-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathlda_qda.html
1058 lines (822 loc) · 53.7 KB
/
lda_qda.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta property="og:title" content="1.2. Linear and Quadratic Discriminant Analysis" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/modules/lda_qda.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="Linear Discriminant Analysis ( LinearDiscriminantAnalysis) and Quadratic Discriminant Analysis ( QuadraticDiscriminantAnalysis) are two classic classifiers, with, as their names suggest, a linear a..." />
<meta property="og:image" content="https://scikit-learn/stable/modules/auto_examples/classification/images/sphx_glr_plot_lda_qda_001.png" />
<meta property="og:image:alt" content="ldaqda" />
<meta name="description" content="Linear Discriminant Analysis ( LinearDiscriminantAnalysis) and Quadratic Discriminant Analysis ( QuadraticDiscriminantAnalysis) are two classic classifiers, with, as their names suggest, a linear a..." />
<title>1.2. Linear and Quadratic Discriminant Analysis — scikit-learn 1.5.2 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/styles/bootstrap.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/vendor/fontawesome/6.5.2/css/all.min.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-regular-400.woff2" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=a746c00c" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/plot_directive.css" />
<link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Vibur" />
<link rel="stylesheet" type="text/css" href="../_static/jupyterlite_sphinx.css?v=ca70e7f1" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery.css?v=d2d258e8" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-binder.css?v=f4aeca0c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-dataframe.css?v=2082cf3c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-rendered-html.css?v=1277b6f3" />
<link rel="stylesheet" type="text/css" href="../_static/sphinx-design.min.css?v=95c83b7e" />
<link rel="stylesheet" type="text/css" href="../_static/styles/colors.css?v=cc94ab7d" />
<link rel="stylesheet" type="text/css" href="../_static/styles/custom.css?v=e4cb1417" />
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b" />
<script src="../_static/vendor/fontawesome/6.5.2/js/all.min.js?digest=dfe6caa3a7d634c4db9b"></script>
<script src="../_static/documentation_options.js?v=73275c37"></script>
<script src="../_static/doctools.js?v=9a2dae69"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=97f0b27d"></script>
<script src="../_static/jupyterlite_sphinx.js?v=d6bdf5f8"></script>
<script src="../_static/design-tabs.js?v=f930bc37"></script>
<script data-domain="scikit-learn.org" defer="defer" src="https://views.scientific-python.org/js/script.js"></script>
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'modules/lda_qda';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.15.4';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = 'https://scikit-learn.org/dev/_static/versions.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.5.2';
DOCUMENTATION_OPTIONS.show_version_warning_banner = true;
</script>
<script src="../_static/scripts/dropdown.js?v=e2048168"></script>
<script src="../_static/scripts/version-switcher.js?v=a6dd8357"></script>
<link rel="canonical" href="https://scikit-learn.org/stable/modules/lda_qda.html" />
<link rel="icon" href="../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../about.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="1.3. Kernel ridge regression" href="kernel_ridge.html" />
<link rel="prev" title="1.1. Linear Models" href="linear_model.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<input type="checkbox"
class="sidebar-toggle"
id="pst-primary-sidebar-checkbox"/>
<label class="overlay overlay-primary" for="pst-primary-sidebar-checkbox"></label>
<input type="checkbox"
class="sidebar-toggle"
id="pst-secondary-sidebar-checkbox"/>
<label class="overlay overlay-secondary" for="pst-secondary-sidebar-checkbox"></label>
<div class="search-button__wrapper">
<div class="search-button__overlay"></div>
<div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
id="search-input"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
</div>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class=" navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-light" alt="scikit-learn homepage"/>
<script>document.write(`<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-dark" alt="scikit-learn homepage"/>`);</script>
</a></div>
</div>
<div class=" navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item dropdown">
