-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathbiclustering.html
1078 lines (842 loc) · 51.3 KB
/
biclustering.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta property="og:title" content="2.4. Biclustering" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/modules/biclustering.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="Biclustering algorithms simultaneously cluster rows and columns of a data matrix. These clusters of rows and columns are known as biclusters. Each determines a submatrix of the original data matrix..." />
<meta property="og:image" content="https://scikit-learn/stable/_images/sphx_glr_plot_spectral_coclustering_003.png" />
<meta property="og:image:alt" content="scikit-learn" />
<meta name="description" content="Biclustering algorithms simultaneously cluster rows and columns of a data matrix. These clusters of rows and columns are known as biclusters. Each determines a submatrix of the original data matrix..." />
<title>2.4. Biclustering — scikit-learn 1.5.2 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/styles/bootstrap.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../_static/vendor/fontawesome/6.5.2/css/all.min.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.2/webfonts/fa-regular-400.woff2" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=a746c00c" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/plot_directive.css" />
<link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Vibur" />
<link rel="stylesheet" type="text/css" href="../_static/jupyterlite_sphinx.css?v=ca70e7f1" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery.css?v=d2d258e8" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-binder.css?v=f4aeca0c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-dataframe.css?v=2082cf3c" />
<link rel="stylesheet" type="text/css" href="../_static/sg_gallery-rendered-html.css?v=1277b6f3" />
<link rel="stylesheet" type="text/css" href="../_static/sphinx-design.min.css?v=95c83b7e" />
<link rel="stylesheet" type="text/css" href="../_static/styles/colors.css?v=cc94ab7d" />
<link rel="stylesheet" type="text/css" href="../_static/styles/custom.css?v=e4cb1417" />
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b" />
<script src="../_static/vendor/fontawesome/6.5.2/js/all.min.js?digest=dfe6caa3a7d634c4db9b"></script>
<script src="../_static/documentation_options.js?v=73275c37"></script>
<script src="../_static/doctools.js?v=9a2dae69"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=97f0b27d"></script>
<script src="../_static/jupyterlite_sphinx.js?v=d6bdf5f8"></script>
<script src="../_static/design-tabs.js?v=f930bc37"></script>
<script data-domain="scikit-learn.org" defer="defer" src="https://views.scientific-python.org/js/script.js"></script>
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'modules/biclustering';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.15.4';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = 'https://scikit-learn.org/dev/_static/versions.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.5.2';
DOCUMENTATION_OPTIONS.show_version_warning_banner = true;
</script>
<script src="../_static/scripts/dropdown.js?v=e2048168"></script>
<script src="../_static/scripts/version-switcher.js?v=a6dd8357"></script>
<link rel="canonical" href="https://scikit-learn.org/stable/modules/biclustering.html" />
<link rel="icon" href="../_static/favicon.ico"/>
<link rel="author" title="About these documents" href="../about.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="2.5. Decomposing signals in components (matrix factorization problems)" href="decomposition.html" />
<link rel="prev" title="2.3. Clustering" href="clustering.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<input type="checkbox"
class="sidebar-toggle"
id="pst-primary-sidebar-checkbox"/>
<label class="overlay overlay-primary" for="pst-primary-sidebar-checkbox"></label>
<input type="checkbox"
class="sidebar-toggle"
id="pst-secondary-sidebar-checkbox"/>
<label class="overlay overlay-secondary" for="pst-secondary-sidebar-checkbox"></label>
<div class="search-button__wrapper">
<div class="search-button__overlay"></div>
<div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
id="search-input"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
</div>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class=" navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-light" alt="scikit-learn homepage"/>
<script>document.write(`<img src="../_static/scikit-learn-logo-small.png" class="logo__image only-dark" alt="scikit-learn homepage"/>`);</script>
</a></div>
</div>
<div class=" navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item dropdown">
<button class="btn dropdown-toggle nav-item" type="button" data-bs-toggle="dropdown" aria-expanded="false" aria-controls="pst-nav-more-links">
More
</button>
<ul id="pst-nav-more-links" class="dropdown-menu">
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../support.html">
Support
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class=" ">
<a class="nav-link dropdown-item nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<script>
document.write(`
<button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
`);
</script>
</div>
<div class="navbar-item">
<script>
document.write(`
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i>
</button>
`);
</script></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<script>
document.write(`
<div class="version-switcher__container dropdown">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
