-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathplot_mds.html
1278 lines (1011 loc) · 102 KB
/
plot_mds.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en" data-content_root="../../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta property="og:title" content="Multi-dimensional scaling" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/auto_examples/manifold/plot_mds.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. Total running t..." />
<meta property="og:image" content="https://scikit-learn.org/stable/_static/scikit-learn-logo-small.png" />
<meta property="og:image:alt" content="scikit-learn" />
<meta name="description" content="An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. Total running t..." />
<title>Multi-dimensional scaling — scikit-learn 1.6.1 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=a746c00c" />
<link rel="stylesheet" type="text/css" href="../../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../../_static/plot_directive.css" />
<link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Vibur" />
<link rel="stylesheet" type="text/css" href="../../_static/jupyterlite_sphinx.css?v=e3ca86de" />
<link rel="stylesheet" type="text/css" href="../../_static/sg_gallery.css?v=d2d258e8" />
<link rel="stylesheet" type="text/css" href="../../_static/sg_gallery-binder.css?v=f4aeca0c" />
<link rel="stylesheet" type="text/css" href="../../_static/sg_gallery-dataframe.css?v=2082cf3c" />
<link rel="stylesheet" type="text/css" href="../../_static/sg_gallery-rendered-html.css?v=1277b6f3" />
<link rel="stylesheet" type="text/css" href="../../_static/sphinx-design.min.css?v=95c83b7e" />
<link rel="stylesheet" type="text/css" href="../../_static/styles/colors.css?v=cc94ab7d" />
<link rel="stylesheet" type="text/css" href="../../_static/styles/custom.css?v=d67e4bb0" />
<!-- So that users can add custom icons -->
<script src="../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../../_static/documentation_options.js?v=d6a008b6"></script>
<script src="../../_static/doctools.js?v=9a2dae69"></script>
<script src="../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../../_static/copybutton.js?v=97f0b27d"></script>
<script src="../../_static/jupyterlite_sphinx.js?v=d6bdf5f8"></script>
<script src="../../_static/design-tabs.js?v=f930bc37"></script>
<script data-domain="scikit-learn.org" defer="defer" src="https://views.scientific-python.org/js/script.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'auto_examples/manifold/plot_mds';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = 'https://scikit-learn.org/dev/_static/versions.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.6.1';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
true;
</script>
<script src="../../_static/scripts/dropdown.js?v=e2048168"></script>
<script src="../../_static/scripts/version-switcher.js?v=a6dd8357"></script>
<script src="../../_static/scripts/sg_plotly_resize.js?v=eeb41cab"></script>
<link rel="canonical" href="https://scikit-learn.org/stable/auto_examples/manifold/plot_mds.html" />
<link rel="icon" href="../../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../../about.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="Swiss Roll And Swiss-Hole Reduction" href="plot_swissroll.html" />
<link rel="prev" title="Manifold learning on handwritten digits: Locally Linear Embedding, Isomap…" href="plot_lle_digits.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.6" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class=" navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../../index.html">
<img src="../../_static/scikit-learn-logo-small.png" class="logo__image only-light" alt="scikit-learn homepage"/>
<img src="../../_static/scikit-learn-logo-small.png" class="logo__image only-dark pst-js-only" alt="scikit-learn homepage"/>
</a></div>
</div>
<div class=" navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../install.html">
Install
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../api/index.html">
API
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item dropdown">
<button class="btn dropdown-toggle nav-item" type="button"
data-bs-toggle="dropdown" aria-expanded="false"
aria-controls="pst-nav-more-links">
More
</button>
<ul id="pst-nav-more-links" class="dropdown-menu">
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../../getting_started.html">
Getting Started
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../../whats_new.html">
Release History
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../../glossary.html">
Glossary
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../../faq.html">
FAQ
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../../support.html">
Support
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../../related_projects.html">
Related Projects
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../../roadmap.html">
Roadmap
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../../governance.html">
Governance
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../../about.html">
About us
</a>
</li>
</ul>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn btn-sm pst-navbar-icon search-button search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn btn-sm pst-navbar-icon search-button search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../install.html">
Install
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../api/index.html">
API
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../getting_started.html">
Getting Started
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../whats_new.html">
Release History
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../glossary.html">
Glossary
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../faq.html">
FAQ
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../support.html">
Support
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../related_projects.html">
Related Projects
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../roadmap.html">
Roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../governance.html">
Governance
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../about.html">
About us