<button class="btn dropdown-toggle nav-item" type="button" data-bs-toggle="dropdown" aria-expanded="false" aria-controls="pst-nav-more-links">
More
</button>
<ul id="pst-nav-more-links" class="dropdown-menu">
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../support.html">
Support
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<script>
document.write(`
<button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
`);
</script>
</div>
<div class="navbar-item">
<script>
document.write(`
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i>
</button>
`);
</script></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<script>
document.write(`
<div class="version-switcher__container dropdown">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
`);
</script></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<script>
document.write(`
<button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
`);
</script>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<div class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../support.html">
Support
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<script>
document.write(`
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i>
</button>
`);
</script></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<script>
document.write(`
<div class="version-switcher__container dropdown">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
`);
</script></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1 current active has-children"><a class="reference internal" href="../supervised_learning.html">1. Supervised learning</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="linear_model.html">1.1. Linear Models</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">1.2. Linear and Quadratic Discriminant Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="kernel_ridge.html">1.3. Kernel ridge regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="svm.html">1.4. Support Vector Machines</a></li>
<li class="toctree-l2"><a class="reference internal" href="sgd.html">1.5. Stochastic Gradient Descent</a></li>
<li class="toctree-l2"><a class="reference internal" href="neighbors.html">1.6. Nearest Neighbors</a></li>
<li class="toctree-l2"><a class="reference internal" href="gaussian_process.html">1.7. Gaussian Processes</a></li>
<li class="toctree-l2"><a class="reference internal" href="cross_decomposition.html">1.8. Cross decomposition</a></li>
<li class="toctree-l2"><a class="reference internal" href="naive_bayes.html">1.9. Naive Bayes</a></li>
<li class="toctree-l2"><a class="reference internal" href="tree.html">1.10. Decision Trees</a></li>
<li class="toctree-l2"><a class="reference internal" href="ensemble.html">1.11. Ensembles: Gradient boosting, random forests, bagging, voting, stacking</a></li>
<li class="toctree-l2"><a class="reference internal" href="multiclass.html">1.12. Multiclass and multioutput algorithms</a></li>
<li class="toctree-l2"><a class="reference internal" href="feature_selection.html">1.13. Feature selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="semi_supervised.html">1.14. Semi-supervised learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="isotonic.html">1.15. Isotonic regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="calibration.html">1.16. Probability calibration</a></li>
<li class="toctree-l2"><a class="reference internal" href="neural_networks_supervised.html">1.17. Neural network models (supervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../unsupervised_learning.html">2. Unsupervised learning</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="mixture.html">2.1. Gaussian mixture models</a></li>
<li class="toctree-l2"><a class="reference internal" href="manifold.html">2.2. Manifold learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="clustering.html">2.3. Clustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="biclustering.html">2.4. Biclustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="decomposition.html">2.5. Decomposing signals in components (matrix factorization problems)</a></li>
<li class="toctree-l2"><a class="reference internal" href="covariance.html">2.6. Covariance estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="outlier_detection.html">2.7. Novelty and Outlier Detection</a></li>
<li class="toctree-l2"><a class="reference internal" href="density.html">2.8. Density Estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="neural_networks_unsupervised.html">2.9. Neural network models (unsupervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../model_selection.html">3. Model selection and evaluation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="cross_validation.html">3.1. Cross-validation: evaluating estimator performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="grid_search.html">3.2. Tuning the hyper-parameters of an estimator</a></li>
