-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathcompose.html
1415 lines (1174 loc) · 111 KB
/
compose.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta property="og:title" content="6.1. Pipelines and composite estimators" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/modules/compose.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="To build a composite estimator, transformers are usually combined with other transformers or with predictors(such as classifiers or regressors). The most common tool used for composing estimators i..." />
<meta property="og:image" content="https://scikit-learn.org/stable/_static/scikit-learn-logo-small.png" />
<meta property="og:image:alt" content="scikit-learn" />
<meta name="description" content="To build a composite estimator, transformers are usually combined with other transformers or with predictors(such as classifiers or regressors). The most common tool used for composing estimators i..." />
<title>6.1. Pipelines and composite estimators — scikit-learn 1.5.2 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/styles/bootstrap.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/vendor/fontawesome/6.5.2/css/all.min.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-regular-400.woff2" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=a746c00c" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/plot_directive.css" />
<link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Vibur" />
<link rel="stylesheet" type="text/css" href="../_static/jupyterlite_sphinx.css?v=ca70e7f1" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery.css?v=d2d258e8" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-binder.css?v=f4aeca0c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-dataframe.css?v=2082cf3c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-rendered-html.css?v=1277b6f3" />
<link rel="stylesheet" type="text/css" href="../_static/sphinx-design.min.css?v=95c83b7e" />
<link rel="stylesheet" type="text/css" href="../_static/styles/colors.css?v=cc94ab7d" />
<link rel="stylesheet" type="text/css" href="../_static/styles/custom.css?v=e4cb1417" />
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b" />
<script src="../_static/vendor/fontawesome/6.5.2/js/all.min.js?digest=dfe6caa3a7d634c4db9b"></script>
<script src="../_static/documentation_options.js?v=73275c37"></script>
<script src="../_static/doctools.js?v=9a2dae69"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=97f0b27d"></script>
<script src="../_static/jupyterlite_sphinx.js?v=d6bdf5f8"></script>
<script src="../_static/design-tabs.js?v=f930bc37"></script>
<script data-domain="scikit-learn.org" defer="defer" src="https://views.scientific-python.org/js/script.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'modules/compose';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.15.4';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = 'https://scikit-learn.org/dev/_static/versions.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.5.2';
DOCUMENTATION_OPTIONS.show_version_warning_banner = true;
</script>
<script src="../_static/scripts/dropdown.js?v=e2048168"></script>
<script src="../_static/scripts/version-switcher.js?v=a6dd8357"></script>
<link rel="canonical" href="https://scikit-learn.org/stable/modules/compose.html" />
<link rel="icon" href="../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../about.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="6.2. Feature extraction" href="feature_extraction.html" />
<link rel="prev" title="6. Dataset transformations" href="../data_transforms.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<input type="checkbox"
class="sidebar-toggle"
id="pst-primary-sidebar-checkbox"/>
<label class="overlay overlay-primary" for="pst-primary-sidebar-checkbox"></label>
<input type="checkbox"
class="sidebar-toggle"
id="pst-secondary-sidebar-checkbox"/>
<label class="overlay overlay-secondary" for="pst-secondary-sidebar-checkbox"></label>
<div class="search-button__wrapper">
<div class="search-button__overlay"></div>
<div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
id="search-input"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
</div>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class=" navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-light" alt="scikit-learn homepage"/>
<script>document.write(`<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-dark" alt="scikit-learn homepage"/>`);</script>
</a></div>
</div>
<div class=" navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item dropdown">
<button class="btn dropdown-toggle nav-item" type="button" data-bs-toggle="dropdown" aria-expanded="false" aria-controls="pst-nav-more-links">
More
</button>
<ul id="pst-nav-more-links" class="dropdown-menu">
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../support.html">
Support
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<script>
document.write(`
<button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
`);
</script>
</div>
<div class="navbar-item">
<script>
document.write(`
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i>
</button>
`);
</script></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<script>
document.write(`
<div class="version-switcher__container dropdown">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
`);
</script></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<script>
document.write(`
<button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
`);
</script>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<div class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../support.html">
Support
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<script>
document.write(`
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i>
</button>
`);
</script></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<script>
document.write(`
<div class="version-switcher__container dropdown">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
`);
</script></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../supervised_learning.html">1. Supervised learning</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="linear_model.html">1.1. Linear Models</a></li>