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../release_highlights/index.html">Release Highlights</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../release_highlights/plot_release_highlights_1_6_0.html">Release Highlights for scikit-learn 1.6</a></li>
<li class="toctree-l2"><a class="reference internal" href="../release_highlights/plot_release_highlights_1_5_0.html">Release Highlights for scikit-learn 1.5</a></li>
<li class="toctree-l2"><a class="reference internal" href="../release_highlights/plot_release_highlights_1_4_0.html">Release Highlights for scikit-learn 1.4</a></li>
<li class="toctree-l2"><a class="reference internal" href="../release_highlights/plot_release_highlights_1_3_0.html">Release Highlights for scikit-learn 1.3</a></li>
<li class="toctree-l2"><a class="reference internal" href="../release_highlights/plot_release_highlights_1_2_0.html">Release Highlights for scikit-learn 1.2</a></li>
<li class="toctree-l2"><a class="reference internal" href="../release_highlights/plot_release_highlights_1_1_0.html">Release Highlights for scikit-learn 1.1</a></li>
<li class="toctree-l2"><a class="reference internal" href="../release_highlights/plot_release_highlights_1_0_0.html">Release Highlights for scikit-learn 1.0</a></li>
<li class="toctree-l2"><a class="reference internal" href="../release_highlights/plot_release_highlights_0_24_0.html">Release Highlights for scikit-learn 0.24</a></li>
<li class="toctree-l2"><a class="reference internal" href="../release_highlights/plot_release_highlights_0_23_0.html">Release Highlights for scikit-learn 0.23</a></li>
<li class="toctree-l2"><a class="reference internal" href="../release_highlights/plot_release_highlights_0_22_0.html">Release Highlights for scikit-learn 0.22</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../bicluster/index.html">Biclustering</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../bicluster/plot_spectral_biclustering.html">A demo of the Spectral Biclustering algorithm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../bicluster/plot_spectral_coclustering.html">A demo of the Spectral Co-Clustering algorithm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../bicluster/plot_bicluster_newsgroups.html">Biclustering documents with the Spectral Co-clustering algorithm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../calibration/index.html">Calibration</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../calibration/plot_compare_calibration.html">Comparison of Calibration of Classifiers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../calibration/plot_calibration_curve.html">Probability Calibration curves</a></li>
<li class="toctree-l2"><a class="reference internal" href="../calibration/plot_calibration_multiclass.html">Probability Calibration for 3-class classification</a></li>
<li class="toctree-l2"><a class="reference internal" href="../calibration/plot_calibration.html">Probability calibration of classifiers</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../classification/index.html">Classification</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../classification/plot_classifier_comparison.html">Classifier comparison</a></li>
<li class="toctree-l2"><a class="reference internal" href="../classification/plot_lda_qda.html">Linear and Quadratic Discriminant Analysis with covariance ellipsoid</a></li>
<li class="toctree-l2"><a class="reference internal" href="../classification/plot_lda.html">Normal, Ledoit-Wolf and OAS Linear Discriminant Analysis for classification</a></li>
<li class="toctree-l2"><a class="reference internal" href="../classification/plot_classification_probability.html">Plot classification probability</a></li>
<li class="toctree-l2"><a class="reference internal" href="../classification/plot_digits_classification.html">Recognizing hand-written digits</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../cluster/index.html">Clustering</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_kmeans_digits.html">A demo of K-Means clustering on the handwritten digits data</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_coin_ward_segmentation.html">A demo of structured Ward hierarchical clustering on an image of coins</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_mean_shift.html">A demo of the mean-shift clustering algorithm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_adjusted_for_chance_measures.html">Adjustment for chance in clustering performance evaluation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_agglomerative_clustering.html">Agglomerative clustering with and without structure</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_agglomerative_clustering_metrics.html">Agglomerative clustering with different metrics</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_kmeans_plusplus.html">An example of K-Means++ initialization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_bisect_kmeans.html">Bisecting K-Means and Regular K-Means Performance Comparison</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_birch_vs_minibatchkmeans.html">Compare BIRCH and MiniBatchKMeans</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_cluster_comparison.html">Comparing different clustering algorithms on toy datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_linkage_comparison.html">Comparing different hierarchical linkage methods on toy datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_mini_batch_kmeans.html">Comparison of the K-Means and MiniBatchKMeans clustering algorithms</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_dbscan.html">Demo of DBSCAN clustering algorithm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_hdbscan.html">Demo of HDBSCAN clustering algorithm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_optics.html">Demo of OPTICS clustering algorithm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_affinity_propagation.html">Demo of affinity propagation clustering algorithm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_kmeans_assumptions.html">Demonstration of k-means assumptions</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_kmeans_stability_low_dim_dense.html">Empirical evaluation of the impact of k-means initialization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_digits_agglomeration.html">Feature