-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathclustering.html
2874 lines (2633 loc) · 237 KB
/
clustering.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta property="og:title" content="2.3. Clustering" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/modules/clustering.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="Clustering of unlabeled data can be performed with the module sklearn.cluster. Each clustering algorithm comes in two variants: a class, that implements the fit method to learn the clusters on trai..." />
<meta property="og:image" content="https://scikit-learn/stable/_images/sphx_glr_plot_cluster_comparison_001.png" />
<meta property="og:image:alt" content="scikit-learn" />
<meta name="description" content="Clustering of unlabeled data can be performed with the module sklearn.cluster. Each clustering algorithm comes in two variants: a class, that implements the fit method to learn the clusters on trai..." />
<title>2.3. Clustering — scikit-learn 1.5.2 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/styles/bootstrap.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/vendor/fontawesome/6.5.2/css/all.min.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-regular-400.woff2" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=a746c00c" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/plot_directive.css" />
<link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Vibur" />
<link rel="stylesheet" type="text/css" href="../_static/jupyterlite_sphinx.css?v=ca70e7f1" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery.css?v=d2d258e8" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-binder.css?v=f4aeca0c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-dataframe.css?v=2082cf3c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-rendered-html.css?v=1277b6f3" />
<link rel="stylesheet" type="text/css" href="../_static/sphinx-design.min.css?v=95c83b7e" />
<link rel="stylesheet" type="text/css" href="../_static/styles/colors.css?v=cc94ab7d" />
<link rel="stylesheet" type="text/css" href="../_static/styles/custom.css?v=e4cb1417" />
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b" />
<script src="../_static/vendor/fontawesome/6.5.2/js/all.min.js?digest=dfe6caa3a7d634c4db9b"></script>
<script src="../_static/documentation_options.js?v=73275c37"></script>
<script src="../_static/doctools.js?v=9a2dae69"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=97f0b27d"></script>
<script src="../_static/jupyterlite_sphinx.js?v=d6bdf5f8"></script>
<script src="../_static/design-tabs.js?v=f930bc37"></script>
<script data-domain="scikit-learn.org" defer="defer" src="https://views.scientific-python.org/js/script.js"></script>
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'modules/clustering';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.15.4';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = 'https://scikit-learn.org/dev/_static/versions.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.5.2';
DOCUMENTATION_OPTIONS.show_version_warning_banner = true;
</script>
<script src="../_static/scripts/dropdown.js?v=e2048168"></script>
<script src="../_static/scripts/version-switcher.js?v=a6dd8357"></script>
<link rel="canonical" href="https://scikit-learn.org/stable/modules/clustering.html" />
<link rel="icon" href="../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../about.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="2.4. Biclustering" href="biclustering.html" />
<link rel="prev" title="2.2. Manifold learning" href="manifold.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<input type="checkbox"
class="sidebar-toggle"
id="pst-primary-sidebar-checkbox"/>
<label class="overlay overlay-primary" for="pst-primary-sidebar-checkbox"></label>
<input type="checkbox"
class="sidebar-toggle"
id="pst-secondary-sidebar-checkbox"/>
<label class="overlay overlay-secondary" for="pst-secondary-sidebar-checkbox"></label>
<div class="search-button__wrapper">
<div class="search-button__overlay"></div>
<div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
id="search-input"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
</div>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class=" navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-light" alt="scikit-learn homepage"/>
<script>document.write(`<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-dark" alt="scikit-learn homepage"/>`);</script>
</a></div>
</div>
<div class=" navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item dropdown">
<button class="btn dropdown-toggle nav-item" type="button" data-bs-toggle="dropdown" aria-expanded="false" aria-controls="pst-nav-more-links">
More
</button>
<ul id="pst-nav-more-links" class="dropdown-menu">
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../support.html">
Support
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<script>
document.write(`
<button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
`);
</script>
</div>
<div class="navbar-item">
<script>
document.write(`
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i>
</button>
`);
</script></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<script>
document.write(`
<div class="version-switcher__container dropdown">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