<li class="toctree-l2"><a class="reference internal" href="lda_qda.html">1.2. Linear and Quadratic Discriminant Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="kernel_ridge.html">1.3. Kernel ridge regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="svm.html">1.4. Support Vector Machines</a></li>
<li class="toctree-l2"><a class="reference internal" href="sgd.html">1.5. Stochastic Gradient Descent</a></li>
<li class="toctree-l2"><a class="reference internal" href="neighbors.html">1.6. Nearest Neighbors</a></li>
<li class="toctree-l2"><a class="reference internal" href="gaussian_process.html">1.7. Gaussian Processes</a></li>
<li class="toctree-l2"><a class="reference internal" href="cross_decomposition.html">1.8. Cross decomposition</a></li>
<li class="toctree-l2"><a class="reference internal" href="naive_bayes.html">1.9. Naive Bayes</a></li>
<li class="toctree-l2"><a class="reference internal" href="tree.html">1.10. Decision Trees</a></li>
<li class="toctree-l2"><a class="reference internal" href="ensemble.html">1.11. Ensembles: Gradient boosting, random forests, bagging, voting, stacking</a></li>
<li class="toctree-l2"><a class="reference internal" href="multiclass.html">1.12. Multiclass and multioutput algorithms</a></li>
<li class="toctree-l2"><a class="reference internal" href="feature_selection.html">1.13. Feature selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="semi_supervised.html">1.14. Semi-supervised learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="isotonic.html">1.15. Isotonic regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="calibration.html">1.16. Probability calibration</a></li>
<li class="toctree-l2"><a class="reference internal" href="neural_networks_supervised.html">1.17. Neural network models (supervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../unsupervised_learning.html">2. Unsupervised learning</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="mixture.html">2.1. Gaussian mixture models</a></li>
<li class="toctree-l2"><a class="reference internal" href="manifold.html">2.2. Manifold learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="clustering.html">2.3. Clustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="biclustering.html">2.4. Biclustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="decomposition.html">2.5. Decomposing signals in components (matrix factorization problems)</a></li>
<li class="toctree-l2"><a class="reference internal" href="covariance.html">2.6. Covariance estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="outlier_detection.html">2.7. Novelty and Outlier Detection</a></li>
<li class="toctree-l2"><a class="reference internal" href="density.html">2.8. Density Estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="neural_networks_unsupervised.html">2.9. Neural network models (unsupervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../model_selection.html">3. Model selection and evaluation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="cross_validation.html">3.1. Cross-validation: evaluating estimator performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="grid_search.html">3.2. Tuning the hyper-parameters of an estimator</a></li>
<li class="toctree-l2"><a class="reference internal" href="classification_threshold.html">3.3. Tuning the decision threshold for class prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="model_evaluation.html">3.4. Metrics and scoring: quantifying the quality of predictions</a></li>
<li class="toctree-l2"><a class="reference internal" href="learning_curve.html">3.5. Validation curves: plotting scores to evaluate models</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../inspection.html">4. Inspection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="partial_dependence.html">4.1. Partial Dependence and Individual Conditional Expectation plots</a></li>
<li class="toctree-l2"><a class="reference internal" href="permutation_importance.html">4.2. Permutation feature importance</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../visualizations.html">5. Visualizations</a></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="../data_transforms.html">6. Dataset transformations</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2 current active"><a class="current reference internal" href="#">6.1. Pipelines and composite estimators</a></li>
<li class="toctree-l2"><a class="reference internal" href="feature_extraction.html">6.2. Feature extraction</a></li>
<li class="toctree-l2"><a class="reference internal" href="preprocessing.html">6.3. Preprocessing data</a></li>
<li class="toctree-l2"><a class="reference internal" href="impute.html">6.4. Imputation of missing values</a></li>
<li class="toctree-l2"><a class="reference internal" href="unsupervised_reduction.html">6.5. Unsupervised dimensionality reduction</a></li>
<li class="toctree-l2"><a class="reference internal" href="random_projection.html">6.6. Random Projection</a></li>
<li class="toctree-l2"><a class="reference internal" href="kernel_approximation.html">6.7. Kernel Approximation</a></li>
<li class="toctree-l2"><a class="reference internal" href="metrics.html">6.8. Pairwise metrics, Affinities and Kernels</a></li>
<li class="toctree-l2"><a class="reference internal" href="preprocessing_targets.html">6.9. Transforming the prediction target (<code class="docutils literal notranslate"><span class="pre">y</span></code>)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../datasets.html">7. Dataset loading utilities</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../datasets/toy_dataset.html">7.1. Toy datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/real_world.html">7.2. Real world datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/sample_generators.html">7.3. Generated datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/loading_other_datasets.html">7.4. Loading other datasets</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../computing.html">8. Computing with scikit-learn</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../computing/scaling_strategies.html">8.1. Strategies to scale computationally: bigger data</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/computational_performance.html">8.2. Computational Performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/parallelism.html">8.3. Parallelism, resource management, and configuration</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../model_persistence.html">9. Model persistence</a></li>