<li class="toctree-l2"><a class="reference internal" href="classification_threshold.html">3.3. Tuning the decision threshold for class prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="model_evaluation.html">3.4. Metrics and scoring: quantifying the quality of predictions</a></li>
<li class="toctree-l2"><a class="reference internal" href="learning_curve.html">3.5. Validation curves: plotting scores to evaluate models</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../inspection.html">4. Inspection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="partial_dependence.html">4.1. Partial Dependence and Individual Conditional Expectation plots</a></li>
<li class="toctree-l2"><a class="reference internal" href="permutation_importance.html">4.2. Permutation feature importance</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../visualizations.html">5. Visualizations</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../data_transforms.html">6. Dataset transformations</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="compose.html">6.1. Pipelines and composite estimators</a></li>
<li class="toctree-l2"><a class="reference internal" href="feature_extraction.html">6.2. Feature extraction</a></li>
<li class="toctree-l2"><a class="reference internal" href="preprocessing.html">6.3. Preprocessing data</a></li>
<li class="toctree-l2"><a class="reference internal" href="impute.html">6.4. Imputation of missing values</a></li>
<li class="toctree-l2"><a class="reference internal" href="unsupervised_reduction.html">6.5. Unsupervised dimensionality reduction</a></li>
<li class="toctree-l2"><a class="reference internal" href="random_projection.html">6.6. Random Projection</a></li>
<li class="toctree-l2"><a class="reference internal" href="kernel_approximation.html">6.7. Kernel Approximation</a></li>
<li class="toctree-l2"><a class="reference internal" href="metrics.html">6.8. Pairwise metrics, Affinities and Kernels</a></li>
<li class="toctree-l2"><a class="reference internal" href="preprocessing_targets.html">6.9. Transforming the prediction target (<code class="docutils literal notranslate"><span class="pre">y</span></code>)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../datasets.html">7. Dataset loading utilities</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../datasets/toy_dataset.html">7.1. Toy datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/real_world.html">7.2. Real world datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/sample_generators.html">7.3. Generated datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/loading_other_datasets.html">7.4. Loading other datasets</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../computing.html">8. Computing with scikit-learn</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../computing/scaling_strategies.html">8.1. Strategies to scale computationally: bigger data</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/computational_performance.html">8.2. Computational Performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/parallelism.html">8.3. Parallelism, resource management, and configuration</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../model_persistence.html">9. Model persistence</a></li>
<li class="toctree-l1"><a class="reference internal" href="../common_pitfalls.html">10. Common pitfalls and recommended practices</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../dispatching.html">11. Dispatching</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="array_api.html">11.1. Array API support (experimental)</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../machine_learning_map.html">12. Choosing the right estimator</a></li>
<li class="toctree-l1"><a class="reference internal" href="../presentations.html">13. External Resources, Videos and Talks</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
<div id="rtd-footer-container"></div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../user_guide.html" class="nav-link">User Guide</a></li>
<li class="breadcrumb-item"><a href="../supervised_learning.html" class="nav-link"><span class="section-number">1. </span>Supervised learning</a></li>
<li class="breadcrumb-item active" aria-current="page"><span...</li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="linear-and-quadratic-discriminant-analysis">
