newsgroups</span><span class="p">(</span><span class="n">subset</span><span class="o">=</span><span class="s1">'train'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">pprint</span> <span class="kn">import</span> <span class="n">pprint</span>
<span class="gp">>>> </span><span class="n">pprint</span><span class="p">(</span><span class="nb">list</span><span class="p">(</span><span class="n">newsgroups_train</span><span class="o">.</span><span class="n">target_names</span><span class="p">))</span>
<span class="go">['alt.atheism',</span>
<span class="go"> 'comp.graphics',</span>
<span class="go"> 'comp.os.ms-windows.misc',</span>
<span class="go"> 'comp.sys.ibm.pc.hardware',</span>
<span class="go"> 'comp.sys.mac.hardware',</span>
<span class="go"> 'comp.windows.x',</span>
<span class="go"> 'misc.forsale',</span>
<span class="go"> 'rec.autos',</span>
<span class="go"> 'rec.motorcycles',</span>
<span class="go"> 'rec.sport.baseball',</span>
<span class="go"> 'rec.sport.hockey',</span>
<span class="go"> 'sci.crypt',</span>
<span class="go"> 'sci.electronics',</span>
<span class="go"> 'sci.med',</span>
<span class="go"> 'sci.space',</span>
<span class="go"> 'soc.religion.christian',</span>
<span class="go"> 'talk.politics.guns',</span>
<span class="go"> 'talk.politics.mideast',</span>
<span class="go"> 'talk.politics.misc',</span>
<span class="go"> 'talk.religion.misc']</span>
</pre></div>
</div>
<p class="sd-card-text">The real data lies in the <code class="docutils literal notranslate"><span class="pre">filenames</span></code> and <code class="docutils literal notranslate"><span class="pre">target</span></code> attributes. The target
attribute is the integer index of the category:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">newsgroups_train</span><span class="o">.</span><span class="n">filenames</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(11314,)</span>
<span class="gp">>>> </span><span class="n">newsgroups_train</span><span class="o">.</span><span class="n">target</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(11314,)</span>
<span class="gp">>>> </span><span class="n">newsgroups_train</span><span class="o">.</span><span class="n">target</span><span class="p">[:</span><span class="mi">10</span><span class="p">]</span>
<span class="go">array([ 7, 4, 4, 1, 14, 16, 13, 3, 2, 4])</span>
</pre></div>
</div>
<p class="sd-card-text">It is possible to load only a sub-selection of the categories by passing the
list of the categories to load to the
<a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_20newsgroups.html#sklearn.datasets.fetch_20newsgroups" title="sklearn.datasets.fetch_20newsgroups"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.datasets.fetch_20newsgroups</span></code></a> function:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">cats</span> <span class="o">=</span> <span class="p">[</span><span class="s1">'alt.atheism'</span><span class="p">,</span> <span class="s1">'sci.space'</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">newsgroups_train</span> <span class="o">=</span> <span class="n">fetch_20newsgroups</span><span class="p">(</span><span class="n">subset</span><span class="o">=</span><span class="s1">'train'</span><span class="p">,</span> <span class="n">categories</span><span class="o">=</span><span class="n">cats</span><span class="p">)</span>
<span class="gp">>>> </span><span class="nb">list</span><span class="p">(</span><span class="n">newsgroups_train</span><span class="o">.</span><span class="n">target_names</span><span class="p">)</span>
<span class="go">['alt.atheism', 'sci.space']</span>
<span class="gp">>>> </span><span class="n">newsgroups_train</span><span class="o">.</span><span class="n">filenames</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(1073,)</span>
<span class="gp">>>> </span><span class="n">newsgroups_train</span><span class="o">.</span><span class="n">target</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(1073,)</span>
<span class="gp">>>> </span><span class="n">newsgroups_train</span><span class="o">.</span><span class="n">target</span><span class="p">[:</span><span class="mi">10</span><span class="p">]</span>
<span class="go">array([0, 1, 1, 1, 0, 1, 1, 0, 0, 0])</span>
</pre></div>
</div>
</div>
</details><details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="converting-text-to-vectors">
<summary class="sd-summary-title sd-card-header">
<span class="sd-summary-text">Converting text to vectors<a class="headerlink" href="#converting-text-to-vectors" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<p class="sd-card-text">In order to feed predictive or clustering models with the text data,
one first need to turn the text into vectors of numerical values suitable
for statistical analysis. This can be achieved with the utilities of the
<code class="docutils literal notranslate"><span class="pre">sklearn.feature_extraction.text</span></code> as demonstrated in the following