<li class="toctree-l1"><a class="reference internal" href="../common_pitfalls.html">10. Common pitfalls and recommended practices</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../dispatching.html">11. Dispatching</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="array_api.html">11.1. Array API support (experimental)</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../machine_learning_map.html">12. Choosing the right estimator</a></li>
<li class="toctree-l1"><a class="reference internal" href="../presentations.html">13. External Resources, Videos and Talks</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
<div id="rtd-footer-container"></div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../user_guide.html" class="nav-link">User Guide</a></li>
<li class="breadcrumb-item"><a href="../data_transforms.html" class="nav-link"><span class="section-number">6. </span>Dataset transformations</a></li>
<li class="breadcrumb-item active" aria-current="page"><span...</li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="pipelines-and-composite-estimators">
<span id="combining-estimators"></span><h1><span class="section-number">6.1. </span>Pipelines and composite estimators<a class="headerlink" href="#pipelines-and-composite-estimators" title="Link to this heading">#</a></h1>
<p>To build a composite estimator, transformers are usually combined with other
transformers or with <a class="reference internal" href="../glossary.html#term-predictors"><span class="xref std std-term">predictors</span></a> (such as classifiers or regressors).
The most common tool used for composing estimators is a <a class="reference internal" href="#pipeline"><span class="std std-ref">Pipeline</span></a>. Pipelines require all steps except the last to be a
<a class="reference internal" href="../glossary.html#term-transformer"><span class="xref std std-term">transformer</span></a>. The last step can be anything, a transformer, a
<a class="reference internal" href="../glossary.html#term-predictor"><span class="xref std std-term">predictor</span></a>, or a clustering estimator which might have or not have a
<code class="docutils literal notranslate"><span class="pre">.predict(...)</span></code> method. A pipeline exposes all methods provided by the last
estimator: if the last step provides a <code class="docutils literal notranslate"><span class="pre">transform</span></code> method, then the pipeline
would have a <code class="docutils literal notranslate"><span class="pre">transform</span></code> method and behave like a transformer. If the last step
provides a <code class="docutils literal notranslate"><span class="pre">predict</span></code> method, then the pipeline would expose that method, and
given a data <a class="reference internal" href="../glossary.html#term-X"><span class="xref std std-term">X</span></a>, use all steps except the last to transform the data,
and then give that transformed data to the <code class="docutils literal notranslate"><span class="pre">predict</span></code> method of the last step of
the pipeline. The class <code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code> is often used in combination with
<a class="reference internal" href="#column-transformer"><span class="std std-ref">ColumnTransformer</span></a> or
<a class="reference internal" href="#feature-union"><span class="std std-ref">FeatureUnion</span></a> which concatenate the output of transformers
into a composite feature space.
<a class="reference internal" href="#transformed-target-regressor"><span class="std std-ref">TransformedTargetRegressor</span></a>
deals with transforming the <a class="reference internal" href="../glossary.html#term-target"><span class="xref std std-term">target</span></a> (i.e. log-transform <a class="reference internal" href="../glossary.html#term-y"><span class="xref std std-term">y</span></a>).</p>
<section id="pipeline-chaining-estimators">
<span id="pipeline"></span><h2><span class="section-number">6.1.1. </span>Pipeline: chaining estimators<a class="headerlink" href="#pipeline-chaining-estimators" title="Link to this heading">#</a></h2>
<p><a class="reference internal" href="generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a> can be used to chain multiple estimators
into one. This is useful as there is often a fixed sequence
of steps in processing the data, for example feature selection, normalization
and classification. <a class="reference internal" href="generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a> serves multiple purposes here:</p>
<dl class="simple">
<dt>Convenience and encapsulation</dt><dd><p>You only have to call <a class="reference internal" href="../glossary.html#term-fit"><span class="xref std std-term">fit</span></a> and <a class="reference internal" href="../glossary.html#term-predict"><span class="xref std std-term">predict</span></a> once on your
data to fit a whole sequence of estimators.</p>
</dd>
<dt>Joint parameter selection</dt><dd><p>You can <a class="reference internal" href="grid_search.html#grid-search"><span class="std std-ref">grid search</span></a>
over parameters of all estimators in the pipeline at once.</p>
</dd>
<dt>Safety</dt><dd><p>Pipelines help avoid leaking statistics from your test data into the
trained model in cross-validation, by ensuring that the same samples are
used to train the transformers and predictors.</p>
</dd>
</dl>
<p>All estimators in a pipeline, except the last one, must be transformers
(i.e. must have a <a class="reference internal" href="../glossary.html#term-transform"><span class="xref std std-term">transform</span></a> method).