agglomeration</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_feature_agglomeration_vs_univariate_selection.html">Feature agglomeration vs. univariate selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_ward_structured_vs_unstructured.html">Hierarchical clustering: structured vs unstructured ward</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_inductive_clustering.html">Inductive Clustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_dict_face_patches.html">Online learning of a dictionary of parts of faces</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_agglomerative_dendrogram.html">Plot Hierarchical Clustering Dendrogram</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_coin_segmentation.html">Segmenting the picture of greek coins in regions</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_kmeans_silhouette_analysis.html">Selecting the number of clusters with silhouette analysis on KMeans clustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_segmentation_toy.html">Spectral clustering for image segmentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_digits_linkage.html">Various Agglomerative Clustering on a 2D embedding of digits</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cluster/plot_face_compress.html">Vector Quantization Example</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../covariance/index.html">Covariance estimation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../covariance/plot_lw_vs_oas.html">Ledoit-Wolf vs OAS estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../covariance/plot_mahalanobis_distances.html">Robust covariance estimation and Mahalanobis distances relevance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../covariance/plot_robust_vs_empirical_covariance.html">Robust vs Empirical covariance estimate</a></li>
<li class="toctree-l2"><a class="reference internal" href="../covariance/plot_covariance_estimation.html">Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood</a></li>
<li class="toctree-l2"><a class="reference internal" href="../covariance/plot_sparse_cov.html">Sparse inverse covariance estimation</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../cross_decomposition/index.html">Cross decomposition</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../cross_decomposition/plot_compare_cross_decomposition.html">Compare cross decomposition methods</a></li>
<li class="toctree-l2"><a class="reference internal" href="../cross_decomposition/plot_pcr_vs_pls.html">Principal Component Regression vs Partial Least Squares Regression</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../datasets/index.html">Dataset examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../datasets/plot_random_multilabel_dataset.html">Plot randomly generated multilabel dataset</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../tree/index.html">Decision Trees</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../tree/plot_tree_regression.html">Decision Tree Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../tree/plot_iris_dtc.html">Plot the decision surface of decision trees trained on the iris dataset</a></li>
<li class="toctree-l2"><a class="reference internal" href="../tree/plot_cost_complexity_pruning.html">Post pruning decision trees with cost complexity pruning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../tree/plot_unveil_tree_structure.html">Understanding the decision tree structure</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../decomposition/index.html">Decomposition</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../decomposition/plot_ica_blind_source_separation.html">Blind source separation using FastICA</a></li>
<li class="toctree-l2"><a class="reference internal" href="../decomposition/plot_pca_vs_lda.html">Comparison of LDA and PCA 2D projection of Iris dataset</a></li>
<li class="toctree-l2"><a class="reference internal" href="../decomposition/plot_faces_decomposition.html">Faces dataset decompositions</a></li>
<li class="toctree-l2"><a class="reference internal" href="../decomposition/plot_varimax_fa.html">Factor Analysis (with rotation) to visualize patterns</a></li>
<li class="toctree-l2"><a class="reference internal" href="../decomposition/plot_ica_vs_pca.html">FastICA on 2D point clouds</a></li>
<li class="toctree-l2"><a class="reference internal" href="../decomposition/plot_image_denoising.html">Image denoising using dictionary learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../decomposition/plot_incremental_pca.html">Incremental PCA</a></li>
<li class="toctree-l2"><a class="reference internal" href="../decomposition/plot_kernel_pca.html">Kernel PCA</a></li>
<li class="toctree-l2"><a class="reference internal" href="../decomposition/plot_pca_vs_fa_model_selection.html">Model selection with Probabilistic PCA and Factor Analysis (FA)</a></li>
<li class="toctree-l2"><a class="reference internal" href="../decomposition/plot_pca_iris.html">Principal Component Analysis (PCA) on Iris Dataset</a></li>
<li class="toctree-l2"><a class="reference internal" href="../decomposition/plot_sparse_coding.html">Sparse coding with a precomputed dictionary</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../developing_estimators/index.html">Developing Estimators</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../developing_estimators/sklearn_is_fitted.html"><code class="docutils literal notranslate"><span class="pre">__sklearn_is_fitted__</span></code> as Developer API</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../ensemble/index.html">Ensemble methods</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_gradient_boosting_categorical.html">Categorical Feature Support in Gradient Boosting</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_stack_predictors.html">Combine predictors using stacking</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_forest_hist_grad_boosting_comparison.html">Comparing Random Forests and Histogram Gradient Boosting models</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_random_forest_regression_multioutput.html">Comparing random forests and the multi-output meta