-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathneighbors.html
1571 lines (1335 loc) · 122 KB
/
neighbors.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta property="og:title" content="1.6. Nearest Neighbors" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/modules/neighbors.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="sklearn.neighbors provides functionality for unsupervised and supervised neighbors-based learning methods. Unsupervised nearest neighbors is the foundation of many other learning methods, notably m..." />
<meta property="og:image" content="https://scikit-learn/stable/modules/auto_examples/neighbors/images/sphx_glr_plot_classification_001.png" />
<meta property="og:image:alt" content="classification_1" />
<meta name="description" content="sklearn.neighbors provides functionality for unsupervised and supervised neighbors-based learning methods. Unsupervised nearest neighbors is the foundation of many other learning methods, notably m..." />
<title>1.6. Nearest Neighbors — scikit-learn 1.5.2 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/styles/bootstrap.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/vendor/fontawesome/6.5.2/css/all.min.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-regular-400.woff2" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=a746c00c" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/plot_directive.css" />
<link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Vibur" />
<link rel="stylesheet" type="text/css" href="../_static/jupyterlite_sphinx.css?v=ca70e7f1" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery.css?v=d2d258e8" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-binder.css?v=f4aeca0c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-dataframe.css?v=2082cf3c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-rendered-html.css?v=1277b6f3" />
<link rel="stylesheet" type="text/css" href="../_static/sphinx-design.min.css?v=95c83b7e" />
<link rel="stylesheet" type="text/css" href="../_static/styles/colors.css?v=cc94ab7d" />
<link rel="stylesheet" type="text/css" href="../_static/styles/custom.css?v=e4cb1417" />
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b" />
<script src="../_static/vendor/fontawesome/6.5.2/js/all.min.js?digest=dfe6caa3a7d634c4db9b"></script>
<script src="../_static/documentation_options.js?v=73275c37"></script>
<script src="../_static/doctools.js?v=9a2dae69"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=97f0b27d"></script>
<script src="../_static/jupyterlite_sphinx.js?v=d6bdf5f8"></script>
<script src="../_static/design-tabs.js?v=f930bc37"></script>
<script data-domain="scikit-learn.org" defer="defer" src="https://views.scientific-python.org/js/script.js"></script>
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'modules/neighbors';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.15.4';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = 'https://scikit-learn.org/dev/_static/versions.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.5.2';
DOCUMENTATION_OPTIONS.show_version_warning_banner = true;
</script>
<script src="../_static/scripts/dropdown.js?v=e2048168"></script>
<script src="../_static/scripts/version-switcher.js?v=a6dd8357"></script>
<link rel="canonical" href="https://scikit-learn.org/stable/modules/neighbors.html" />
<link rel="icon" href="../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../about.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="1.7. Gaussian Processes" href="gaussian_process.html" />
<link rel="prev" title="1.5. Stochastic Gradient Descent" href="sgd.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<input type="checkbox"
class="sidebar-toggle"
id="pst-primary-sidebar-checkbox"/>
<label class="overlay overlay-primary" for="pst-primary-sidebar-checkbox"></label>
<input type="checkbox"
class="sidebar-toggle"
id="pst-secondary-sidebar-checkbox"/>
<label class="overlay overlay-secondary" for="pst-secondary-sidebar-checkbox"></label>
<div class="search-button__wrapper">
<div class="search-button__overlay"></div>
<div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
id="search-input"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
</div>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class=" navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-light" alt="scikit-learn homepage"/>
<script>document.write(`<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-dark" alt="scikit-learn homepage"/>`);</script>
</a></div>
</div>
<div class=" navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item dropdown">
<button class="btn dropdown-toggle nav-item" type="button" data-bs-toggle="dropdown" aria-expanded="false" aria-controls="pst-nav-more-links">
More
</button>
<ul id="pst-nav-more-links" class="dropdown-menu">
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../support.html">
Support
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<script>
document.write(`
<button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
`);
</script>
</div>
<div class="navbar-item">
<script>
document.write(`
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i>
</button>
`);
</script></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<script>
document.write(`
<div class="version-switcher__container dropdown">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
`);
</script></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<script>
document.write(`
<button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
`);
</script>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<div class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../support.html">
Support
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<script>
document.write(`
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i>
</button>
`);
</script></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<script>
document.write(`
<div class="version-switcher__container dropdown">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
`);