The last estimator may be any type (transformer, classifier, etc.).</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>Calling <code class="docutils literal notranslate"><span class="pre">fit</span></code> on the pipeline is the same as calling <code class="docutils literal notranslate"><span class="pre">fit</span></code> on
each estimator in turn, <code class="docutils literal notranslate"><span class="pre">transform</span></code> the input and pass it on to the next step.
The pipeline has all the methods that the last estimator in the pipeline has,
i.e. if the last estimator is a classifier, the <a class="reference internal" href="generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a> can be used
as a classifier. If the last estimator is a transformer, again, so is the
pipeline.</p>
</div>
<section id="usage">
<h3><span class="section-number">6.1.1.1. </span>Usage<a class="headerlink" href="#usage" title="Link to this heading">#</a></h3>
<section id="build-a-pipeline">
<h4><span class="section-number">6.1.1.1.1. </span>Build a pipeline<a class="headerlink" href="#build-a-pipeline" title="Link to this heading">#</a></h4>
<p>The <a class="reference internal" href="generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a> is built using a list of <code class="docutils literal notranslate"><span class="pre">(key,</span> <span class="pre">value)</span></code> pairs, where
the <code class="docutils literal notranslate"><span class="pre">key</span></code> is a string containing the name you want to give this step and <code class="docutils literal notranslate"><span class="pre">value</span></code>
is an estimator object:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.pipeline</span> <span class="kn">import</span> <span class="n">Pipeline</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.svm</span> <span class="kn">import</span> <span class="n">SVC</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.decomposition</span> <span class="kn">import</span> <span class="n">PCA</span>
<span class="gp">>>> </span><span class="n">estimators</span> <span class="o">=</span> <span class="p">[(</span><span class="s1">'reduce_dim'</span><span class="p">,</span> <span class="n">PCA</span><span class="p">()),</span> <span class="p">(</span><span class="s1">'clf'</span><span class="p">,</span> <span class="n">SVC</span><span class="p">())]</span>
<span class="gp">>>> </span><span class="n">pipe</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">estimators</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">pipe</span>
<span class="go">Pipeline(steps=[('reduce_dim', PCA()), ('clf', SVC())])</span>
</pre></div>
</div>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="shorthand-version-using-make_pipeline">
<summary class="sd-summary-title sd-card-header">
<span class="sd-summary-text">Shorthand version using <a class="reference internal" href="generated/sklearn.pipeline.make_pipeline.html#sklearn.pipeline.make_pipeline" title="sklearn.pipeline.make_pipeline"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_pipeline</span></code></a><a class="headerlink" href="#shorthand-version-using-make_pipeline" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<p class="sd-card-text">The utility function <a class="reference internal" href="generated/sklearn.pipeline.make_pipeline.html#sklearn.pipeline.make_pipeline" title="sklearn.pipeline.make_pipeline"><code class="xref py py-func docutils literal notranslate"><span class="pre">make_pipeline</span></code></a> is a shorthand
for constructing pipelines;
it takes a variable number of estimators and returns a pipeline,
filling in the names automatically:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.pipeline</span> <span class="kn">import</span> <span class="n">make_pipeline</span>
<span class="gp">>>> </span><span class="n">make_pipeline</span><span class="p">(</span><span class="n">PCA</span><span class="p">(),</span> <span class="n">SVC</span><span class="p">())</span>
<span class="go">Pipeline(steps=[('pca', PCA()), ('svc', SVC())])</span>
</pre></div>
</div>
</div>
</details></section>
<section id="access-pipeline-steps">
<h4><span class="section-number">6.1.1.1.2. </span>Access pipeline steps<a class="headerlink" href="#access-pipeline-steps" title="Link to this heading">#</a></h4>
<p>The estimators of a pipeline are stored as a list in the <code class="docutils literal notranslate"><span class="pre">steps</span></code> attribute.