estimator</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_adaboost_regression.html">Decision Tree Regression with AdaBoost</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_gradient_boosting_early_stopping.html">Early stopping in Gradient Boosting</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_forest_importances.html">Feature importances with a forest of trees</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_feature_transformation.html">Feature transformations with ensembles of trees</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_hgbt_regression.html">Features in Histogram Gradient Boosting Trees</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_gradient_boosting_oob.html">Gradient Boosting Out-of-Bag estimates</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_gradient_boosting_regression.html">Gradient Boosting regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_gradient_boosting_regularization.html">Gradient Boosting regularization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_random_forest_embedding.html">Hashing feature transformation using Totally Random Trees</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_isolation_forest.html">IsolationForest example</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_monotonic_constraints.html">Monotonic Constraints</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_adaboost_multiclass.html">Multi-class AdaBoosted Decision Trees</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_ensemble_oob.html">OOB Errors for Random Forests</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_voting_probas.html">Plot class probabilities calculated by the VotingClassifier</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_voting_regressor.html">Plot individual and voting regression predictions</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_voting_decision_regions.html">Plot the decision boundaries of a VotingClassifier</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_forest_iris.html">Plot the decision surfaces of ensembles of trees on the iris dataset</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_gradient_boosting_quantile.html">Prediction Intervals for Gradient Boosting Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_bias_variance.html">Single estimator versus bagging: bias-variance decomposition</a></li>
<li class="toctree-l2"><a class="reference internal" href="../ensemble/plot_adaboost_twoclass.html">Two-class AdaBoost</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../applications/index.html">Examples based on real world datasets</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../applications/plot_tomography_l1_reconstruction.html">Compressive sensing: tomography reconstruction with L1 prior (Lasso)</a></li>
<li class="toctree-l2"><a class="reference internal" href="../applications/plot_face_recognition.html">Faces recognition example using eigenfaces and SVMs</a></li>
<li class="toctree-l2"><a class="reference internal" href="../applications/plot_digits_denoising.html">Image denoising using kernel PCA</a></li>
<li class="toctree-l2"><a class="reference internal" href="../applications/plot_time_series_lagged_features.html">Lagged features for time series forecasting</a></li>
<li class="toctree-l2"><a class="reference internal" href="../applications/plot_model_complexity_influence.html">Model Complexity Influence</a></li>
<li class="toctree-l2"><a class="reference internal" href="../applications/plot_out_of_core_classification.html">Out-of-core classification of text documents</a></li>
<li class="toctree-l2"><a class="reference internal" href="../applications/plot_outlier_detection_wine.html">Outlier detection on a real data set</a></li>
<li class="toctree-l2"><a class="reference internal" href="../applications/plot_prediction_latency.html">Prediction Latency</a></li>
<li class="toctree-l2"><a class="reference internal" href="../applications/plot_species_distribution_modeling.html">Species distribution modeling</a></li>
<li class="toctree-l2"><a class="reference internal" href="../applications/plot_cyclical_feature_engineering.html">Time-related feature engineering</a></li>
<li class="toctree-l2"><a class="reference internal" href="../applications/plot_topics_extraction_with_nmf_lda.html">Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../applications/plot_stock_market.html">Visualizing the stock market structure</a></li>
<li class="toctree-l2"><a class="reference internal" href="../applications/wikipedia_principal_eigenvector.html">Wikipedia principal eigenvector</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../feature_selection/index.html">Feature Selection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../feature_selection/plot_f_test_vs_mi.html">Comparison of F-test and mutual information</a></li>
<li class="toctree-l2"><a class="reference internal" href="../feature_selection/plot_select_from_model_diabetes.html">Model-based and sequential feature selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="../feature_selection/plot_feature_selection_pipeline.html">Pipeline ANOVA SVM</a></li>
<li class="toctree-l2"><a class="reference internal" href="../feature_selection/plot_rfe_digits.html">Recursive feature elimination</a></li>
<li class="toctree-l2"><a class="reference internal" href="../feature_selection/plot_rfe_with_cross_validation.html">Recursive feature elimination with cross-validation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../feature_selection/plot_feature_selection.html">Univariate Feature Selection</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../frozen/index.html">Frozen Estimators</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../frozen/plot_frozen_examples.html">Examples of Using <code class="docutils literal notranslate"><span class="pre">FrozenEstimator</span></code></a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../mixture/index.html">Gaussian Mixture Models</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../mixture/plot_concentration_prior.html">Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture</a></li>
<li class="toctree-l2"><a class="reference internal" href="../mixture/plot_gmm_pdf.html">Density Estimation for a Gaussian mixture</a></li>