</script></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1 current active has-children"><a class="reference internal" href="../supervised_learning.html">1. Supervised learning</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="linear_model.html">1.1. Linear Models</a></li>
<li class="toctree-l2"><a class="reference internal" href="lda_qda.html">1.2. Linear and Quadratic Discriminant Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="kernel_ridge.html">1.3. Kernel ridge regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="svm.html">1.4. Support Vector Machines</a></li>
<li class="toctree-l2"><a class="reference internal" href="sgd.html">1.5. Stochastic Gradient Descent</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">1.6. Nearest Neighbors</a></li>
<li class="toctree-l2"><a class="reference internal" href="gaussian_process.html">1.7. Gaussian Processes</a></li>
<li class="toctree-l2"><a class="reference internal" href="cross_decomposition.html">1.8. Cross decomposition</a></li>
<li class="toctree-l2"><a class="reference internal" href="naive_bayes.html">1.9. Naive Bayes</a></li>
<li class="toctree-l2"><a class="reference internal" href="tree.html">1.10. Decision Trees</a></li>
<li class="toctree-l2"><a class="reference internal" href="ensemble.html">1.11. Ensembles: Gradient boosting, random forests, bagging, voting, stacking</a></li>
<li class="toctree-l2"><a class="reference internal" href="multiclass.html">1.12. Multiclass and multioutput algorithms</a></li>
<li class="toctree-l2"><a class="reference internal" href="feature_selection.html">1.13. Feature selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="semi_supervised.html">1.14. Semi-supervised learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="isotonic.html">1.15. Isotonic regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="calibration.html">1.16. Probability calibration</a></li>
<li class="toctree-l2"><a class="reference internal" href="neural_networks_supervised.html">1.17. Neural network models (supervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../unsupervised_learning.html">2. Unsupervised learning</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="mixture.html">2.1. Gaussian mixture models</a></li>
<li class="toctree-l2"><a class="reference internal" href="manifold.html">2.2. Manifold learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="clustering.html">2.3. Clustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="biclustering.html">2.4. Biclustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="decomposition.html">2.5. Decomposing signals in components (matrix factorization problems)</a></li>
<li class="toctree-l2"><a class="reference internal" href="covariance.html">2.6. Covariance estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="outlier_detection.html">2.7. Novelty and Outlier Detection</a></li>
<li class="toctree-l2"><a class="reference internal" href="density.html">2.8. Density Estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="neural_networks_unsupervised.html">2.9. Neural network models (unsupervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../model_selection.html">3. Model selection and evaluation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="cross_validation.html">3.1. Cross-validation: evaluating estimator performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="grid_search.html">3.2. Tuning the hyper-parameters of an estimator</a></li>
<li class="toctree-l2"><a class="reference internal" href="classification_threshold.html">3.3. Tuning the decision threshold for class prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="model_evaluation.html">3.4. Metrics and scoring: quantifying the quality of predictions</a></li>
<li class="toctree-l2"><a class="reference internal" href="learning_curve.html">3.5. Validation curves: plotting scores to evaluate models</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../inspection.html">4. Inspection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="partial_dependence.html">4.1. Partial Dependence and Individual Conditional Expectation plots</a></li>
<li class="toctree-l2"><a class="reference internal" href="permutation_importance.html">4.2. Permutation feature importance</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../visualizations.html">5. Visualizations</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../data_transforms.html">6. Dataset transformations</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="compose.html">6.1. Pipelines and composite estimators</a></li>
<li class="toctree-l2"><a class="reference internal" href="feature_extraction.html">6.2. Feature extraction</a></li>
<li class="toctree-l2"><a class="reference internal" href="preprocessing.html">6.3. Preprocessing data</a></li>
<li class="toctree-l2"><a class="reference internal" href="impute.html">6.4. Imputation of missing values</a></li>
<li class="toctree-l2"><a class="reference internal" href="unsupervised_reduction.html">6.5. Unsupervised dimensionality reduction</a></li>
<li class="toctree-l2"><a class="reference internal" href="random_projection.html">6.6. Random Projection</a></li>
<li class="toctree-l2"><a class="reference internal" href="kernel_approximation.html">6.7. Kernel Approximation</a></li>
<li class="toctree-l2"><a class="reference internal" href="metrics.html">6.8. Pairwise metrics, Affinities and Kernels</a></li>