A sub-pipeline can be extracted using the slicing notation commonly used
for Python Sequences such as lists or strings (although only a step of 1 is
permitted). This is convenient for performing only some of the transformations
(or their inverse):</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">pipe</span><span class="p">[:</span><span class="mi">1</span><span class="p">]</span>
<span class="go">Pipeline(steps=[('reduce_dim', PCA())])</span>
<span class="gp">>>> </span><span class="n">pipe</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">:]</span>
<span class="go">Pipeline(steps=[('clf', SVC())])</span>
</pre></div>
</div>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="accessing-a-step-by-name-or-position">
<summary class="sd-summary-title sd-card-header">
<span class="sd-summary-text">Accessing a step by name or position<a class="headerlink" href="#accessing-a-step-by-name-or-position" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<p class="sd-card-text">A specific step can also be accessed by index or name by indexing (with <code class="docutils literal notranslate"><span class="pre">[idx]</span></code>) the
pipeline:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">pipe</span><span class="o">.</span><span class="n">steps</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="go">('reduce_dim', PCA())</span>
<span class="gp">>>> </span><span class="n">pipe</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="go">PCA()</span>
<span class="gp">>>> </span><span class="n">pipe</span><span class="p">[</span><span class="s1">'reduce_dim'</span><span class="p">]</span>
<span class="go">PCA()</span>
</pre></div>
</div>
<p class="sd-card-text"><code class="docutils literal notranslate"><span class="pre">Pipeline</span></code>’s <code class="docutils literal notranslate"><span class="pre">named_steps</span></code> attribute allows accessing steps by name with tab
completion in interactive environments:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">pipe</span><span class="o">.</span><span class="n">named_steps</span><span class="o">.</span><span class="n">reduce_dim</span> <span class="ow">is</span> <span class="n">pipe</span><span class="p">[</span><span class="s1">'reduce_dim'</span><span class="p">]</span>
<span class="go">True</span>
</pre></div>
</div>
</div>
</details></section>
<section id="tracking-feature-names-in-a-pipeline">
<h4><span class="section-number">6.1.1.1.3. </span>Tracking feature names in a pipeline<a class="headerlink" href="#tracking-feature-names-in-a-pipeline" title="Link to this heading">#</a></h4>
<p>To enable model inspection, <a class="reference internal" href="generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a> has a
<code class="docutils literal notranslate"><span class="pre">get_feature_names_out()</span></code> method, just like all transformers. You can use
pipeline slicing to get the feature names going into each step:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <span class="n">load_iris</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.feature_selection</span> <span class="kn">import</span> <span class="n">SelectKBest</span>
<span class="gp">>>> </span><span class="n">iris</span> <span class="o">=</span> <span class="n">load_iris</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">pipe</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">steps</span><span class="o">=</span><span class="p">[</span>
<span class="gp">... </span> <span class="p">(</span><span class="s1">'select'</span><span class="p">,</span> <span class="n">SelectKBest</span><span class="p">(</span><span class="n">k</span><span class="o">=</span><span class="mi">2</span><span class="p">)),</span>
<span class="gp">... </span> <span class="p">(</span><span class="s1">'clf'</span><span class="p">,</span> <span class="n">LogisticRegression</span><span class="p">())])</span>
<span class="gp">>>> </span><span class="n">pipe</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">iris</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="n">iris</span><span class="o">.</span><span class="n">target</span><span class="p">)</span>
<span class="go">Pipeline(steps=[('select', SelectKBest(...)), ('clf', LogisticRegression(...))])</span>
<span class="gp">>>> </span><span class="n">pipe</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">get_feature_names_out</span><span class="p">()</span>
<span class="go">array(['x2', 'x3'], ...)</span>
</pre></div>
</div>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="customize-feature-names">
<summary class="sd-summary-title sd-card-header">
<span class="sd-summary-text">Customize feature names<a class="headerlink" href="#customize-feature-names" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<p class="sd-card-text">You can also provide custom feature names for the input data using
<code class="docutils literal notranslate"><span class="pre">get_feature_names_out</span></code>:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">pipe</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">get_feature_names_out</span><span class="p">(</span><span class="n">iris</span><span class="o">.</span><span class="n">feature_names</span><span class="p">)</span>
<span class="go">array(['petal length (cm)', 'petal width (cm)'], ...)</span>
</pre></div>
</div>
</div>
</details></section>
<section id="access-to-nested-parameters">
<span id="pipeline-nested-parameters"></span><h4><span class="section-number">6.1.1.1.4. </span>Access to nested parameters<a class="headerlink" href="#access-to-nested-parameters" title="Link to this heading">#</a></h4>
<p>It is common to adjust the parameters of an estimator within a pipeline. This parameter
is therefore nested because it belongs to a particular sub-step. Parameters of the
estimators in the pipeline are accessible using the <code class="docutils literal notranslate"><span class="pre"><estimator>__<parameter></span></code>