<li class="toctree-l2"><a class="reference internal" href="../mixture/plot_gmm_init.html">GMM Initialization Methods</a></li>
<li class="toctree-l2"><a class="reference internal" href="../mixture/plot_gmm_covariances.html">GMM covariances</a></li>
<li class="toctree-l2"><a class="reference internal" href="../mixture/plot_gmm.html">Gaussian Mixture Model Ellipsoids</a></li>
<li class="toctree-l2"><a class="reference internal" href="../mixture/plot_gmm_selection.html">Gaussian Mixture Model Selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="../mixture/plot_gmm_sin.html">Gaussian Mixture Model Sine Curve</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../gaussian_process/index.html">Gaussian Process for Machine Learning</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../gaussian_process/plot_gpr_noisy.html">Ability of Gaussian process regression (GPR) to estimate data noise-level</a></li>
<li class="toctree-l2"><a class="reference internal" href="../gaussian_process/plot_compare_gpr_krr.html">Comparison of kernel ridge and Gaussian process regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../gaussian_process/plot_gpr_co2.html">Forecasting of CO2 level on Mona Loa dataset using Gaussian process regression (GPR)</a></li>
<li class="toctree-l2"><a class="reference internal" href="../gaussian_process/plot_gpr_noisy_targets.html">Gaussian Processes regression: basic introductory example</a></li>
<li class="toctree-l2"><a class="reference internal" href="../gaussian_process/plot_gpc_iris.html">Gaussian process classification (GPC) on iris dataset</a></li>
<li class="toctree-l2"><a class="reference internal" href="../gaussian_process/plot_gpr_on_structured_data.html">Gaussian processes on discrete data structures</a></li>
<li class="toctree-l2"><a class="reference internal" href="../gaussian_process/plot_gpc_xor.html">Illustration of Gaussian process classification (GPC) on the XOR dataset</a></li>
<li class="toctree-l2"><a class="reference internal" href="../gaussian_process/plot_gpr_prior_posterior.html">Illustration of prior and posterior Gaussian process for different kernels</a></li>
<li class="toctree-l2"><a class="reference internal" href="../gaussian_process/plot_gpc_isoprobability.html">Iso-probability lines for Gaussian Processes classification (GPC)</a></li>
<li class="toctree-l2"><a class="reference internal" href="../gaussian_process/plot_gpc.html">Probabilistic predictions with Gaussian process classification (GPC)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../linear_model/index.html">Generalized Linear Models</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_ard.html">Comparing Linear Bayesian Regressors</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_sgd_comparison.html">Comparing various online solvers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_bayesian_ridge_curvefit.html">Curve Fitting with Bayesian Ridge Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_logistic_multinomial.html">Decision Boundaries of Multinomial and One-vs-Rest Logistic Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_sgd_early_stopping.html">Early stopping of Stochastic Gradient Descent</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.html">Fitting an Elastic Net with a precomputed Gram Matrix and Weighted Samples</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_huber_vs_ridge.html">HuberRegressor vs Ridge on dataset with strong outliers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_multi_task_lasso_support.html">Joint feature selection with multi-task Lasso</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_logistic_l1_l2_sparsity.html">L1 Penalty and Sparsity in Logistic Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_lasso_and_elasticnet.html">L1-based models for Sparse Signals</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_lasso_lars_ic.html">Lasso model selection via information criteria</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_lasso_model_selection.html">Lasso model selection: AIC-BIC / cross-validation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_lasso_dense_vs_sparse_data.html">Lasso on dense and sparse data</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_lasso_lasso_lars_elasticnet_path.html">Lasso, Lasso-LARS, and Elastic Net paths</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_logistic.html">Logistic function</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_sparse_logistic_regression_mnist.html">MNIST classification using multinomial logistic + L1</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_sparse_logistic_regression_20newsgroups.html">Multiclass sparse logistic regression on 20newgroups</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_nnls.html">Non-negative least squares</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_sgdocsvm_vs_ocsvm.html">One-Class SVM versus One-Class SVM using Stochastic Gradient Descent</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_ols.html">Ordinary Least Squares Example</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_ols_ridge_variance.html">Ordinary Least Squares and Ridge Regression Variance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_omp.html">Orthogonal Matching Pursuit</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_ridge_path.html">Plot Ridge coefficients as a function of the regularization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_sgd_iris.html">Plot multi-class SGD on the iris dataset</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_poisson_regression_non_normal_loss.html">Poisson regression and non-normal loss</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_polynomial_interpolation.html">Polynomial and Spline interpolation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_quantile_regression.html">Quantile regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_logistic_path.html">Regularization path of L1- Logistic Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_ridge_coeffs.html">Ridge coefficients as a function of the L2 Regularization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_robust_fit.html">Robust linear estimator fitting</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_ransac.html">Robust