`);
</script></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<script>
document.write(`
<button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
`);
</script>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<div class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../support.html">
Support
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<script>
document.write(`
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i>
</button>
`);
</script></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<script>
document.write(`
<div class="version-switcher__container dropdown">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
`);
</script></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../supervised_learning.html">1. Supervised learning</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="linear_model.html">1.1. Linear Models</a></li>
<li class="toctree-l2"><a class="reference internal" href="lda_qda.html">1.2. Linear and Quadratic Discriminant Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="kernel_ridge.html">1.3. Kernel ridge regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="svm.html">1.4. Support Vector Machines</a></li>
<li class="toctree-l2"><a class="reference internal" href="sgd.html">1.5. Stochastic Gradient Descent</a></li>
<li class="toctree-l2"><a class="reference internal" href="neighbors.html">1.6. Nearest Neighbors</a></li>
<li class="toctree-l2"><a class="reference internal" href="gaussian_process.html">1.7. Gaussian Processes</a></li>
<li class="toctree-l2"><a class="reference internal" href="cross_decomposition.html">1.8. Cross decomposition</a></li>
<li class="toctree-l2"><a class="reference internal" href="naive_bayes.html">1.9. Naive Bayes</a></li>
<li class="toctree-l2"><a class="reference internal" href="tree.html">1.10. Decision Trees</a></li>
<li class="toctree-l2"><a class="reference internal" href="ensemble.html">1.11. Ensembles: Gradient boosting, random forests, bagging, voting, stacking</a></li>
<li class="toctree-l2"><a class="reference internal" href="multiclass.html">1.12. Multiclass and multioutput algorithms</a></li>
<li class="toctree-l2"><a class="reference internal" href="feature_selection.html">1.13. Feature selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="semi_supervised.html">1.14. Semi-supervised learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="isotonic.html">1.15. Isotonic regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="calibration.html">1.16. Probability calibration</a></li>
<li class="toctree-l2"><a class="reference internal" href="neural_networks_supervised.html">1.17. Neural network models (supervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="../unsupervised_learning.html">2. Unsupervised learning</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="mixture.html">2.1. Gaussian mixture models</a></li>
<li class="toctree-l2"><a class="reference internal" href="manifold.html">2.2. Manifold learning</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">2.3. Clustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="biclustering.html">2.4. Biclustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="decomposition.html">2.5. Decomposing signals in components (matrix factorization problems)</a></li>
<li class="toctree-l2"><a class="reference internal" href="covariance.html">2.6. Covariance estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="outlier_detection.html">2.7. Novelty and Outlier Detection</a></li>
<li class="toctree-l2"><a class="reference internal" href="density.html">2.8. Density Estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="neural_networks_unsupervised.html">2.9. Neural network models (unsupervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../model_selection.html">3. Model selection and evaluation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="cross_validation.html">3.1. Cross-validation: evaluating estimator performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="grid_search.html">3.2. Tuning the hyper-parameters of an estimator</a></li>
<li class="toctree-l2"><a class="reference internal" href="classification_threshold.html">3.3. Tuning the decision threshold for class prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="model_evaluation.html">3.4. Metrics and scoring: quantifying the quality of predictions</a></li>
<li class="toctree-l2"><a class="reference internal" href="learning_curve.html">3.5. Validation curves: plotting scores to evaluate models</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../inspection.html">4. Inspection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="partial_dependence.html">4.1. Partial Dependence and Individual Conditional Expectation plots</a></li>
<li class="toctree-l2"><a class="reference internal" href="permutation_importance.html">4.2. Permutation feature importance</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../visualizations.html">5. Visualizations</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../data_transforms.html">6. Dataset transformations</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="compose.html">6.1. Pipelines and composite estimators</a></li>