syntax:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">pipe</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">steps</span><span class="o">=</span><span class="p">[(</span><span class="s2">"reduce_dim"</span><span class="p">,</span> <span class="n">PCA</span><span class="p">()),</span> <span class="p">(</span><span class="s2">"clf"</span><span class="p">,</span> <span class="n">SVC</span><span class="p">())])</span>
<span class="gp">>>> </span><span class="n">pipe</span><span class="o">.</span><span class="n">set_params</span><span class="p">(</span><span class="n">clf__C</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="go">Pipeline(steps=[('reduce_dim', PCA()), ('clf', SVC(C=10))])</span>
</pre></div>
</div>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="when-does-it-matter?">
<summary class="sd-summary-title sd-card-header">
<span class="sd-summary-text">When does it matter?<a class="headerlink" href="#when-does-it-matter?" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<p class="sd-card-text">This is particularly important for doing grid searches:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="kn">import</span> <span class="n">GridSearchCV</span>
<span class="gp">>>> </span><span class="n">param_grid</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">reduce_dim__n_components</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">10</span><span class="p">],</span>
<span class="gp">... </span> <span class="n">clf__C</span><span class="o">=</span><span class="p">[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span>
<span class="gp">>>> </span><span class="n">grid_search</span> <span class="o">=</span> <span class="n">GridSearchCV</span><span class="p">(</span><span class="n">pipe</span><span class="p">,</span> <span class="n">param_grid</span><span class="o">=</span><span class="n">param_grid</span><span class="p">)</span>
</pre></div>
</div>
<p class="sd-card-text">Individual steps may also be replaced as parameters, and non-final steps may be
ignored by setting them to <code class="docutils literal notranslate"><span class="pre">'passthrough'</span></code>:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">param_grid</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">reduce_dim</span><span class="o">=</span><span class="p">[</span><span class="s1">'passthrough'</span><span class="p">,</span> <span class="n">PCA</span><span class="p">(</span><span class="mi">5</span><span class="p">),</span> <span class="n">PCA</span><span class="p">(</span><span class="mi">10</span><span class="p">)],</span>
<span class="gp">... </span> <span class="n">clf</span><span class="o">=</span><span class="p">[</span><span class="n">SVC</span><span class="p">(),</span> <span class="n">LogisticRegression</span><span class="p">()],</span>
<span class="gp">... </span> <span class="n">clf__C</span><span class="o">=</span><span class="p">[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">100</span><span class="p">])</span>
<span class="gp">>>> </span><span class="n">grid_search</span> <span class="o">=</span> <span class="n">GridSearchCV</span><span class="p">(</span><span class="n">pipe</span><span class="p">,</span> <span class="n">param_grid</span><span class="o">=</span><span class="n">param_grid</span><span class="p">)</span>
</pre></div>
</div>
<div class="admonition seealso">
<p class="admonition-title">See also</p>
<ul class="simple">
<li><p class="sd-card-text"><a class="reference internal" href="grid_search.html#composite-grid-search"><span class="std std-ref">Composite estimators and parameter spaces</span></a></p></li>
</ul>
</div>
</div>
</details><p class="rubric">Examples</p>
<ul class="simple">
<li><p><a class="reference internal" href="../auto_examples/feature_selection/plot_feature_selection_pipeline.html#sphx-glr-auto-examples-feature-selection-plot-feature-selection-pipeline-py"><span class="std std-ref">Pipeline ANOVA SVM</span></a></p></li>
<li><p><a class="reference internal" href="../auto_examples/model_selection/plot_grid_search_text_feature_extraction.html#sphx-glr-auto-examples-model-selection-plot-grid-search-text-feature-extraction-py"><span class="std std-ref">Sample pipeline for text feature extraction and evaluation</span></a></p></li>
<li><p><a class="reference internal" href="../auto_examples/compose/plot_digits_pipe.html#sphx-glr-auto-examples-compose-plot-digits-pipe-py"><span class="std std-ref">Pipelining: chaining a PCA and a logistic regression</span></a></p></li>
<li><p><a class="reference internal" href="../auto_examples/miscellaneous/plot_kernel_approximation.html#sphx-glr-auto-examples-miscellaneous-plot-kernel-approximation-py"><span class="std std-ref">Explicit feature map approximation for RBF kernels</span></a></p></li>
<li><p><a class="reference internal" href="../auto_examples/svm/plot_svm_anova.html#sphx-glr-auto-examples-svm-plot-svm-anova-py"><span class="std std-ref">SVM-Anova: SVM with univariate feature selection</span></a></p></li>
<li><p><a class="reference internal" href="../auto_examples/compose/plot_compare_reduction.html#sphx-glr-auto-examples-compose-plot-compare-reduction-py"><span class="std std-ref">Selecting dimensionality reduction with Pipeline and GridSearchCV</span></a></p></li>
<li><p><a class="reference internal" href="../auto_examples/miscellaneous/plot_pipeline_display.html#sphx-glr-auto-examples-miscellaneous-plot-pipeline-display-py"><span class="std std-ref">Displaying Pipelines</span></a></p></li>
</ul>
</section>
</section>
<section id="caching-transformers-avoid-repeated-computation">
<span id="pipeline-cache"></span><h3><span class="section-number">6.1.1.2. </span>Caching transformers: avoid repeated computation<a class="headerlink" href="#caching-transformers-avoid-repeated-computation" title="Link to this heading">#</a></h3>
<p>Fitting transformers may be computationally expensive. With its
<code class="docutils literal notranslate"><span class="pre">memory</span></code> parameter set, <a class="reference internal" href="generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a> will cache each transformer
after calling <code class="docutils literal notranslate"><span class="pre">fit</span></code>.