linear model estimation using RANSAC</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_sgd_separating_hyperplane.html">SGD: Maximum margin separating hyperplane</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_sgd_penalties.html">SGD: Penalties</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_sgd_weighted_samples.html">SGD: Weighted samples</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_sgd_loss_functions.html">SGD: convex loss functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_theilsen.html">Theil-Sen Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../linear_model/plot_tweedie_regression_insurance_claims.html">Tweedie regression on insurance claims</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../inspection/index.html">Inspection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../inspection/plot_linear_model_coefficient_interpretation.html">Common pitfalls in the interpretation of coefficients of linear models</a></li>
<li class="toctree-l2"><a class="reference internal" href="../inspection/plot_causal_interpretation.html">Failure of Machine Learning to infer causal effects</a></li>
<li class="toctree-l2"><a class="reference internal" href="../inspection/plot_partial_dependence.html">Partial Dependence and Individual Conditional Expectation Plots</a></li>
<li class="toctree-l2"><a class="reference internal" href="../inspection/plot_permutation_importance.html">Permutation Importance vs Random Forest Feature Importance (MDI)</a></li>
<li class="toctree-l2"><a class="reference internal" href="../inspection/plot_permutation_importance_multicollinear.html">Permutation Importance with Multicollinear or Correlated Features</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../kernel_approximation/index.html">Kernel Approximation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../kernel_approximation/plot_scalable_poly_kernels.html">Scalable learning with polynomial kernel approximation</a></li>
</ul>
</details></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="index.html">Manifold learning</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="plot_compare_methods.html">Comparison of Manifold Learning methods</a></li>
<li class="toctree-l2"><a class="reference internal" href="plot_manifold_sphere.html">Manifold Learning methods on a severed sphere</a></li>
<li class="toctree-l2"><a class="reference internal" href="plot_lle_digits.html">Manifold learning on handwritten digits: Locally Linear Embedding, Isomap…</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">Multi-dimensional scaling</a></li>
<li class="toctree-l2"><a class="reference internal" href="plot_swissroll.html">Swiss Roll And Swiss-Hole Reduction</a></li>
<li class="toctree-l2"><a class="reference internal" href="plot_t_sne_perplexity.html">t-SNE: The effect of various perplexity values on the shape</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../miscellaneous/index.html">Miscellaneous</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_partial_dependence_visualization_api.html">Advanced Plotting With Partial Dependence</a></li>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_anomaly_comparison.html">Comparing anomaly detection algorithms for outlier detection on toy datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_kernel_ridge_regression.html">Comparison of kernel ridge regression and SVR</a></li>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_pipeline_display.html">Displaying Pipelines</a></li>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_estimator_representation.html">Displaying estimators and complex pipelines</a></li>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_outlier_detection_bench.html">Evaluation of outlier detection estimators</a></li>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_kernel_approximation.html">Explicit feature map approximation for RBF kernels</a></li>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_multioutput_face_completion.html">Face completion with a multi-output estimators</a></li>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_set_output.html">Introducing the <code class="docutils literal notranslate"><span class="pre">set_output</span></code> API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_isotonic_regression.html">Isotonic Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_metadata_routing.html">Metadata Routing</a></li>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_multilabel.html">Multilabel classification</a></li>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_roc_curve_visualization_api.html">ROC Curve with Visualization API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_johnson_lindenstrauss_bound.html">The Johnson-Lindenstrauss bound for embedding with random projections</a></li>
<li class="toctree-l2"><a class="reference internal" href="../miscellaneous/plot_display_object_visualization.html">Visualizations with Display Objects</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../impute/index.html">Missing Value Imputation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../impute/plot_missing_values.html">Imputing missing values before building an estimator</a></li>
<li class="toctree-l2"><a class="reference internal" href="../impute/plot_iterative_imputer_variants_comparison.html">Imputing missing values with variants of IterativeImputer</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../model_selection/index.html">Model Selection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_grid_search_refit_callable.html">Balance model complexity and cross-validated score</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_likelihood_ratios.html">Class Likelihood Ratios to measure classification performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_randomized_search.html">Comparing randomized search and grid search for hyperparameter estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_successive_halving_heatmap.html">Comparison between grid search and successive halving</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_confusion_matrix.html">Confusion matrix</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_grid_search_digits.html">Custom refit