example that extract <a class="reference external" href="https://en.wikipedia.org/wiki/Tf-idf">TF-IDF</a> vectors
of unigram tokens from a subset of 20news:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.feature_extraction.text</span> <span class="kn">import</span> <span class="n">TfidfVectorizer</span>
<span class="gp">>>> </span><span class="n">categories</span> <span class="o">=</span> <span class="p">[</span><span class="s1">'alt.atheism'</span><span class="p">,</span> <span class="s1">'talk.religion.misc'</span><span class="p">,</span>
<span class="gp">... </span> <span class="s1">'comp.graphics'</span><span class="p">,</span> <span class="s1">'sci.space'</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">newsgroups_train</span> <span class="o">=</span> <span class="n">fetch_20newsgroups</span><span class="p">(</span><span class="n">subset</span><span class="o">=</span><span class="s1">'train'</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">categories</span><span class="o">=</span><span class="n">categories</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">vectorizer</span> <span class="o">=</span> <span class="n">TfidfVectorizer</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">vectors</span> <span class="o">=</span> <span class="n">vectorizer</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">newsgroups_train</span><span class="o">.</span><span class="n">data</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">vectors</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(2034, 34118)</span>
</pre></div>
</div>
<p class="sd-card-text">The extracted TF-IDF vectors are very sparse, with an average of 159 non-zero
components by sample in a more than 30000-dimensional space
(less than .5% non-zero features):</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">vectors</span><span class="o">.</span><span class="n">nnz</span> <span class="o">/</span> <span class="nb">float</span><span class="p">(</span><span class="n">vectors</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="go">159.01327...</span>
</pre></div>
</div>
<p class="sd-card-text"><a class="reference internal" href="../modules/generated/sklearn.datasets.fetch_20newsgroups_vectorized.html#sklearn.datasets.fetch_20newsgroups_vectorized" title="sklearn.datasets.fetch_20newsgroups_vectorized"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.datasets.fetch_20newsgroups_vectorized</span></code></a> is a function which
returns ready-to-use token counts features instead of file names.</p>
</div>
</details><details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="filtering-text-for-more-realistic-training">
<summary class="sd-summary-title sd-card-header">
<span class="sd-summary-text">Filtering text for more realistic training<a class="headerlink" href="#filtering-text-for-more-realistic-training" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<p class="sd-card-text">It is easy for a classifier to overfit on particular things that appear in the
20 Newsgroups data, such as newsgroup headers. Many classifiers achieve very
high F-scores, but their results would not generalize to other documents that
aren’t from this window of time.</p>
<p class="sd-card-text">For example, let’s look at the results of a multinomial Naive Bayes classifier,
which is fast to train and achieves a decent F-score:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.naive_bayes</span> <span class="kn">import</span> <span class="n">MultinomialNB</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn</span> <span class="kn">import</span> <span class="n">metrics</span>
<span class="gp">>>> </span><span class="n">newsgroups_test</span> <span class="o">=</span> <span class="n">fetch_20newsgroups</span><span class="p">(</span><span class="n">subset</span><span class="o">=</span><span class="s1">'test'</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">categories</span><span class="o">=</span><span class="n">categories</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">vectors_test</span> <span class="o">=</span> <span class="n">vectorizer</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">newsgroups_test</span><span class="o">.</span><span class="n">data</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">clf</span> <span class="o">=</span> <span class="n">MultinomialNB</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="mf">.01</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">vectors</span><span class="p">,</span> <span class="n">newsgroups_train</span><span class="o">.</span><span class="n">target</span><span class="p">)</span>
<span class="go">MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True)</span>