<li class="toctree-l2"><a class="reference internal" href="feature_extraction.html">6.2. Feature extraction</a></li>
<li class="toctree-l2"><a class="reference internal" href="preprocessing.html">6.3. Preprocessing data</a></li>
<li class="toctree-l2"><a class="reference internal" href="impute.html">6.4. Imputation of missing values</a></li>
<li class="toctree-l2"><a class="reference internal" href="unsupervised_reduction.html">6.5. Unsupervised dimensionality reduction</a></li>
<li class="toctree-l2"><a class="reference internal" href="random_projection.html">6.6. Random Projection</a></li>
<li class="toctree-l2"><a class="reference internal" href="kernel_approximation.html">6.7. Kernel Approximation</a></li>
<li class="toctree-l2"><a class="reference internal" href="metrics.html">6.8. Pairwise metrics, Affinities and Kernels</a></li>
<li class="toctree-l2"><a class="reference internal" href="preprocessing_targets.html">6.9. Transforming the prediction target (<code class="docutils literal notranslate"><span class="pre">y</span></code>)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../datasets.html">7. Dataset loading utilities</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../datasets/toy_dataset.html">7.1. Toy datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/real_world.html">7.2. Real world datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/sample_generators.html">7.3. Generated datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/loading_other_datasets.html">7.4. Loading other datasets</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../computing.html">8. Computing with scikit-learn</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../computing/scaling_strategies.html">8.1. Strategies to scale computationally: bigger data</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/computational_performance.html">8.2. Computational Performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/parallelism.html">8.3. Parallelism, resource management, and configuration</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../model_persistence.html">9. Model persistence</a></li>
<li class="toctree-l1"><a class="reference internal" href="../common_pitfalls.html">10. Common pitfalls and recommended practices</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../dispatching.html">11. Dispatching</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="array_api.html">11.1. Array API support (experimental)</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../machine_learning_map.html">12. Choosing the right estimator</a></li>
<li class="toctree-l1"><a class="reference internal" href="../presentations.html">13. External Resources, Videos and Talks</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
<div id="rtd-footer-container"></div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../user_guide.html" class="nav-link">User Guide</a></li>
<li class="breadcrumb-item"><a href="../unsupervised_learning.html" class="nav-link"><span class="section-number">2. </span>Unsupervised learning</a></li>
<li class="breadcrumb-item active" aria-current="page"><span...</li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="clustering">
<span id="id1"></span><h1><span class="section-number">2.3. </span>Clustering<a class="headerlink" href="#clustering" title="Link to this heading">#</a></h1>
<p><a class="reference external" href="https://en.wikipedia.org/wiki/Cluster_analysis">Clustering</a> of
unlabeled data can be performed with the module <a class="reference internal" href="../api/sklearn.cluster.html#module-sklearn.cluster" title="sklearn.cluster"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.cluster</span></code></a>.</p>
<p>Each clustering algorithm comes in two variants: a class, that implements
the <code class="docutils literal notranslate"><span class="pre">fit</span></code> method to learn the clusters on train data, and a function,
that, given train data, returns an array of integer labels corresponding
to the different clusters. For the class, the labels over the training
data can be found in the <code class="docutils literal notranslate"><span class="pre">labels_</span></code> attribute.</p>
<aside class="topic">
<p class="topic-title">Input data</p>
<p>One important thing to note is that the algorithms implemented in
this module can take different kinds of matrix as input. All the
methods accept standard data matrices of shape <code class="docutils literal notranslate"><span class="pre">(n_samples,</span> <span class="pre">n_features)</span></code>.
These can be obtained from the classes in the <a class="reference internal" href="../api/sklearn.feature_extraction.html#module-sklearn.feature_extraction" title="sklearn.feature_extraction"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.feature_extraction</span></code></a>
module. For <a class="reference internal" href="generated/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation" title="sklearn.cluster.AffinityPropagation"><code class="xref py py-class docutils literal notranslate"><span class="pre">AffinityPropagation</span></code></a>, <a class="reference internal" href="generated/sklearn.cluster.SpectralClustering.html#sklearn.cluster.SpectralClustering" title="sklearn.cluster.SpectralClustering"><code class="xref py py-class docutils literal notranslate"><span class="pre">SpectralClustering</span></code></a>