strategy of a grid search with cross-validation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_multi_metric_evaluation.html">Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_det.html">Detection error tradeoff (DET) curve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_train_error_vs_test_error.html">Effect of model regularization on training and test error</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_roc.html">Multiclass Receiver Operating Characteristic (ROC)</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_nested_cross_validation_iris.html">Nested versus non-nested cross-validation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_cv_predict.html">Plotting Cross-Validated Predictions</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_learning_curve.html">Plotting Learning Curves and Checking Models’ Scalability</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_tuned_decision_threshold.html">Post-hoc tuning the cut-off point of decision function</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_cost_sensitive_learning.html">Post-tuning the decision threshold for cost-sensitive learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_precision_recall.html">Precision-Recall</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_roc_crossval.html">Receiver Operating Characteristic (ROC) with cross validation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_grid_search_text_feature_extraction.html">Sample pipeline for text feature extraction and evaluation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_grid_search_stats.html">Statistical comparison of models using grid search</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_successive_halving_iterations.html">Successive Halving Iterations</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_permutation_tests_for_classification.html">Test with permutations the significance of a classification score</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_underfitting_overfitting.html">Underfitting vs. Overfitting</a></li>
<li class="toctree-l2"><a class="reference internal" href="../model_selection/plot_cv_indices.html">Visualizing cross-validation behavior in scikit-learn</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../multiclass/index.html">Multiclass methods</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../multiclass/plot_multiclass_overview.html">Overview of multiclass training meta-estimators</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../multioutput/index.html">Multioutput methods</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../multioutput/plot_classifier_chain_yeast.html">Multilabel classification using a classifier chain</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../neighbors/index.html">Nearest Neighbors</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../neighbors/approximate_nearest_neighbors.html">Approximate nearest neighbors in TSNE</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neighbors/plot_caching_nearest_neighbors.html">Caching nearest neighbors</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neighbors/plot_nca_classification.html">Comparing Nearest Neighbors with and without Neighborhood Components Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neighbors/plot_nca_dim_reduction.html">Dimensionality Reduction with Neighborhood Components Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neighbors/plot_species_kde.html">Kernel Density Estimate of Species Distributions</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neighbors/plot_digits_kde_sampling.html">Kernel Density Estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neighbors/plot_nearest_centroid.html">Nearest Centroid Classification</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neighbors/plot_classification.html">Nearest Neighbors Classification</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neighbors/plot_regression.html">Nearest Neighbors regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neighbors/plot_nca_illustration.html">Neighborhood Components Analysis Illustration</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neighbors/plot_lof_novelty_detection.html">Novelty detection with Local Outlier Factor (LOF)</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neighbors/plot_lof_outlier_detection.html">Outlier detection with Local Outlier Factor (LOF)</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neighbors/plot_kde_1d.html">Simple 1D Kernel Density Estimation</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../neural_networks/index.html">Neural Networks</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../neural_networks/plot_mlp_training_curves.html">Compare Stochastic learning strategies for MLPClassifier</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neural_networks/plot_rbm_logistic_classification.html">Restricted Boltzmann Machine features for digit classification</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neural_networks/plot_mlp_alpha.html">Varying regularization in Multi-layer Perceptron</a></li>
<li class="toctree-l2"><a class="reference internal" href="../neural_networks/plot_mnist_filters.html">Visualization of MLP weights on MNIST</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../compose/index.html">Pipelines and composite estimators</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../compose/plot_column_transformer.html">Column Transformer with Heterogeneous Data Sources</a></li>
<li class="toctree-l2"><a class="reference internal" href="../compose/plot_column_transformer_mixed_types.html">Column Transformer with Mixed Types</a></li>
<li class="toctree-l2"><a class="reference internal" href="../compose/plot_feature_union.html">Concatenating multiple feature extraction methods</a></li>
<li class="toctree-l2"><a class="reference internal" href="../compose/plot_transformed_target.html">Effect of transforming the targets in regression model</a></li>