This feature is used to avoid computing the fit transformers within a pipeline
if the parameters and input data are identical. A typical example is the case of
a grid search in which the transformers can be fitted only once and reused for
each configuration. The last step will never be cached, even if it is a transformer.</p>
<p>The parameter <code class="docutils literal notranslate"><span class="pre">memory</span></code> is needed in order to cache the transformers.
<code class="docutils literal notranslate"><span class="pre">memory</span></code> can be either a string containing the directory where to cache the
transformers or a <a class="reference external" href="https://joblib.readthedocs.io/en/latest/memory.html">joblib.Memory</a>
object:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">tempfile</span> <span class="kn">import</span> <span class="n">mkdtemp</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">shutil</span> <span class="kn">import</span> <span class="n">rmtree</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.decomposition</span> <span class="kn">import</span> <span class="n">PCA</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.svm</span> <span class="kn">import</span> <span class="n">SVC</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.pipeline</span> <span class="kn">import</span> <span class="n">Pipeline</span>
<span class="gp">>>> </span><span class="n">estimators</span> <span class="o">=</span> <span class="p">[(</span><span class="s1">'reduce_dim'</span><span class="p">,</span> <span class="n">PCA</span><span class="p">()),</span> <span class="p">(</span><span class="s1">'clf'</span><span class="p">,</span> <span class="n">SVC</span><span class="p">())]</span>
<span class="gp">>>> </span><span class="n">cachedir</span> <span class="o">=</span> <span class="n">mkdtemp</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">pipe</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">(</span><span class="n">estimators</span><span class="p">,</span> <span class="n">memory</span><span class="o">=</span><span class="n">cachedir</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">pipe</span>
<span class="go">Pipeline(memory=...,</span>
<span class="go"> steps=[('reduce_dim', PCA()), ('clf', SVC())])</span>
<span class="gp">>>> </span><span class="c1"># Clear the cache directory when you don't need it anymore</span>
<span class="gp">>>> </span><span class="n">rmtree</span><span class="p">(</span><span class="n">cachedir</span><span class="p">)</span>
</pre></div>
</div>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="side-effect-of-caching-transformers">
<summary class="sd-summary-title sd-card-header sd-bg-warning sd-bg-text-warning">
<span class="sd-summary-text">Side effect of caching transformers<a class="headerlink" href="#side-effect-of-caching-transformers" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<p class="sd-card-text">Using a <a class="reference internal" href="generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a> without cache enabled, it is possible to
inspect the original instance such as:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <span class="n">load_digits</span>
<span class="gp">>>> </span><span class="n">X_digits</span><span class="p">,</span> <span class="n">y_digits</span> <span class="o">=</span> <span class="n">load_digits</span><span class="p">(</span><span class="n">return_X_y</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">pca1</span> <span class="o">=</span> <span class="n">PCA</span><span class="p">(</span><span class="n">n_components</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">svm1</span> <span class="o">=</span> <span class="n">SVC</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">pipe</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">([(</span><span class="s1">'reduce_dim'</span><span class="p">,</span> <span class="n">pca1</span><span class="p">),</span> <span class="p">(</span><span class="s1">'clf'</span><span class="p">,</span> <span class="n">svm1</span><span class="p">)])</span>
<span class="gp">>>> </span><span class="n">pipe</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_digits</span><span class="p">,</span> <span class="n">y_digits</span><span class="p">)</span>
<span class="go">Pipeline(steps=[('reduce_dim', PCA(n_components=10)), ('clf', SVC())])</span>
<span class="gp">>>> </span><span class="c1"># The pca instance can be inspected directly</span>
<span class="gp">>>> </span><span class="n">pca1</span><span class="o">.</span><span class="n">components_</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(10, 64)</span>
</pre></div>
</div>
<p class="sd-card-text">Enabling caching triggers a clone of the transformers before fitting.