and <a class="reference internal" href="generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN" title="sklearn.cluster.DBSCAN"><code class="xref py py-class docutils literal notranslate"><span class="pre">DBSCAN</span></code></a> one can also input similarity matrices of shape
<code class="docutils literal notranslate"><span class="pre">(n_samples,</span> <span class="pre">n_samples)</span></code>. These can be obtained from the functions
in the <a class="reference internal" href="../api/sklearn.metrics.html#module-sklearn.metrics.pairwise" title="sklearn.metrics.pairwise"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.metrics.pairwise</span></code></a> module.</p>
</aside>
<section id="overview-of-clustering-methods">
<h2><span class="section-number">2.3.1. </span>Overview of clustering methods<a class="headerlink" href="#overview-of-clustering-methods" title="Link to this heading">#</a></h2>
<figure class="align-center" id="id24">
<a class="reference external image-reference" href="../auto_examples/cluster/plot_cluster_comparison.html"><img alt="../_images/sphx_glr_plot_cluster_comparison_001.png" src="../_images/sphx_glr_plot_cluster_comparison_001.png" style="width: 1050.0px; height: 650.0px;" />
</a>
<figcaption>
<p><span class="caption-text">A comparison of the clustering algorithms in scikit-learn</span><a class="headerlink" href="#id24" title="Link to this image">#</a></p>
</figcaption>
</figure>
<div class="pst-scrollable-table-container"><table class="table">
<colgroup>
<col style="width: 15.1%" />
<col style="width: 16.1%" />
<col style="width: 20.4%" />
<col style="width: 26.9%" />
<col style="width: 21.5%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>Method name</p></th>
<th class="head"><p>Parameters</p></th>
<th class="head"><p>Scalability</p></th>
<th class="head"><p>Usecase</p></th>
<th class="head"><p>Geometry (metric used)</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p><a class="reference internal" href="#k-means"><span class="std std-ref">K-Means</span></a></p></td>
<td><p>number of clusters</p></td>
<td><p>Very large <code class="docutils literal notranslate"><span class="pre">n_samples</span></code>, medium <code class="docutils literal notranslate"><span class="pre">n_clusters</span></code> with
<a class="reference internal" href="#mini-batch-kmeans"><span class="std std-ref">MiniBatch code</span></a></p></td>
<td><p>General-purpose, even cluster size, flat geometry,
not too many clusters, inductive</p></td>
<td><p>Distances between points</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#affinity-propagation"><span class="std std-ref">Affinity propagation</span></a></p></td>
<td><p>damping, sample preference</p></td>
<td><p>Not scalable with n_samples</p></td>
<td><p>Many clusters, uneven cluster size, non-flat geometry, inductive</p></td>
<td><p>Graph distance (e.g. nearest-neighbor graph)</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#mean-shift"><span class="std std-ref">Mean-shift</span></a></p></td>
<td><p>bandwidth</p></td>
<td><p>Not scalable with <code class="docutils literal notranslate"><span class="pre">n_samples</span></code></p></td>
<td><p>Many clusters, uneven cluster size, non-flat geometry, inductive</p></td>
<td><p>Distances between points</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#spectral-clustering"><span class="std std-ref">Spectral clustering</span></a></p></td>
<td><p>number of clusters</p></td>
<td><p>Medium <code class="docutils literal notranslate"><span class="pre">n_samples</span></code>, small <code class="docutils literal notranslate"><span class="pre">n_clusters</span></code></p></td>
<td><p>Few clusters, even cluster size, non-flat geometry, transductive</p></td>
<td><p>Graph distance (e.g. nearest-neighbor graph)</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#hierarchical-clustering"><span class="std std-ref">Ward hierarchical clustering</span></a></p></td>
<td><p>number of clusters or distance threshold</p></td>
<td><p>Large <code class="docutils literal notranslate"><span class="pre">n_samples</span></code> and <code class="docutils literal notranslate"><span class="pre">n_clusters</span></code></p></td>
<td><p>Many clusters, possibly connectivity constraints, transductive</p></td>
<td><p>Distances between points</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#hierarchical-clustering"><span class="std std-ref">Agglomerative clustering</span></a></p></td>
<td><p>number of clusters or distance threshold, linkage type, distance</p></td>
<td><p>Large <code class="docutils literal notranslate"><span class="pre">n_samples</span></code> and <code class="docutils literal notranslate"><span class="pre">n_clusters</span></code></p></td>
<td><p>Many clusters, possibly connectivity constraints, non Euclidean
distances, transductive</p></td>
<td><p>Any pairwise distance</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#dbscan"><span class="std std-ref">DBSCAN</span></a></p></td>
<td><p>neighborhood size</p></td>
<td><p>Very large <code class="docutils literal notranslate"><span class="pre">n_samples</span></code>, medium <code class="docutils literal notranslate"><span class="pre">n_clusters</span></code></p></td>