<li class="toctree-l2"><a class="reference internal" href="preprocessing_targets.html">6.9. Transforming the prediction target (<code class="docutils literal notranslate"><span class="pre">y</span></code>)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../datasets.html">7. Dataset loading utilities</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../datasets/toy_dataset.html">7.1. Toy datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/real_world.html">7.2. Real world datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/sample_generators.html">7.3. Generated datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/loading_other_datasets.html">7.4. Loading other datasets</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../computing.html">8. Computing with scikit-learn</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../computing/scaling_strategies.html">8.1. Strategies to scale computationally: bigger data</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/computational_performance.html">8.2. Computational Performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/parallelism.html">8.3. Parallelism, resource management, and configuration</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../model_persistence.html">9. Model persistence</a></li>
<li class="toctree-l1"><a class="reference internal" href="../common_pitfalls.html">10. Common pitfalls and recommended practices</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../dispatching.html">11. Dispatching</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="array_api.html">11.1. Array API support (experimental)</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../machine_learning_map.html">12. Choosing the right estimator</a></li>
<li class="toctree-l1"><a class="reference internal" href="../presentations.html">13. External Resources, Videos and Talks</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
<div id="rtd-footer-container"></div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../user_guide.html" class="nav-link">User Guide</a></li>
<li class="breadcrumb-item"><a href="../supervised_learning.html" class="nav-link"><span class="section-number">1. </span>Supervised learning</a></li>
<li class="breadcrumb-item active" aria-current="page"><span...</li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="nearest-neighbors">
<span id="neighbors"></span><h1><span class="section-number">1.6. </span>Nearest Neighbors<a class="headerlink" href="#nearest-neighbors" title="Link to this heading">#</a></h1>
<p><a class="reference internal" href="../api/sklearn.neighbors.html#module-sklearn.neighbors" title="sklearn.neighbors"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.neighbors</span></code></a> provides functionality for unsupervised and
supervised neighbors-based learning methods. Unsupervised nearest neighbors
is the foundation of many other learning methods,
notably manifold learning and spectral clustering. Supervised neighbors-based
learning comes in two flavors: <a class="reference internal" href="#classification">classification</a> for data with
discrete labels, and <a class="reference internal" href="#regression">regression</a> for data with continuous labels.</p>
<p>The principle behind nearest neighbor methods is to find a predefined number
of training samples closest in distance to the new point, and
predict the label from these. The number of samples can be a user-defined
constant (k-nearest neighbor learning), or vary based
on the local density of points (radius-based neighbor learning).
The distance can, in general, be any metric measure: standard Euclidean
distance is the most common choice.
Neighbors-based methods are known as <em>non-generalizing</em> machine
learning methods, since they simply “remember” all of its training data
(possibly transformed into a fast indexing structure such as a
<a class="reference internal" href="#ball-tree"><span class="std std-ref">Ball Tree</span></a> or <a class="reference internal" href="#kd-tree"><span class="std std-ref">KD Tree</span></a>).</p>
<p>Despite its simplicity, nearest neighbors has been successful in a
large number of classification and regression problems, including
handwritten digits and satellite image scenes. Being a non-parametric method,
it is often successful in classification situations where the decision
boundary is very irregular.</p>
<p>The classes in <a class="reference internal" href="../api/sklearn.neighbors.html#module-sklearn.neighbors" title="sklearn.neighbors"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.neighbors</span></code></a> can handle either NumPy arrays or
<code class="docutils literal notranslate"><span class="pre">scipy.sparse</span></code> matrices as input. For dense matrices, a large number of
possible distance metrics are supported. For sparse matrices, arbitrary
Minkowski metrics are supported for searches.</p>
<p>There are many learning routines which rely on nearest neighbors at their
core. One example is <a class="reference internal" href="density.html#kernel-density"><span class="std std-ref">kernel density estimation</span></a>,
discussed in the <a class="reference internal" href="density.html#density-estimation"><span class="std std-ref">density estimation</span></a> section.</p>
<section id="unsupervised-nearest-neighbors">
<span id="unsupervised-neighbors"></span><h2><span class="section-number">1.6.1. </span>Unsupervised Nearest Neighbors<a class="headerlink" href="#unsupervised-nearest-neighbors" title="Link to this heading">#</a></h2>
<p><a class="reference internal" href="generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors" title="sklearn.neighbors.NearestNeighbors"><code class="xref py py-class docutils literal notranslate"><span class="pre">NearestNeighbors</span></code></a> implements unsupervised nearest neighbors learning.
It acts as a uniform interface to three different nearest neighbors
algorithms: <a class="reference internal" href="generated/sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree" title="sklearn.neighbors.BallTree"><code class="xref py py-class docutils literal notranslate"><span class="pre">BallTree</span></code></a>, <a class="reference internal" href="generated/sklearn.neighbors.KDTree.html#sklearn.neighbors.KDTree" title="sklearn.neighbors.KDTree"><code class="xref py py-class docutils literal notranslate"><span class="pre">KDTree</span></code></a>, and a
brute-force algorithm based on routines in <a class="reference internal" href="../api/sklearn.metrics.html#module-sklearn.metrics.pairwise" title="sklearn.metrics.pairwise"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.metrics.pairwise</span></code></a>.