<span id="lda-qda"></span><h1><span class="section-number">1.2. </span>Linear and Quadratic Discriminant Analysis<a class="headerlink" href="#linear-and-quadratic-discriminant-analysis" title="Link to this heading">#</a></h1>
<p>Linear Discriminant Analysis
(<a class="reference internal" href="generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis" title="sklearn.discriminant_analysis.LinearDiscriminantAnalysis"><code class="xref py py-class docutils literal notranslate"><span class="pre">LinearDiscriminantAnalysis</span></code></a>) and Quadratic
Discriminant Analysis
(<a class="reference internal" href="generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html#sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis" title="sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis"><code class="xref py py-class docutils literal notranslate"><span class="pre">QuadraticDiscriminantAnalysis</span></code></a>) are two classic
classifiers, with, as their names suggest, a linear and a quadratic decision
surface, respectively.</p>
<p>These classifiers are attractive because they have closed-form solutions that
can be easily computed, are inherently multiclass, have proven to work well in
practice, and have no hyperparameters to tune.</p>
<p class="centered">
<strong><a class="reference external" href="../auto_examples/classification/plot_lda_qda.html"><img alt="ldaqda" src="../_images/sphx_glr_plot_lda_qda_001.png" style="width: 640.0px; height: 960.0px;" /></a></strong></p><p>The plot shows decision boundaries for Linear Discriminant Analysis and
Quadratic Discriminant Analysis. The bottom row demonstrates that Linear
Discriminant Analysis can only learn linear boundaries, while Quadratic
Discriminant Analysis can learn quadratic boundaries and is therefore more
flexible.</p>
<p class="rubric">Examples</p>
<ul class="simple">
<li><p><a class="reference internal" href="../auto_examples/classification/plot_lda_qda.html#sphx-glr-auto-examples-classification-plot-lda-qda-py"><span class="std std-ref">Linear and Quadratic Discriminant Analysis with covariance ellipsoid</span></a>: Comparison of LDA and
QDA on synthetic data.</p></li>
</ul>
<section id="dimensionality-reduction-using-linear-discriminant-analysis">
<h2><span class="section-number">1.2.1. </span>Dimensionality reduction using Linear Discriminant Analysis<a class="headerlink" href="#dimensionality-reduction-using-linear-discriminant-analysis" title="Link to this heading">#</a></h2>
<p><a class="reference internal" href="generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis" title="sklearn.discriminant_analysis.LinearDiscriminantAnalysis"><code class="xref py py-class docutils literal notranslate"><span class="pre">LinearDiscriminantAnalysis</span></code></a> can be used to
perform supervised dimensionality reduction, by projecting the input data to a
linear subspace consisting of the directions which maximize the separation
between classes (in a precise sense discussed in the mathematics section
below). The dimension of the output is necessarily less than the number of
classes, so this is in general a rather strong dimensionality reduction, and
only makes sense in a multiclass setting.</p>
<p>This is implemented in the <code class="docutils literal notranslate"><span class="pre">transform</span></code> method. The desired dimensionality can
be set using the <code class="docutils literal notranslate"><span class="pre">n_components</span></code> parameter. This parameter has no influence
on the <code class="docutils literal notranslate"><span class="pre">fit</span></code> and <code class="docutils literal notranslate"><span class="pre">predict</span></code> methods.</p>
<p class="rubric">Examples</p>
<ul class="simple">
<li><p><a class="reference internal" href="../auto_examples/decomposition/plot_pca_vs_lda.html#sphx-glr-auto-examples-decomposition-plot-pca-vs-lda-py"><span class="std std-ref">Comparison of LDA and PCA 2D projection of Iris dataset</span></a>: Comparison of LDA and
PCA for dimensionality reduction of the Iris dataset</p></li>
</ul>
</section>
<section id="mathematical-formulation-of-the-lda-and-qda-classifiers">
<span id="lda-qda-math"></span><h2><span class="section-number">1.2.2. </span>Mathematical formulation of the LDA and QDA classifiers<a class="headerlink" href="#mathematical-formulation-of-the-lda-and-qda-classifiers" title="Link to this heading">#</a></h2>
<p>Both LDA and QDA can be derived from simple probabilistic models which model
the class conditional distribution of the data <span class="math notranslate nohighlight">\(P(X|y=k)\)</span> for each class
<span class="math notranslate nohighlight">\(k\)</span>. Predictions can then be obtained by using Bayes’ rule, for each