<td><p>Non-flat geometry, uneven cluster sizes, outlier removal,
transductive</p></td>
<td><p>Distances between nearest points</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#hdbscan"><span class="std std-ref">HDBSCAN</span></a></p></td>
<td><p>minimum cluster membership, minimum point neighbors</p></td>
<td><p>large <code class="docutils literal notranslate"><span class="pre">n_samples</span></code>, medium <code class="docutils literal notranslate"><span class="pre">n_clusters</span></code></p></td>
<td><p>Non-flat geometry, uneven cluster sizes, outlier removal,
transductive, hierarchical, variable cluster density</p></td>
<td><p>Distances between nearest points</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#optics"><span class="std std-ref">OPTICS</span></a></p></td>
<td><p>minimum cluster membership</p></td>
<td><p>Very large <code class="docutils literal notranslate"><span class="pre">n_samples</span></code>, large <code class="docutils literal notranslate"><span class="pre">n_clusters</span></code></p></td>
<td><p>Non-flat geometry, uneven cluster sizes, variable cluster density,
outlier removal, transductive</p></td>
<td><p>Distances between points</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="mixture.html#mixture"><span class="std std-ref">Gaussian mixtures</span></a></p></td>
<td><p>many</p></td>
<td><p>Not scalable</p></td>
<td><p>Flat geometry, good for density estimation, inductive</p></td>
<td><p>Mahalanobis distances to centers</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#birch"><span class="std std-ref">BIRCH</span></a></p></td>
<td><p>branching factor, threshold, optional global clusterer.</p></td>
<td><p>Large <code class="docutils literal notranslate"><span class="pre">n_clusters</span></code> and <code class="docutils literal notranslate"><span class="pre">n_samples</span></code></p></td>
<td><p>Large dataset, outlier removal, data reduction, inductive</p></td>
<td><p>Euclidean distance between points</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#bisect-k-means"><span class="std std-ref">Bisecting K-Means</span></a></p></td>
<td><p>number of clusters</p></td>
<td><p>Very large <code class="docutils literal notranslate"><span class="pre">n_samples</span></code>, medium <code class="docutils literal notranslate"><span class="pre">n_clusters</span></code></p></td>
<td><p>General-purpose, even cluster size, flat geometry,
no empty clusters, inductive, hierarchical</p></td>
<td><p>Distances between points</p></td>
</tr>
</tbody>
</table>
</div>
<p>Non-flat geometry clustering is useful when the clusters have a specific
shape, i.e. a non-flat manifold, and the standard euclidean distance is
not the right metric. This case arises in the two top rows of the figure
above.</p>
<p>Gaussian mixture models, useful for clustering, are described in
<a class="reference internal" href="mixture.html#mixture"><span class="std std-ref">another chapter of the documentation</span></a> dedicated to
mixture models. KMeans can be seen as a special case of Gaussian mixture
model with equal covariance per component.</p>
<p><a class="reference internal" href="../glossary.html#term-transductive"><span class="xref std std-term">Transductive</span></a> clustering methods (in contrast to
<a class="reference internal" href="../glossary.html#term-inductive"><span class="xref std std-term">inductive</span></a> clustering methods) are not designed to be applied to new,
unseen data.</p>
</section>
<section id="k-means">
<span id="id2"></span><h2><span class="section-number">2.3.2. </span>K-means<a class="headerlink" href="#k-means" title="Link to this heading">#</a></h2>
<p>The <a class="reference internal" href="generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans" title="sklearn.cluster.KMeans"><code class="xref py py-class docutils literal notranslate"><span class="pre">KMeans</span></code></a> algorithm clusters data by trying to separate samples in n
groups of equal variance, minimizing a criterion known as the <em>inertia</em> or
within-cluster sum-of-squares (see below). This algorithm requires the number
of clusters to be specified. It scales well to large numbers of samples and has
been used across a large range of application areas in many different fields.</p>
<p>The k-means algorithm divides a set of <span class="math notranslate nohighlight">\(N\)</span> samples <span class="math notranslate nohighlight">\(X\)</span> into
<span class="math notranslate nohighlight">\(K\)</span> disjoint clusters <span class="math notranslate nohighlight">\(C\)</span>, each described by the mean <span class="math notranslate nohighlight">\(\mu_j\)</span>
of the samples in the cluster. The means are commonly called the cluster
“centroids”; note that they are not, in general, points from <span class="math notranslate nohighlight">\(X\)</span>,
although they live in the same space.</p>
<p>The K-means algorithm aims to choose centroids that minimise the <strong>inertia</strong>,
or <strong>within-cluster sum-of-squares criterion</strong>:</p>
<div class="math notranslate nohighlight">
\[\sum_{i=0}^{n}\min_{\mu_j \in C}(||x_i - \mu_j||^2)\]</div>
<p>Inertia can be recognized as a measure of how internally coherent clusters are.