<li class="toctree-l2"><a class="reference internal" href="../compose/plot_digits_pipe.html">Pipelining: chaining a PCA and a logistic regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../compose/plot_compare_reduction.html">Selecting dimensionality reduction with Pipeline and GridSearchCV</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../preprocessing/index.html">Preprocessing</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../preprocessing/plot_all_scaling.html">Compare the effect of different scalers on data with outliers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../preprocessing/plot_target_encoder.html">Comparing Target Encoder with Other Encoders</a></li>
<li class="toctree-l2"><a class="reference internal" href="../preprocessing/plot_discretization_strategies.html">Demonstrating the different strategies of KBinsDiscretizer</a></li>
<li class="toctree-l2"><a class="reference internal" href="../preprocessing/plot_discretization_classification.html">Feature discretization</a></li>
<li class="toctree-l2"><a class="reference internal" href="../preprocessing/plot_scaling_importance.html">Importance of Feature Scaling</a></li>
<li class="toctree-l2"><a class="reference internal" href="../preprocessing/plot_map_data_to_normal.html">Map data to a normal distribution</a></li>
<li class="toctree-l2"><a class="reference internal" href="../preprocessing/plot_target_encoder_cross_val.html">Target Encoder’s Internal Cross fitting</a></li>
<li class="toctree-l2"><a class="reference internal" href="../preprocessing/plot_discretization.html">Using KBinsDiscretizer to discretize continuous features</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../semi_supervised/index.html">Semi Supervised Classification</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../semi_supervised/plot_semi_supervised_versus_svm_iris.html">Decision boundary of semi-supervised classifiers versus SVM on the Iris dataset</a></li>
<li class="toctree-l2"><a class="reference internal" href="../semi_supervised/plot_self_training_varying_threshold.html">Effect of varying threshold for self-training</a></li>
<li class="toctree-l2"><a class="reference internal" href="../semi_supervised/plot_label_propagation_digits_active_learning.html">Label Propagation digits active learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="../semi_supervised/plot_label_propagation_digits.html">Label Propagation digits: Demonstrating performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../semi_supervised/plot_label_propagation_structure.html">Label Propagation learning a complex structure</a></li>
<li class="toctree-l2"><a class="reference internal" href="../semi_supervised/plot_semi_supervised_newsgroups.html">Semi-supervised Classification on a Text Dataset</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../svm/index.html">Support Vector Machines</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../svm/plot_oneclass.html">One-class SVM with non-linear kernel (RBF)</a></li>
<li class="toctree-l2"><a class="reference internal" href="../svm/plot_svm_kernels.html">Plot classification boundaries with different SVM Kernels</a></li>
<li class="toctree-l2"><a class="reference internal" href="../svm/plot_iris_svc.html">Plot different SVM classifiers in the iris dataset</a></li>
<li class="toctree-l2"><a class="reference internal" href="../svm/plot_linearsvc_support_vectors.html">Plot the support vectors in LinearSVC</a></li>
<li class="toctree-l2"><a class="reference internal" href="../svm/plot_rbf_parameters.html">RBF SVM parameters</a></li>
<li class="toctree-l2"><a class="reference internal" href="../svm/plot_svm_margin.html">SVM Margins Example</a></li>
<li class="toctree-l2"><a class="reference internal" href="../svm/plot_svm_tie_breaking.html">SVM Tie Breaking Example</a></li>
<li class="toctree-l2"><a class="reference internal" href="../svm/plot_custom_kernel.html">SVM with custom kernel</a></li>
<li class="toctree-l2"><a class="reference internal" href="../svm/plot_svm_anova.html">SVM-Anova: SVM with univariate feature selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="../svm/plot_separating_hyperplane.html">SVM: Maximum margin separating hyperplane</a></li>
<li class="toctree-l2"><a class="reference internal" href="../svm/plot_separating_hyperplane_unbalanced.html">SVM: Separating hyperplane for unbalanced classes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../svm/plot_weighted_samples.html">SVM: Weighted samples</a></li>
<li class="toctree-l2"><a class="reference internal" href="../svm/plot_svm_scale_c.html">Scaling the regularization parameter for SVCs</a></li>
<li class="toctree-l2"><a class="reference internal" href="../svm/plot_svm_regression.html">Support Vector Regression (SVR) using linear and non-linear kernels</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../text/index.html">Working with text documents</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../text/plot_document_classification_20newsgroups.html">Classification of text documents using sparse features</a></li>
<li class="toctree-l2"><a class="reference internal" href="../text/plot_document_clustering.html">Clustering text documents using k-means</a></li>
<li class="toctree-l2"><a class="reference internal" href="../text/plot_hashing_vs_dict_vectorizer.html">FeatureHasher and DictVectorizer Comparison</a></li>
</ul>
</details></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../index.html" class="nav-link">Examples</a></li>
<li class="breadcrumb-item"><a href="index.html" class="nav-link">Manifold learning</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">Multi-dimensional scaling</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<div class="sphx-glr-download-link-note admonition note">
<p class="admonition-title">Note</p>
<p><a class="reference internal" href="#sphx-glr-download-auto-examples-manifold-plot-mds-py"><span class="std std-ref">Go to the end</span></a>
to download the full example code. or to run this example in your browser via JupyterLite or Binder</p>
</div>
<section class="sphx-glr-example-title" id="multi-dimensional-scaling">
<span id="sphx-glr-auto-examples-manifold-plot-mds-py"></span><h1>Multi-dimensional scaling<a class="headerlink" href="#multi-dimensional-scaling" title="Link to this heading">#</a></h1>
<p>An illustration of the metric and non-metric MDS on generated noisy data.</p>
<p>The reconstructed points using the metric MDS and non metric MDS are slightly