Therefore, the transformer instance given to the pipeline cannot be
inspected directly.
In following example, accessing the <a class="reference internal" href="generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA" title="sklearn.decomposition.PCA"><code class="xref py py-class docutils literal notranslate"><span class="pre">PCA</span></code></a>
instance <code class="docutils literal notranslate"><span class="pre">pca2</span></code> will raise an <code class="docutils literal notranslate"><span class="pre">AttributeError</span></code> since <code class="docutils literal notranslate"><span class="pre">pca2</span></code> will be an
unfitted transformer.
Instead, use the attribute <code class="docutils literal notranslate"><span class="pre">named_steps</span></code> to inspect estimators within
the pipeline:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">cachedir</span> <span class="o">=</span> <span class="n">mkdtemp</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">pca2</span> <span class="o">=</span> <span class="n">PCA</span><span class="p">(</span><span class="n">n_components</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">svm2</span> <span class="o">=</span> <span class="n">SVC</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">cached_pipe</span> <span class="o">=</span> <span class="n">Pipeline</span><span class="p">([(</span><span class="s1">'reduce_dim'</span><span class="p">,</span> <span class="n">pca2</span><span class="p">),</span> <span class="p">(</span><span class="s1">'clf'</span><span class="p">,</span> <span class="n">svm2</span><span class="p">)],</span>
<span class="gp">... </span> <span class="n">memory</span><span class="o">=</span><span class="n">cachedir</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">cached_pipe</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_digits</span><span class="p">,</span> <span class="n">y_digits</span><span class="p">)</span>
<span class="go">Pipeline(memory=...,</span>
<span class="go"> steps=[('reduce_dim', PCA(n_components=10)), ('clf', SVC())])</span>
<span class="gp">>>> </span><span class="n">cached_pipe</span><span class="o">.</span><span class="n">named_steps</span><span class="p">[</span><span class="s1">'reduce_dim'</span><span class="p">]</span><span class="o">.</span><span class="n">components_</span><span class="o">.</span><span class="n">shape</span>
<span class="go">(10, 64)</span>
<span class="gp">>>> </span><span class="c1"># Remove the cache directory</span>
<span class="gp">>>> </span><span class="n">rmtree</span><span class="p">(</span><span class="n">cachedir</span><span class="p">)</span>
</pre></div>
</div>
</div>
</details><p class="rubric">Examples</p>
<ul class="simple">
<li><p><a class="reference internal" href="../auto_examples/compose/plot_compare_reduction.html#sphx-glr-auto-examples-compose-plot-compare-reduction-py"><span class="std std-ref">Selecting dimensionality reduction with Pipeline and GridSearchCV</span></a></p></li>
</ul>
</section>
</section>
<section id="transforming-target-in-regression">
<span id="transformed-target-regressor"></span><h2><span class="section-number">6.1.2. </span>Transforming target in regression<a class="headerlink" href="#transforming-target-in-regression" title="Link to this heading">#</a></h2>
<p><a class="reference internal" href="generated/sklearn.compose.TransformedTargetRegressor.html#sklearn.compose.TransformedTargetRegressor" title="sklearn.compose.TransformedTargetRegressor"><code class="xref py py-class docutils literal notranslate"><span class="pre">TransformedTargetRegressor</span></code></a> transforms the
targets <code class="docutils literal notranslate"><span class="pre">y</span></code> before fitting a regression model. The predictions are mapped
back to the original space via an inverse transform. It takes as an argument
the regressor that will be used for prediction, and the transformer that will
be applied to the target variable:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <span class="n">fetch_california_housing</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.compose</span> <span class="kn">import</span> <span class="n">TransformedTargetRegressor</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.preprocessing</span> <span class="kn">import</span> <span class="n">QuantileTransformer</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <span class="n">LinearRegression</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="kn">import</span> <span class="n">train_test_split</span>
<span class="gp">>>> </span><span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">fetch_california_housing</span><span class="p">(</span><span class="n">return_X_y</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">X</span><span class="p">[:</span><span class="mi">2000</span><span class="p">,</span> <span class="p">:],</span> <span class="n">y</span><span class="p">[:</span><span class="mi">2000</span><span class="p">]</span> <span class="c1"># select a subset of data</span>