training sample <span class="math notranslate nohighlight">\(x \in \mathcal{R}^d\)</span>:</p>
<div class="math notranslate nohighlight">
\[P(y=k | x) = \frac{P(x | y=k) P(y=k)}{P(x)} = \frac{P(x | y=k) P(y = k)}{ \sum_{l} P(x | y=l) \cdot P(y=l)}\]</div>
<p>and we select the class <span class="math notranslate nohighlight">\(k\)</span> which maximizes this posterior probability.</p>
<p>More specifically, for linear and quadratic discriminant analysis,
<span class="math notranslate nohighlight">\(P(x|y)\)</span> is modeled as a multivariate Gaussian distribution with
density:</p>
<div class="math notranslate nohighlight">
\[P(x | y=k) = \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}}\exp\left(-\frac{1}{2} (x-\mu_k)^t \Sigma_k^{-1} (x-\mu_k)\right)\]</div>
<p>where <span class="math notranslate nohighlight">\(d\)</span> is the number of features.</p>
<section id="qda">
<h3><span class="section-number">1.2.2.1. </span>QDA<a class="headerlink" href="#qda" title="Link to this heading">#</a></h3>
<p>According to the model above, the log of the posterior is:</p>
<div class="math notranslate nohighlight">
\[\begin{split}\log P(y=k | x) &= \log P(x | y=k) + \log P(y = k) + Cst \\
&= -\frac{1}{2} \log |\Sigma_k| -\frac{1}{2} (x-\mu_k)^t \Sigma_k^{-1} (x-\mu_k) + \log P(y = k) + Cst,\end{split}\]</div>
<p>where the constant term <span class="math notranslate nohighlight">\(Cst\)</span> corresponds to the denominator
<span class="math notranslate nohighlight">\(P(x)\)</span>, in addition to other constant terms from the Gaussian. The
predicted class is the one that maximises this log-posterior.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p><strong>Relation with Gaussian Naive Bayes</strong></p>
<p>If in the QDA model one assumes that the covariance matrices are diagonal,
then the inputs are assumed to be conditionally independent in each class,
and the resulting classifier is equivalent to the Gaussian Naive Bayes
classifier <a class="reference internal" href="generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB" title="sklearn.naive_bayes.GaussianNB"><code class="xref py py-class docutils literal notranslate"><span class="pre">naive_bayes.GaussianNB</span></code></a>.</p>
</div>
</section>
<section id="lda">
<h3><span class="section-number">1.2.2.2. </span>LDA<a class="headerlink" href="#lda" title="Link to this heading">#</a></h3>
<p>LDA is a special case of QDA, where the Gaussians for each class are assumed
to share the same covariance matrix: <span class="math notranslate nohighlight">\(\Sigma_k = \Sigma\)</span> for all
<span class="math notranslate nohighlight">\(k\)</span>. This reduces the log posterior to:</p>
<div class="math notranslate nohighlight">
\[\log P(y=k | x) = -\frac{1}{2} (x-\mu_k)^t \Sigma^{-1} (x-\mu_k) + \log P(y = k) + Cst.\]</div>
<p>The term <span class="math notranslate nohighlight">\((x-\mu_k)^t \Sigma^{-1} (x-\mu_k)\)</span> corresponds to the
<a class="reference external" href="https://en.wikipedia.org/wiki/Mahalanobis_distance">Mahalanobis Distance</a>
between the sample <span class="math notranslate nohighlight">\(x\)</span> and the mean <span class="math notranslate nohighlight">\(\mu_k\)</span>. The Mahalanobis
distance tells how close <span class="math notranslate nohighlight">\(x\)</span> is from <span class="math notranslate nohighlight">\(\mu_k\)</span>, while also
accounting for the variance of each feature. We can thus interpret LDA as
assigning <span class="math notranslate nohighlight">\(x\)</span> to the class whose mean is the closest in terms of
Mahalanobis distance, while also accounting for the class prior
probabilities.</p>
<p>The log-posterior of LDA can also be written <a class="footnote-reference brackets" href="#id7" id="id1" role="doc-noteref"><span class="fn-bracket">[</span>3<span class="fn-bracket">]</span></a> as:</p>
<div class="math notranslate nohighlight">
\[\log P(y=k | x) = \omega_k^t x + \omega_{k0} + Cst.\]</div>
<p>where <span class="math notranslate nohighlight">\(\omega_k = \Sigma^{-1} \mu_k\)</span> and <span class="math notranslate nohighlight">\(\omega_{k0} =
-\frac{1}{2} \mu_k^t\Sigma^{-1}\mu_k + \log P (y = k)\)</span>. These quantities
correspond to the <code class="docutils literal notranslate"><span class="pre">coef_</span></code> and <code class="docutils literal notranslate"><span class="pre">intercept_</span></code> attributes, respectively.</p>
<p>From the above formula, it is clear that LDA has a linear decision surface.
In the case of QDA, there are no assumptions on the covariance matrices
<span class="math notranslate nohighlight">\(\Sigma_k\)</span> of the Gaussians, leading to quadratic decision surfaces.