The choice of neighbors search algorithm is controlled through the keyword
<code class="docutils literal notranslate"><span class="pre">'algorithm'</span></code>, which must be one of
<code class="docutils literal notranslate"><span class="pre">['auto',</span> <span class="pre">'ball_tree',</span> <span class="pre">'kd_tree',</span> <span class="pre">'brute']</span></code>. When the default value
<code class="docutils literal notranslate"><span class="pre">'auto'</span></code> is passed, the algorithm attempts to determine the best approach
from the training data. For a discussion of the strengths and weaknesses
of each option, see <a class="reference internal" href="#nearest-neighbor-algorithms">Nearest Neighbor Algorithms</a>.</p>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p>Regarding the Nearest Neighbors algorithms, if two
neighbors <span class="math notranslate nohighlight">\(k+1\)</span> and <span class="math notranslate nohighlight">\(k\)</span> have identical distances
but different labels, the result will depend on the ordering of the
training data.</p>
</div>
<section id="finding-the-nearest-neighbors">
<h3><span class="section-number">1.6.1.1. </span>Finding the Nearest Neighbors<a class="headerlink" href="#finding-the-nearest-neighbors" title="Link to this heading">#</a></h3>
<p>For the simple task of finding the nearest neighbors between two sets of
data, the unsupervised algorithms within <a class="reference internal" href="../api/sklearn.neighbors.html#module-sklearn.neighbors" title="sklearn.neighbors"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.neighbors</span></code></a> can be
used:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.neighbors</span> <span class="kn">import</span> <span class="n">NearestNeighbors</span>
<span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="gp">>>> </span><span class="n">X</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mi">3</span><span class="p">,</span> <span class="o">-</span><span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">]])</span>
<span class="gp">>>> </span><span class="n">nbrs</span> <span class="o">=</span> <span class="n">NearestNeighbors</span><span class="p">(</span><span class="n">n_neighbors</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">algorithm</span><span class="o">=</span><span class="s1">'ball_tree'</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">distances</span><span class="p">,</span> <span class="n">indices</span> <span class="o">=</span> <span class="n">nbrs</span><span class="o">.</span><span class="n">kneighbors</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">indices</span>
<span class="go">array([[0, 1],</span>
<span class="go"> [1, 0],</span>
<span class="go"> [2, 1],</span>
<span class="go"> [3, 4],</span>
<span class="go"> [4, 3],</span>
<span class="go"> [5, 4]]...)</span>
<span class="gp">>>> </span><span class="n">distances</span>
<span class="go">array([[0. , 1. ],</span>
<span class="go"> [0. , 1. ],</span>
<span class="go"> [0. , 1.41421356],</span>
<span class="go"> [0. , 1. ],</span>
<span class="go"> [0. , 1. ],</span>
<span class="go"> [0. , 1.41421356]])</span>
</pre></div>
</div>
<p>Because the query set matches the training set, the nearest neighbor of each
point is the point itself, at a distance of zero.</p>
<p>It is also possible to efficiently produce a sparse graph showing the
connections between neighboring points:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">nbrs</span><span class="o">.</span><span class="n">kneighbors_graph</span><span class="p">(</span><span class="n">X</span><span class="p">)</span><span class="o">.</span><span class="n">toarray</span><span class="p">()</span>
<span class="go">array([[1., 1., 0., 0., 0., 0.],</span>
<span class="go"> [1., 1., 0., 0., 0., 0.],</span>
<span class="go"> [0., 1., 1., 0., 0., 0.],</span>
<span class="go"> [0., 0., 0., 1., 1., 0.],</span>
<span class="go"> [0., 0., 0., 1., 1., 0.],</span>
<span class="go"> [0., 0., 0., 0., 1., 1.]])</span>
</pre></div>
</div>
<p>The dataset is structured such that points nearby in index order are nearby
in parameter space, leading to an approximately block-diagonal matrix of
K-nearest neighbors. Such a sparse graph is useful in a variety of
circumstances which make use of spatial relationships between points for
unsupervised learning: in particular, see <a class="reference internal" href="generated/sklearn.manifold.Isomap.html#sklearn.manifold.Isomap" title="sklearn.manifold.Isomap"><code class="xref py py-class docutils literal notranslate"><span class="pre">Isomap</span></code></a>,
<a class="reference internal" href="generated/sklearn.manifold.LocallyLinearEmbedding.html#sklearn.manifold.LocallyLinearEmbedding" title="sklearn.manifold.LocallyLinearEmbedding"><code class="xref py py-class docutils literal notranslate"><span class="pre">LocallyLinearEmbedding</span></code></a>, and