It suffers from various drawbacks:</p>
<ul class="simple">
<li><p>Inertia makes the assumption that clusters are convex and isotropic,
which is not always the case. It responds poorly to elongated clusters,
or manifolds with irregular shapes.</p></li>
<li><p>Inertia is not a normalized metric: we just know that lower values are
better and zero is optimal. But in very high-dimensional spaces, Euclidean
distances tend to become inflated
(this is an instance of the so-called “curse of dimensionality”).
Running a dimensionality reduction algorithm such as <a class="reference internal" href="decomposition.html#pca"><span class="std std-ref">Principal component analysis (PCA)</span></a> prior to
k-means clustering can alleviate this problem and speed up the
computations.</p></li>
</ul>
<a class="reference external image-reference" href="../auto_examples/cluster/plot_kmeans_assumptions.html"><img alt="../_images/sphx_glr_plot_kmeans_assumptions_002.png" class="align-center" src="../_images/sphx_glr_plot_kmeans_assumptions_002.png" style="width: 600.0px; height: 600.0px;" />
</a>
<p>For more detailed descriptions of the issues shown above and how to address them,
refer to the examples <a class="reference internal" href="../auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py"><span class="std std-ref">Demonstration of k-means assumptions</span></a>
and <a class="reference internal" href="../auto_examples/cluster/plot_kmeans_silhouette_analysis.html#sphx-glr-auto-examples-cluster-plot-kmeans-silhouette-analysis-py"><span class="std std-ref">Selecting the number of clusters with silhouette analysis on KMeans clustering</span></a>.</p>
<p>K-means is often referred to as Lloyd’s algorithm. In basic terms, the
algorithm has three steps. The first step chooses the initial centroids, with
the most basic method being to choose <span class="math notranslate nohighlight">\(k\)</span> samples from the dataset
<span class="math notranslate nohighlight">\(X\)</span>. After initialization, K-means consists of looping between the
two other steps. The first step assigns each sample to its nearest centroid.
The second step creates new centroids by taking the mean value of all of the
samples assigned to each previous centroid. The difference between the old
and the new centroids are computed and the algorithm repeats these last two
steps until this value is less than a threshold. In other words, it repeats
until the centroids do not move significantly.</p>
<a class="reference external image-reference" href="../auto_examples/cluster/plot_kmeans_digits.html"><img alt="../_images/sphx_glr_plot_kmeans_digits_001.png" class="align-right" src="../_images/sphx_glr_plot_kmeans_digits_001.png" style="width: 224.0px; height: 168.0px;" />
</a>
<p>K-means is equivalent to the expectation-maximization algorithm
with a small, all-equal, diagonal covariance matrix.</p>
<p>The algorithm can also be understood through the concept of <a class="reference external" href="https://en.wikipedia.org/wiki/Voronoi_diagram">Voronoi diagrams</a>. First the Voronoi diagram of
the points is calculated using the current centroids. Each segment in the
Voronoi diagram becomes a separate cluster. Secondly, the centroids are updated
to the mean of each segment. The algorithm then repeats this until a stopping
criterion is fulfilled. Usually, the algorithm stops when the relative decrease
in the objective function between iterations is less than the given tolerance
value. This is not the case in this implementation: iteration stops when
centroids move less than the tolerance.</p>
<p>Given enough time, K-means will always converge, however this may be to a local
minimum. This is highly dependent on the initialization of the centroids.