See <a class="footnote-reference brackets" href="#id5" id="id2" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a> for more details.</p>
</section>
</section>
<section id="mathematical-formulation-of-lda-dimensionality-reduction">
<h2><span class="section-number">1.2.3. </span>Mathematical formulation of LDA dimensionality reduction<a class="headerlink" href="#mathematical-formulation-of-lda-dimensionality-reduction" title="Link to this heading">#</a></h2>
<p>First note that the K means <span class="math notranslate nohighlight">\(\mu_k\)</span> are vectors in
<span class="math notranslate nohighlight">\(\mathcal{R}^d\)</span>, and they lie in an affine subspace <span class="math notranslate nohighlight">\(H\)</span> of
dimension at most <span class="math notranslate nohighlight">\(K - 1\)</span> (2 points lie on a line, 3 points lie on a
plane, etc.).</p>
<p>As mentioned above, we can interpret LDA as assigning <span class="math notranslate nohighlight">\(x\)</span> to the class
whose mean <span class="math notranslate nohighlight">\(\mu_k\)</span> is the closest in terms of Mahalanobis distance,
while also accounting for the class prior probabilities. Alternatively, LDA
is equivalent to first <em>sphering</em> the data so that the covariance matrix is
the identity, and then assigning <span class="math notranslate nohighlight">\(x\)</span> to the closest mean in terms of
Euclidean distance (still accounting for the class priors).</p>
<p>Computing Euclidean distances in this d-dimensional space is equivalent to
first projecting the data points into <span class="math notranslate nohighlight">\(H\)</span>, and computing the distances
there (since the other dimensions will contribute equally to each class in
terms of distance). In other words, if <span class="math notranslate nohighlight">\(x\)</span> is closest to <span class="math notranslate nohighlight">\(\mu_k\)</span>
in the original space, it will also be the case in <span class="math notranslate nohighlight">\(H\)</span>.
This shows that, implicit in the LDA
classifier, there is a dimensionality reduction by linear projection onto a
<span class="math notranslate nohighlight">\(K-1\)</span> dimensional space.</p>
<p>We can reduce the dimension even more, to a chosen <span class="math notranslate nohighlight">\(L\)</span>, by projecting
onto the linear subspace <span class="math notranslate nohighlight">\(H_L\)</span> which maximizes the variance of the
<span class="math notranslate nohighlight">\(\mu^*_k\)</span> after projection (in effect, we are doing a form of PCA for the
transformed class means <span class="math notranslate nohighlight">\(\mu^*_k\)</span>). This <span class="math notranslate nohighlight">\(L\)</span> corresponds to the
<code class="docutils literal notranslate"><span class="pre">n_components</span></code> parameter used in the
<a class="reference internal" href="generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis.transform" title="sklearn.discriminant_analysis.LinearDiscriminantAnalysis.transform"><code class="xref py py-func docutils literal notranslate"><span class="pre">transform</span></code></a> method. See
<a class="footnote-reference brackets" href="#id5" id="id3" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a> for more details.</p>
</section>
<section id="shrinkage-and-covariance-estimator">
<h2><span class="section-number">1.2.4. </span>Shrinkage and Covariance Estimator<a class="headerlink" href="#shrinkage-and-covariance-estimator" title="Link to this heading">#</a></h2>
<p>Shrinkage is a form of regularization used to improve the estimation of
covariance matrices in situations where the number of training samples is
small compared to the number of features.
In this scenario, the empirical sample covariance is a poor
estimator, and shrinkage helps improving the generalization performance of
the classifier.
Shrinkage LDA can be used by setting the <code class="docutils literal notranslate"><span class="pre">shrinkage</span></code> parameter of
the <a class="reference internal" href="generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis" title="sklearn.discriminant_analysis.LinearDiscriminantAnalysis"><code class="xref py py-class docutils literal notranslate"><span class="pre">LinearDiscriminantAnalysis</span></code></a> class to ‘auto’.