<a class="reference internal" href="generated/sklearn.cluster.SpectralClustering.html#sklearn.cluster.SpectralClustering" title="sklearn.cluster.SpectralClustering"><code class="xref py py-class docutils literal notranslate"><span class="pre">SpectralClustering</span></code></a>.</p>
</section>
<section id="kdtree-and-balltree-classes">
<h3><span class="section-number">1.6.1.2. </span>KDTree and BallTree Classes<a class="headerlink" href="#kdtree-and-balltree-classes" title="Link to this heading">#</a></h3>
<p>Alternatively, one can use the <a class="reference internal" href="generated/sklearn.neighbors.KDTree.html#sklearn.neighbors.KDTree" title="sklearn.neighbors.KDTree"><code class="xref py py-class docutils literal notranslate"><span class="pre">KDTree</span></code></a> or <a class="reference internal" href="generated/sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree" title="sklearn.neighbors.BallTree"><code class="xref py py-class docutils literal notranslate"><span class="pre">BallTree</span></code></a> classes
directly to find nearest neighbors. This is the functionality wrapped by
the <a class="reference internal" href="generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors" title="sklearn.neighbors.NearestNeighbors"><code class="xref py py-class docutils literal notranslate"><span class="pre">NearestNeighbors</span></code></a> class used above. The Ball Tree and KD Tree
have the same interface; we’ll show an example of using the KD Tree here:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.neighbors</span> <span class="kn">import</span> <span class="n">KDTree</span>
<span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="gp">>>> </span><span class="n">X</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="o">-</span><span class="mi">3</span><span class="p">,</span> <span class="o">-</span><span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">]])</span>
<span class="gp">>>> </span><span class="n">kdt</span> <span class="o">=</span> <span class="n">KDTree</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">leaf_size</span><span class="o">=</span><span class="mi">30</span><span class="p">,</span> <span class="n">metric</span><span class="o">=</span><span class="s1">'euclidean'</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">kdt</span><span class="o">.</span><span class="n">query</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">return_distance</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="go">array([[0, 1],</span>
<span class="go"> [1, 0],</span>
<span class="go"> [2, 1],</span>
<span class="go"> [3, 4],</span>
<span class="go"> [4, 3],</span>
<span class="go"> [5, 4]]...)</span>
</pre></div>
</div>
<p>Refer to the <a class="reference internal" href="generated/sklearn.neighbors.KDTree.html#sklearn.neighbors.KDTree" title="sklearn.neighbors.KDTree"><code class="xref py py-class docutils literal notranslate"><span class="pre">KDTree</span></code></a> and <a class="reference internal" href="generated/sklearn.neighbors.BallTree.html#sklearn.neighbors.BallTree" title="sklearn.neighbors.BallTree"><code class="xref py py-class docutils literal notranslate"><span class="pre">BallTree</span></code></a> class documentation
for more information on the options available for nearest neighbors searches,
including specification of query strategies, distance metrics, etc. For a list
of valid metrics use <code class="docutils literal notranslate"><span class="pre">KDTree.valid_metrics</span></code> and <code class="docutils literal notranslate"><span class="pre">BallTree.valid_metrics</span></code>:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.neighbors</span> <span class="kn">import</span> <span class="n">KDTree</span><span class="p">,</span> <span class="n">BallTree</span>
<span class="gp">>>> </span><span class="n">KDTree</span><span class="o">.</span><span class="n">valid_metrics</span>
<span class="go">['euclidean', 'l2', 'minkowski', 'p', 'manhattan', 'cityblock', 'l1', 'chebyshev', 'infinity']</span>
<span class="gp">>>> </span><span class="n">BallTree</span><span class="o">.</span><span class="n">valid_metrics</span>
<span class="go">['euclidean', 'l2', 'minkowski', 'p', 'manhattan', 'cityblock', 'l1', 'chebyshev', 'infinity', 'seuclidean', 'mahalanobis', 'hamming', 'canberra', 'braycurtis', 'jaccard', 'dice', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath', 'haversine', 'pyfunc']</span>
</pre></div>
</div>
</section>
</section>
<section id="nearest-neighbors-classification">
<span id="classification"></span><h2><span class="section-number">1.6.2. </span>Nearest Neighbors Classification<a class="headerlink" href="#nearest-neighbors-classification" title="Link to this heading">#</a></h2>
<p>Neighbors-based classification is a type of <em>instance-based learning</em> or
<em>non-generalizing learning</em>: it does not attempt to construct a general
internal model, but simply stores instances of the training data.