<span class="gp">>>> </span><span class="n">pred</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">vectors_test</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">metrics</span><span class="o">.</span><span class="n">f1_score</span><span class="p">(</span><span class="n">newsgroups_test</span><span class="o">.</span><span class="n">target</span><span class="p">,</span> <span class="n">pred</span><span class="p">,</span> <span class="n">average</span><span class="o">=</span><span class="s1">'macro'</span><span class="p">)</span>
<span class="go">0.88213...</span>
</pre></div>
</div>
<p class="sd-card-text">(The example <a class="reference internal" href="../auto_examples/text/plot_document_classification_20newsgroups.html#sphx-glr-auto-examples-text-plot-document-classification-20newsgroups-py"><span class="std std-ref">Classification of text documents using sparse features</span></a> shuffles
the training and test data, instead of segmenting by time, and in that case
multinomial Naive Bayes gets a much higher F-score of 0.88. Are you suspicious
yet of what’s going on inside this classifier?)</p>
<p class="sd-card-text">Let’s take a look at what the most informative features are:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="gp">>>> </span><span class="k">def</span> <span class="nf">show_top10</span><span class="p">(</span><span class="n">classifier</span><span class="p">,</span> <span class="n">vectorizer</span><span class="p">,</span> <span class="n">categories</span><span class="p">):</span>
<span class="gp">... </span> <span class="n">feature_names</span> <span class="o">=</span> <span class="n">vectorizer</span><span class="o">.</span><span class="n">get_feature_names_out</span><span class="p">()</span>
<span class="gp">... </span> <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">category</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">categories</span><span class="p">):</span>
<span class="gp">... </span> <span class="n">top10</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argsort</span><span class="p">(</span><span class="n">classifier</span><span class="o">.</span><span class="n">coef_</span><span class="p">[</span><span class="n">i</span><span class="p">])[</span><span class="o">-</span><span class="mi">10</span><span class="p">:]</span>
<span class="gp">... </span> <span class="nb">print</span><span class="p">(</span><span class="s2">"</span><span class="si">%s</span><span class="s2">: </span><span class="si">%s</span><span class="s2">"</span> <span class="o">%</span> <span class="p">(</span><span class="n">category</span><span class="p">,</span> <span class="s2">" "</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">feature_names</span><span class="p">[</span><span class="n">top10</span><span class="p">])))</span>
<span class="gp">...</span>
<span class="gp">>>> </span><span class="n">show_top10</span><span class="p">(</span><span class="n">clf</span><span class="p">,</span> <span class="n">vectorizer</span><span class="p">,</span> <span class="n">newsgroups_train</span><span class="o">.</span><span class="n">target_names</span><span class="p">)</span>
<span class="go">alt.atheism: edu it and in you that is of to the</span>
<span class="go">comp.graphics: edu in graphics it is for and of to the</span>
<span class="go">sci.space: edu it that is in and space to of the</span>
<span class="go">talk.religion.misc: not it you in is that and to of the</span>
</pre></div>
</div>
<p class="sd-card-text">You can now see many things that these features have overfit to:</p>
<ul class="simple">
<li><p class="sd-card-text">Almost every group is distinguished by whether headers such as
<code class="docutils literal notranslate"><span class="pre">NNTP-Posting-Host:</span></code> and <code class="docutils literal notranslate"><span class="pre">Distribution:</span></code> appear more or less often.</p></li>
<li><p class="sd-card-text">Another significant feature involves whether the sender is affiliated with
a university, as indicated either by their headers or their signature.</p></li>
<li><p class="sd-card-text">The word “article” is a significant feature, based on how often people quote
previous posts like this: “In article [article ID], [name] <[e-mail address]>
wrote:”</p></li>
<li><p class="sd-card-text">Other features match the names and e-mail addresses of particular people who
were posting at the time.</p></li>
</ul>
<p class="sd-card-text">With such an abundance of clues that distinguish newsgroups, the classifiers
barely have to identify topics from text at all, and they all perform at the
same high level.</p>
<p class="sd-card-text">For this reason, the functions that load 20 Newsgroups data provide a
parameter called <strong>remove</strong>, telling it what kinds of information to strip out
of each file. <strong>remove</strong> should be a tuple containing any subset of
<code class="docutils literal notranslate"><span class="pre">('headers',</span> <span class="pre">'footers',</span> <span class="pre">'quotes')</span></code>, telling it to remove headers, signature