This automatically determines the optimal shrinkage parameter in an analytic
way following the lemma introduced by Ledoit and Wolf <a class="footnote-reference brackets" href="#id6" id="id4" role="doc-noteref"><span class="fn-bracket">[</span>2<span class="fn-bracket">]</span></a>. Note that
currently shrinkage only works when setting the <code class="docutils literal notranslate"><span class="pre">solver</span></code> parameter to ‘lsqr’
or ‘eigen’.</p>
<p>The <code class="docutils literal notranslate"><span class="pre">shrinkage</span></code> parameter can also be manually set between 0 and 1. In
particular, a value of 0 corresponds to no shrinkage (which means the empirical
covariance matrix will be used) and a value of 1 corresponds to complete
shrinkage (which means that the diagonal matrix of variances will be used as
an estimate for the covariance matrix). Setting this parameter to a value
between these two extrema will estimate a shrunk version of the covariance
matrix.</p>
<p>The shrunk Ledoit and Wolf estimator of covariance may not always be the
best choice. For example if the distribution of the data
is normally distributed, the
Oracle Approximating Shrinkage estimator <a class="reference internal" href="generated/sklearn.covariance.OAS.html#sklearn.covariance.OAS" title="sklearn.covariance.OAS"><code class="xref py py-class docutils literal notranslate"><span class="pre">sklearn.covariance.OAS</span></code></a>
yields a smaller Mean Squared Error than the one given by Ledoit and Wolf’s
formula used with shrinkage=”auto”. In LDA, the data are assumed to be gaussian
conditionally to the class. If these assumptions hold, using LDA with
the OAS estimator of covariance will yield a better classification
accuracy than if Ledoit and Wolf or the empirical covariance estimator is used.</p>
<p>The covariance estimator can be chosen using with the <code class="docutils literal notranslate"><span class="pre">covariance_estimator</span></code>
parameter of the <a class="reference internal" href="generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis" title="sklearn.discriminant_analysis.LinearDiscriminantAnalysis"><code class="xref py py-class docutils literal notranslate"><span class="pre">discriminant_analysis.LinearDiscriminantAnalysis</span></code></a>
class. A covariance estimator should have a <a class="reference internal" href="../glossary.html#term-fit"><span class="xref std std-term">fit</span></a> method and a
<code class="docutils literal notranslate"><span class="pre">covariance_</span></code> attribute like all covariance estimators in the
<a class="reference internal" href="../api/sklearn.covariance.html#module-sklearn.covariance" title="sklearn.covariance"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.covariance</span></code></a> module.</p>
<p class="centered">
<strong><a class="reference external" href="../auto_examples/classification/plot_lda.html"><img alt="shrinkage" src="../_images/sphx_glr_plot_lda_001.png" style="width: 480.0px; height: 360.0px;" /></a></strong></p><p class="rubric">Examples</p>
<ul class="simple">
<li><p><a class="reference internal" href="../auto_examples/classification/plot_lda.html#sphx-glr-auto-examples-classification-plot-lda-py"><span class="std std-ref">Normal, Ledoit-Wolf and OAS Linear Discriminant Analysis for classification</span></a>: Comparison of LDA classifiers
with Empirical, Ledoit Wolf and OAS covariance estimator.</p></li>
</ul>
</section>
<section id="estimation-algorithms">
<h2><span class="section-number">1.2.5. </span>Estimation algorithms<a class="headerlink" href="#estimation-algorithms" title="Link to this heading">#</a></h2>
<p>Using LDA and QDA requires computing the log-posterior which depends on the
class priors <span class="math notranslate nohighlight">\(P(y=k)\)</span>, the class means <span class="math notranslate nohighlight">\(\mu_k\)</span>, and the
covariance matrices.</p>
<p>The ‘svd’ solver is the default solver used for
<a class="reference internal" href="generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis" title="sklearn.discriminant_analysis.LinearDiscriminantAnalysis"><code class="xref py py-class docutils literal notranslate"><span class="pre">LinearDiscriminantAnalysis</span></code></a>, and it is
the only available solver for
<a class="reference internal" href="generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html#sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis" title="sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis"><code class="xref py py-class docutils literal notranslate"><span class="pre">QuadraticDiscriminantAnalysis</span></code></a>.