Classification is computed from a simple majority vote of the nearest
neighbors of each point: a query point is assigned the data class which
has the most representatives within the nearest neighbors of the point.</p>
<p>scikit-learn implements two different nearest neighbors classifiers:
<a class="reference internal" href="generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier" title="sklearn.neighbors.KNeighborsClassifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">KNeighborsClassifier</span></code></a> implements learning based on the <span class="math notranslate nohighlight">\(k\)</span>
nearest neighbors of each query point, where <span class="math notranslate nohighlight">\(k\)</span> is an integer value
specified by the user. <a class="reference internal" href="generated/sklearn.neighbors.RadiusNeighborsClassifier.html#sklearn.neighbors.RadiusNeighborsClassifier" title="sklearn.neighbors.RadiusNeighborsClassifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">RadiusNeighborsClassifier</span></code></a> implements learning
based on the number of neighbors within a fixed radius <span class="math notranslate nohighlight">\(r\)</span> of each
training point, where <span class="math notranslate nohighlight">\(r\)</span> is a floating-point value specified by
the user.</p>
<p>The <span class="math notranslate nohighlight">\(k\)</span>-neighbors classification in <a class="reference internal" href="generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier" title="sklearn.neighbors.KNeighborsClassifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">KNeighborsClassifier</span></code></a>
is the most commonly used technique. The optimal choice of the value <span class="math notranslate nohighlight">\(k\)</span>
is highly data-dependent: in general a larger <span class="math notranslate nohighlight">\(k\)</span> suppresses the effects
of noise, but makes the classification boundaries less distinct.</p>
<p>In cases where the data is not uniformly sampled, radius-based neighbors
classification in <a class="reference internal" href="generated/sklearn.neighbors.RadiusNeighborsClassifier.html#sklearn.neighbors.RadiusNeighborsClassifier" title="sklearn.neighbors.RadiusNeighborsClassifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">RadiusNeighborsClassifier</span></code></a> can be a better choice.
The user specifies a fixed radius <span class="math notranslate nohighlight">\(r\)</span>, such that points in sparser
neighborhoods use fewer nearest neighbors for the classification. For
high-dimensional parameter spaces, this method becomes less effective due
to the so-called “curse of dimensionality”.</p>
<p>The basic nearest neighbors classification uses uniform weights: that is, the
value assigned to a query point is computed from a simple majority vote of
the nearest neighbors. Under some circumstances, it is better to weight the
neighbors such that nearer neighbors contribute more to the fit. This can
be accomplished through the <code class="docutils literal notranslate"><span class="pre">weights</span></code> keyword. The default value,
<code class="docutils literal notranslate"><span class="pre">weights</span> <span class="pre">=</span> <span class="pre">'uniform'</span></code>, assigns uniform weights to each neighbor.
<code class="docutils literal notranslate"><span class="pre">weights</span> <span class="pre">=</span> <span class="pre">'distance'</span></code> assigns weights proportional to the inverse of the
distance from the query point. Alternatively, a user-defined function of the
distance can be supplied to compute the weights.</p>
<p class="centered">
<strong><a class="reference external" href="../auto_examples/neighbors/plot_classification.html"><img alt="classification_1" src="../_images/sphx_glr_plot_classification_001.png" style="width: 900.0px; height: 375.0px;" /></a></strong></p><p class="rubric">Examples</p>
<ul class="simple">
<li><p><a class="reference internal" href="../auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-neighbors-plot-classification-py"><span class="std std-ref">Nearest Neighbors Classification</span></a>: an example of
classification using nearest neighbors.</p></li>
</ul>
</section>
<section id="nearest-neighbors-regression">
<span id="regression"></span><h2><span class="section-number">1.6.3. </span>Nearest Neighbors Regression<a class="headerlink" href="#nearest-neighbors-regression" title="Link to this heading">#</a></h2>
<p>Neighbors-based regression can be used in cases where the data labels are
continuous rather than discrete variables. The label assigned to a query
point is computed based on the mean of the labels of its nearest neighbors.</p>
<p>scikit-learn implements two different neighbors regressors:
<a class="reference internal" href="generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor" title="sklearn.neighbors.KNeighborsRegressor"><code class="xref py py-class docutils literal notranslate"><span class="pre">KNeighborsRegressor</span></code></a> implements learning based on the <span class="math notranslate nohighlight">\(k\)</span>
nearest neighbors of each query point, where <span class="math notranslate nohighlight">\(k\)</span> is an integer
value specified by the user. <a class="reference internal" href="generated/sklearn.neighbors.RadiusNeighborsRegressor.html#sklearn.neighbors.RadiusNeighborsRegressor" title="sklearn.neighbors.RadiusNeighborsRegressor"><code class="xref py py-class docutils literal notranslate"><span class="pre">RadiusNeighborsRegressor</span></code></a> implements
learning based on the neighbors within a fixed radius <span class="math notranslate nohighlight">\(r\)</span> of the
query point, where <span class="math notranslate nohighlight">\(r\)</span> is a floating-point value specified by the
user.</p>
<p>The basic nearest neighbors regression uses uniform weights: that is,
each point in the local neighborhood contributes uniformly to the
classification of a query point. Under some circumstances, it can be
advantageous to weight points such that nearby points contribute more
to the regression than faraway points. This can be accomplished through
the <code class="docutils literal notranslate"><span class="pre">weights</span></code> keyword. The default value, <code class="docutils literal notranslate"><span class="pre">weights</span> <span class="pre">=</span> <span class="pre">'uniform'</span></code>,
assigns equal weights to all points. <code class="docutils literal notranslate"><span class="pre">weights</span> <span class="pre">=</span> <span class="pre">'distance'</span></code> assigns
weights proportional to the inverse of the distance from the query point.
Alternatively, a user-defined function of the distance can be supplied,
which will be used to compute the weights.</p>
<figure class="align-center">
<a class="reference external image-reference" href="../auto_examples/neighbors/plot_regression.html"><img alt="../_images/sphx_glr_plot_regression_001.png" src="../_images/sphx_glr_plot_regression_001.png" style="width: 480.0px; height: 360.0px;" />
</a>
</figure>
<p>The use of multi-output nearest neighbors for regression is demonstrated in
<a class="reference internal" href="../auto_examples/miscellaneous/plot_multioutput_face_completion.html#sphx-glr-auto-examples-miscellaneous-plot-multioutput-face-completion-py"><span class="std std-ref">Face completion with a multi-output estimators</span></a>. In this example, the inputs
X are the pixels of the upper half of faces and the outputs Y are the pixels of
the lower half of those faces.</p>
<figure class="align-center">
<a class="reference external image-reference" href="../auto_examples/miscellaneous/plot_multioutput_face_completion.html"><img alt="../_images/sphx_glr_plot_multioutput_face_completion_001.png" src="../_images/sphx_glr_plot_multioutput_face_completion_001.png" style="width: 750.0px; height: 847.5px;" />
</a>
</figure>
<p class="rubric">Examples</p>
<ul class="simple">
<li><p><a class="reference internal" href="../auto_examples/neighbors/plot_regression.html#sphx-glr-auto-examples-neighbors-plot-regression-py"><span class="std std-ref">Nearest Neighbors regression</span></a>: an example of regression
using nearest neighbors.</p></li>
<li><p><a class="reference internal" href="../auto_examples/miscellaneous/plot_multioutput_face_completion.html#sphx-glr-auto-examples-miscellaneous-plot-multioutput-face-completion-py"><span class="std std-ref">Face completion with a multi-output estimators</span></a>:
an example of multi-output regression using nearest neighbors.</p></li>
</ul>
</section>
<section id="nearest-neighbor-algorithms">
<h2><span class="section-number">1.6.4. </span>Nearest Neighbor Algorithms<a class="headerlink" href="#nearest-neighbor-algorithms" title="Link to this heading">#</a></h2>
<section id="brute-force">
<span id="id1"></span><h3><span class="section-number">1.6.4.1. </span>Brute Force<a class="headerlink" href="#brute-force" title="Link to this heading">#</a></h3>
<p>Fast computation of nearest neighbors is an active area of research in
machine learning. The most naive neighbor search implementation involves
the brute-force computation of distances between all pairs of points in the
dataset: for <span class="math notranslate nohighlight">\(N\)</span> samples in <span class="math notranslate nohighlight">\(D\)</span> dimensions, this approach scales
as <span class="math notranslate nohighlight">\(O[D N^2]\)</span>. Efficient brute-force neighbors searches can be very
competitive for small data samples.