As a result, the computation is often done several times, with different
initializations of the centroids. One method to help address this issue is the
k-means++ initialization scheme, which has been implemented in scikit-learn
(use the <code class="docutils literal notranslate"><span class="pre">init='k-means++'</span></code> parameter). This initializes the centroids to be
(generally) distant from each other, leading to probably better results than
random initialization, as shown in the reference. For a detailed example of
comaparing different initialization schemes, refer to
<a class="reference internal" href="../auto_examples/cluster/plot_kmeans_digits.html#sphx-glr-auto-examples-cluster-plot-kmeans-digits-py"><span class="std std-ref">A demo of K-Means clustering on the handwritten digits data</span></a>.</p>
<p>K-means++ can also be called independently to select seeds for other
clustering algorithms, see <a class="reference internal" href="generated/sklearn.cluster.kmeans_plusplus.html#sklearn.cluster.kmeans_plusplus" title="sklearn.cluster.kmeans_plusplus"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.cluster.kmeans_plusplus</span></code></a> for details
and example usage.</p>
<p>The algorithm supports sample weights, which can be given by a parameter
<code class="docutils literal notranslate"><span class="pre">sample_weight</span></code>. This allows to assign more weight to some samples when
computing cluster centers and values of inertia. For example, assigning a
weight of 2 to a sample is equivalent to adding a duplicate of that sample
to the dataset <span class="math notranslate nohighlight">\(X\)</span>.</p>
<p>K-means can be used for vector quantization. This is achieved using the
<code class="docutils literal notranslate"><span class="pre">transform</span></code> method of a trained model of <a class="reference internal" href="generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans" title="sklearn.cluster.KMeans"><code class="xref py py-class docutils literal notranslate"><span class="pre">KMeans</span></code></a>. For an example of
performing vector quantization on an image refer to
<a class="reference internal" href="../auto_examples/cluster/plot_color_quantization.html#sphx-glr-auto-examples-cluster-plot-color-quantization-py"><span class="std std-ref">Color Quantization using K-Means</span></a>.</p>
<p class="rubric">Examples</p>
<ul class="simple">
<li><p><a class="reference internal" href="../auto_examples/cluster/plot_cluster_iris.html#sphx-glr-auto-examples-cluster-plot-cluster-iris-py"><span class="std std-ref">K-means Clustering</span></a>: Example usage of
<a class="reference internal" href="generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans" title="sklearn.cluster.KMeans"><code class="xref py py-class docutils literal notranslate"><span class="pre">KMeans</span></code></a> using the iris dataset</p></li>
<li><p><a class="reference internal" href="../auto_examples/text/plot_document_clustering.html#sphx-glr-auto-examples-text-plot-document-clustering-py"><span class="std std-ref">Clustering text documents using k-means</span></a>: Document clustering
using <a class="reference internal" href="generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans" title="sklearn.cluster.KMeans"><code class="xref py py-class docutils literal notranslate"><span class="pre">KMeans</span></code></a> and <a class="reference internal" href="generated/sklearn.cluster.MiniBatchKMeans.html#sklearn.cluster.MiniBatchKMeans" title="sklearn.cluster.MiniBatchKMeans"><code class="xref py py-class docutils literal notranslate"><span class="pre">MiniBatchKMeans</span></code></a> based on sparse data</p></li>
</ul>
<section id="low-level-parallelism">
<h3><span class="section-number">2.3.2.1. </span>Low-level parallelism<a class="headerlink" href="#low-level-parallelism" title="Link to this heading">#</a></h3>
<p><a class="reference internal" href="generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans" title="sklearn.cluster.KMeans"><code class="xref py py-class docutils literal notranslate"><span class="pre">KMeans</span></code></a> benefits from OpenMP based parallelism through Cython. Small
chunks of data (256 samples) are processed in parallel, which in addition
yields a low memory footprint. For more details on how to control the number of
threads, please refer to our <a class="reference internal" href="../computing/parallelism.html#parallelism"><span class="std std-ref">Parallelism</span></a> notes.</p>
<p class="rubric">Examples</p>
<ul class="simple">
<li><p><a class="reference internal" href="../auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py"><span class="std std-ref">Demonstration of k-means assumptions</span></a>: Demonstrating when