It can perform both classification and transform (for LDA).
As it does not rely on the calculation of the covariance matrix, the ‘svd’
solver may be preferable in situations where the number of features is large.
The ‘svd’ solver cannot be used with shrinkage.
For QDA, the use of the SVD solver relies on the fact that the covariance
matrix <span class="math notranslate nohighlight">\(\Sigma_k\)</span> is, by definition, equal to <span class="math notranslate nohighlight">\(\frac{1}{n - 1}
X_k^tX_k = \frac{1}{n - 1} V S^2 V^t\)</span> where <span class="math notranslate nohighlight">\(V\)</span> comes from the SVD of the (centered)
matrix: <span class="math notranslate nohighlight">\(X_k = U S V^t\)</span>. It turns out that we can compute the
log-posterior above without having to explicitly compute <span class="math notranslate nohighlight">\(\Sigma\)</span>:
computing <span class="math notranslate nohighlight">\(S\)</span> and <span class="math notranslate nohighlight">\(V\)</span> via the SVD of <span class="math notranslate nohighlight">\(X\)</span> is enough. For
LDA, two SVDs are computed: the SVD of the centered input matrix <span class="math notranslate nohighlight">\(X\)</span>
and the SVD of the class-wise mean vectors.</p>
<p>The ‘lsqr’ solver is an efficient algorithm that only works for
classification. It needs to explicitly compute the covariance matrix
<span class="math notranslate nohighlight">\(\Sigma\)</span>, and supports shrinkage and custom covariance estimators.
This solver computes the coefficients
<span class="math notranslate nohighlight">\(\omega_k = \Sigma^{-1}\mu_k\)</span> by solving for <span class="math notranslate nohighlight">\(\Sigma \omega =
\mu_k\)</span>, thus avoiding the explicit computation of the inverse
<span class="math notranslate nohighlight">\(\Sigma^{-1}\)</span>.</p>
<p>The ‘eigen’ solver is based on the optimization of the between class scatter to
within class scatter ratio. It can be used for both classification and
transform, and it supports shrinkage. However, the ‘eigen’ solver needs to
compute the covariance matrix, so it might not be suitable for situations with
a high number of features.</p>
<p class="rubric">References</p>
<aside class="footnote-list brackets">
<aside class="footnote brackets" id="id5" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></span>
<span class="backrefs">(<a role="doc-backlink" href="#id2">1</a>,<a role="doc-backlink" href="#id3">2</a>)</span>
<p>“The Elements of Statistical Learning”, Hastie T., Tibshirani R.,
Friedman J., Section 4.3, p.106-119, 2008.</p>
</aside>
<aside class="footnote brackets" id="id6" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id4">2</a><span class="fn-bracket">]</span></span>
<p>Ledoit O, Wolf M. Honey, I Shrunk the Sample Covariance Matrix.
The Journal of Portfolio Management 30(4), 110-119, 2004.</p>
</aside>
<aside class="footnote brackets" id="id7" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id1">3</a><span class="fn-bracket">]</span></span>
<p>R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification
(Second Edition), section 2.6.2.</p>
</aside>
</aside>
</section>
</section>
</article>
<footer class="bd-footer-article">
<div class="footer-article-items footer-article__inner">
<div class="footer-article-item">
<div class="prev-next-area">
<a class="left-prev"
href="linear_model.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title"><span class="section-number">1.1. </span>Linear Models</p>
</div>
</a>
<a class="right-next"
href="kernel_ridge.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title"><span class="section-number">1.3. </span>Kernel ridge regression</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div></div>
</div>
</footer>
</div>
<div class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#dimensionality-reduction-using-linear-discriminant-analysis">1.2.1. Dimensionality reduction using Linear Discriminant Analysis</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#mathematical-formulation-of-the-lda-and-qda-classifiers">1.2.2. Mathematical formulation of the LDA and QDA classifiers</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#qda">1.2.2.1. QDA</a></li>