blocks, and quotation blocks respectively.</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">newsgroups_test</span> <span class="o">=</span> <span class="n">fetch_20newsgroups</span><span class="p">(</span><span class="n">subset</span><span class="o">=</span><span class="s1">'test'</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">remove</span><span class="o">=</span><span class="p">(</span><span class="s1">'headers'</span><span class="p">,</span> <span class="s1">'footers'</span><span class="p">,</span> <span class="s1">'quotes'</span><span class="p">),</span>
<span class="gp">... </span> <span class="n">categories</span><span class="o">=</span><span class="n">categories</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">vectors_test</span> <span class="o">=</span> <span class="n">vectorizer</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">newsgroups_test</span><span class="o">.</span><span class="n">data</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">pred</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">vectors_test</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">metrics</span><span class="o">.</span><span class="n">f1_score</span><span class="p">(</span><span class="n">pred</span><span class="p">,</span> <span class="n">newsgroups_test</span><span class="o">.</span><span class="n">target</span><span class="p">,</span> <span class="n">average</span><span class="o">=</span><span class="s1">'macro'</span><span class="p">)</span>
<span class="go">0.77310...</span>
</pre></div>
</div>
<p class="sd-card-text">This classifier lost over a lot of its F-score, just because we removed
metadata that has little to do with topic classification.
It loses even more if we also strip this metadata from the training data:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">newsgroups_train</span> <span class="o">=</span> <span class="n">fetch_20newsgroups</span><span class="p">(</span><span class="n">subset</span><span class="o">=</span><span class="s1">'train'</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">remove</span><span class="o">=</span><span class="p">(</span><span class="s1">'headers'</span><span class="p">,</span> <span class="s1">'footers'</span><span class="p">,</span> <span class="s1">'quotes'</span><span class="p">),</span>
<span class="gp">... </span> <span class="n">categories</span><span class="o">=</span><span class="n">categories</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">vectors</span> <span class="o">=</span> <span class="n">vectorizer</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">newsgroups_train</span><span class="o">.</span><span class="n">data</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">clf</span> <span class="o">=</span> <span class="n">MultinomialNB</span><span class="p">(</span><span class="n">alpha</span><span class="o">=</span><span class="mf">.01</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">vectors</span><span class="p">,</span> <span class="n">newsgroups_train</span><span class="o">.</span><span class="n">target</span><span class="p">)</span>
<span class="go">MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True)</span>
</pre></div>
</div>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">vectors_test</span> <span class="o">=</span> <span class="n">vectorizer</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">newsgroups_test</span><span class="o">.</span><span class="n">data</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">pred</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">vectors_test</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">metrics</span><span class="o">.</span><span class="n">f1_score</span><span class="p">(</span><span class="n">newsgroups_test</span><span class="o">.</span><span class="n">target</span><span class="p">,</span> <span class="n">pred</span><span class="p">,</span> <span class="n">average</span><span class="o">=</span><span class="s1">'macro'</span><span class="p">)</span>
<span class="go">0.76995...</span>
</pre></div>
</div>
<p class="sd-card-text">Some other classifiers cope better with this harder version of the task. Try the
<a class="reference internal" href="../auto_examples/model_selection/plot_grid_search_text_feature_extraction.html#sphx-glr-auto-examples-model-selection-plot-grid-search-text-feature-extraction-py"><span class="std std-ref">Sample pipeline for text feature extraction and evaluation</span></a>
example with and without the <code class="docutils literal notranslate"><span class="pre">remove</span></code> option to compare the results.</p>
</div>
</details><p class="rubric">Data Considerations</p>
<p>The Cleveland Indians is a major league baseball team based in Cleveland,
Ohio, USA. In December 2020, it was reported that “After several months of
discussion sparked by the death of George Floyd and a national reckoning over
race and colonialism, the Cleveland Indians have decided to change their