k-means performs intuitively and when it does not</p></li>
<li><p><a class="reference internal" href="../auto_examples/cluster/plot_kmeans_digits.html#sphx-glr-auto-examples-cluster-plot-kmeans-digits-py"><span class="std std-ref">A demo of K-Means clustering on the handwritten digits data</span></a>: Clustering handwritten digits</p></li>
</ul>
<details class="sd-sphinx-override sd-dropdown sd-card sd-mb-3" id="references">
<summary class="sd-summary-title sd-card-header">
<span class="sd-summary-text">References<a class="headerlink" href="#references" title="Link to this dropdown">#</a></span><span class="sd-summary-state-marker sd-summary-chevron-right"><svg version="1.1" width="1.5em" height="1.5em" class="sd-octicon sd-octicon-chevron-right" viewBox="0 0 24 24" aria-hidden="true"><path d="M8.72 18.78a.75.75 0 0 1 0-1.06L14.44 12 8.72 6.28a.751.751 0 0 1 .018-1.042.751.751 0 0 1 1.042-.018l6.25 6.25a.75.75 0 0 1 0 1.06l-6.25 6.25a.75.75 0 0 1-1.06 0Z"></path></svg></span></summary><div class="sd-summary-content sd-card-body docutils">
<ul class="simple">
<li><p class="sd-card-text"><a class="reference external" href="http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf">“k-means++: The advantages of careful seeding”</a>
Arthur, David, and Sergei Vassilvitskii,
<em>Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms</em>, Society for Industrial and Applied Mathematics (2007)</p></li>
</ul>
</div>
</details></section>
<section id="mini-batch-k-means">
<span id="mini-batch-kmeans"></span><h3><span class="section-number">2.3.2.2. </span>Mini Batch K-Means<a class="headerlink" href="#mini-batch-k-means" title="Link to this heading">#</a></h3>
<p>The <a class="reference internal" href="generated/sklearn.cluster.MiniBatchKMeans.html#sklearn.cluster.MiniBatchKMeans" title="sklearn.cluster.MiniBatchKMeans"><code class="xref py py-class docutils literal notranslate"><span class="pre">MiniBatchKMeans</span></code></a> is a variant of the <a class="reference internal" href="generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans" title="sklearn.cluster.KMeans"><code class="xref py py-class docutils literal notranslate"><span class="pre">KMeans</span></code></a> algorithm
which uses mini-batches to reduce the computation time, while still attempting
to optimise the same objective function. Mini-batches are subsets of the input
data, randomly sampled in each training iteration. These mini-batches
drastically reduce the amount of computation required to converge to a local
solution. In contrast to other algorithms that reduce the convergence time of
k-means, mini-batch k-means produces results that are generally only slightly
worse than the standard algorithm.</p>
<p>The algorithm iterates between two major steps, similar to vanilla k-means.
In the first step, <span class="math notranslate nohighlight">\(b\)</span> samples are drawn randomly from the dataset, to form
a mini-batch. These are then assigned to the nearest centroid. In the second
step, the centroids are updated. In contrast to k-means, this is done on a
per-sample basis. For each sample in the mini-batch, the assigned centroid
is updated by taking the streaming average of the sample and all previous
samples assigned to that centroid. This has the effect of decreasing the
rate of change for a centroid over time. These steps are performed until
convergence or a predetermined number of iterations is reached.</p>
<p><a class="reference internal" href="generated/sklearn.cluster.MiniBatchKMeans.html#sklearn.cluster.MiniBatchKMeans" title="sklearn.cluster.MiniBatchKMeans"><code class="xref py py-class docutils literal notranslate"><span class="pre">MiniBatchKMeans</span></code></a> converges faster than <a class="reference internal" href="generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans" title="sklearn.cluster.KMeans"><code class="xref py py-class docutils literal notranslate"><span class="pre">KMeans</span></code></a>, but the quality
of the results is reduced. In practice this difference in quality can be quite
small, as shown in the example and cited reference.</p>
<figure class="align-center">
<a class="reference external image-reference" href="../auto_examples/cluster/plot_mini_batch_kmeans.html"><img alt="../_images/sphx_glr_plot_mini_batch_kmeans_001.png" src="../_images/sphx_glr_plot_mini_batch_kmeans_001.png" style="width: 800.0px; height: 300.0px;" />
</a>
</figure>
<p class="rubric">Examples</p>
<ul class="simple">
<li><p><a class="reference internal" href="../auto_examples/cluster/plot_mini_batch_kmeans.html#sphx-glr-auto-examples-cluster-plot-mini-batch-kmeans-py"><span class="std std-ref">Comparison of the K-Means and MiniBatchKMeans clustering algorithms</span></a>: Comparison of