However, as the number of samples <span class="math notranslate nohighlight">\(N\)</span> grows, the brute-force
approach quickly becomes infeasible. In the classes within
<a class="reference internal" href="../api/sklearn.neighbors.html#module-sklearn.neighbors" title="sklearn.neighbors"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.neighbors</span></code></a>, brute-force neighbors searches are specified
using the keyword <code class="docutils literal notranslate"><span class="pre">algorithm</span> <span class="pre">=</span> <span class="pre">'brute'</span></code>, and are computed using the
routines available in <a class="reference internal" href="../api/sklearn.metrics.html#module-sklearn.metrics.pairwise" title="sklearn.metrics.pairwise"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.metrics.pairwise</span></code></a>.</p>
</section>
<section id="k-d-tree">
<span id="kd-tree"></span><h3><span class="section-number">1.6.4.2. </span>K-D Tree<a class="headerlink" href="#k-d-tree" title="Link to this heading">#</a></h3>
<p>To address the computational inefficiencies of the brute-force approach, a
variety of tree-based data structures have been invented. In general, these
structures attempt to reduce the required number of distance calculations
by efficiently encoding aggregate distance information for the sample.
The basic idea is that if point <span class="math notranslate nohighlight">\(A\)</span> is very distant from point
<span class="math notranslate nohighlight">\(B\)</span>, and point <span class="math notranslate nohighlight">\(B\)</span> is very close to point <span class="math notranslate nohighlight">\(C\)</span>,
then we know that points <span class="math notranslate nohighlight">\(A\)</span> and <span class="math notranslate nohighlight">\(C\)</span>
are very distant, <em>without having to explicitly calculate their distance</em>.
In this way, the computational cost of a nearest neighbors search can be
reduced to <span class="math notranslate nohighlight">\(O[D N \log(N)]\)</span> or better. This is a significant
improvement over brute-force for large <span class="math notranslate nohighlight">\(N\)</span>.</p>
<p>An early approach to taking advantage of this aggregate information was
the <em>KD tree</em> data structure (short for <em>K-dimensional tree</em>), which
generalizes two-dimensional <em>Quad-trees</em> and 3-dimensional <em>Oct-trees</em>
to an arbitrary number of dimensions. The KD tree is a binary tree
structure which recursively partitions the parameter space along the data
axes, dividing it into nested orthotropic regions into which data points
are filed. The construction of a KD tree is very fast: because partitioning
is performed only along the data axes, no <span class="math notranslate nohighlight">\(D\)</span>-dimensional distances
need to be computed. Once constructed, the nearest neighbor of a query
point can be determined with only <span class="math notranslate nohighlight">\(O[\log(N)]\)</span> distance computations.
Though the KD tree approach is very fast for low-dimensional (<span class="math notranslate nohighlight">\(D < 20\)</span>)
neighbors searches, it becomes inefficient as <span class="math notranslate nohighlight">\(D\)</span> grows very large:
this is one manifestation of the so-called “curse of dimensionality”.
In scikit-learn, KD tree neighbors searches are specified using the
keyword <code class="docutils literal notranslate"><span class="pre">algorithm</span> <span class="pre">=</span> <span class="pre">'kd_tree'</span></code>, and are computed using the class
<a class="reference internal" href="generated/sklearn.neighbors.KDTree.html#sklearn.neighbors.KDTree" title="sklearn.neighbors.KDTree"><code class="xref py py-class docutils literal notranslate"><span class="pre">KDTree</span></code></a>.</p>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="references">
<summary class="sd-summary-title sd-card-header">
<span class="sd-summary-text">References<a class="headerlink" href="#references" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<ul class="simple">
<li><p class="sd-card-text"><a class="reference external" href="https://dl.acm.org/citation.cfm?doid=361002.361007">“Multidimensional binary search trees used for associative searching”</a>,
Bentley, J.L., Communications of the ACM (1975)</p></li>
</ul>
</div>
</details></section>
<section id="ball-tree">
<span id="id2"></span><h3><span class="section-number">1.6.4.3. </span>Ball Tree<a class="headerlink" href="#ball-tree" title="Link to this heading">#</a></h3>
<p>To address the inefficiencies of KD Trees in higher dimensions, the <em>ball tree</em>
data structure was developed. Where KD trees partition data along
Cartesian axes, ball trees partition data in a series of nesting
hyper-spheres. This makes tree construction more costly than that of the
KD tree, but results in a data structure which can be very efficient on
highly structured data, even in very high dimensions.</p>
<p>A ball tree recursively divides the data into
nodes defined by a centroid <span class="math notranslate nohighlight">\(C\)</span> and radius <span class="math notranslate nohighlight">\(r\)</span>, such that each
point in the node lies within the hyper-sphere defined by <span class="math notranslate nohighlight">\(r\)</span> and
<span class="math notranslate nohighlight">\(C\)</span>. The number of candidate points for a neighbor search