`);
</script></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<script>
document.write(`
<button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
`);
</script>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<div class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../install.html">
Install
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../user_guide.html">
User Guide
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../api/index.html">
API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../auto_examples/index.html">
Examples
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://blog.scikit-learn.org/">
Community
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../getting_started.html">
Getting Started
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../whats_new.html">
Release History
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../glossary.html">
Glossary
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://scikit-learn.org/dev/developers/index.html">
Development
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../faq.html">
FAQ
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../support.html">
Support
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../related_projects.html">
Related Projects
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../roadmap.html">
Roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../governance.html">
Governance
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../about.html">
About us
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<script>
document.write(`
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i>
</button>
`);
</script></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/scikit-learn/scikit-learn" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
<div class="navbar-item">
<script>
document.write(`
<div class="version-switcher__container dropdown">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
`);
</script></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../supervised_learning.html">1. Supervised learning</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="linear_model.html">1.1. Linear Models</a></li>
<li class="toctree-l2"><a class="reference internal" href="lda_qda.html">1.2. Linear and Quadratic Discriminant Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="kernel_ridge.html">1.3. Kernel ridge regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="svm.html">1.4. Support Vector Machines</a></li>
<li class="toctree-l2"><a class="reference internal" href="sgd.html">1.5. Stochastic Gradient Descent</a></li>
<li class="toctree-l2"><a class="reference internal" href="neighbors.html">1.6. Nearest Neighbors</a></li>
<li class="toctree-l2"><a class="reference internal" href="gaussian_process.html">1.7. Gaussian Processes</a></li>
<li class="toctree-l2"><a class="reference internal" href="cross_decomposition.html">1.8. Cross decomposition</a></li>
<li class="toctree-l2"><a class="reference internal" href="naive_bayes.html">1.9. Naive Bayes</a></li>
<li class="toctree-l2"><a class="reference internal" href="tree.html">1.10. Decision Trees</a></li>
<li class="toctree-l2"><a class="reference internal" href="ensemble.html">1.11. Ensembles: Gradient boosting, random forests, bagging, voting, stacking</a></li>
<li class="toctree-l2"><a class="reference internal" href="multiclass.html">1.12. Multiclass and multioutput algorithms</a></li>
<li class="toctree-l2"><a class="reference internal" href="feature_selection.html">1.13. Feature selection</a></li>
<li class="toctree-l2"><a class="reference internal" href="semi_supervised.html">1.14. Semi-supervised learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="isotonic.html">1.15. Isotonic regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="calibration.html">1.16. Probability calibration</a></li>
<li class="toctree-l2"><a class="reference internal" href="neural_networks_supervised.html">1.17. Neural network models (supervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="../unsupervised_learning.html">2. Unsupervised learning</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="mixture.html">2.1. Gaussian mixture models</a></li>
<li class="toctree-l2"><a class="reference internal" href="manifold.html">2.2. Manifold learning</a></li>
<li class="toctree-l2"><a class="reference internal" href="clustering.html">2.3. Clustering</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">2.4. Biclustering</a></li>
<li class="toctree-l2"><a class="reference internal" href="decomposition.html">2.5. Decomposing signals in components (matrix factorization problems)</a></li>
<li class="toctree-l2"><a class="reference internal" href="covariance.html">2.6. Covariance estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="outlier_detection.html">2.7. Novelty and Outlier Detection</a></li>
<li class="toctree-l2"><a class="reference internal" href="density.html">2.8. Density Estimation</a></li>
<li class="toctree-l2"><a class="reference internal" href="neural_networks_unsupervised.html">2.9. Neural network models (unsupervised)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../model_selection.html">3. Model selection and evaluation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="cross_validation.html">3.1. Cross-validation: evaluating estimator performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="grid_search.html">3.2. Tuning the hyper-parameters of an estimator</a></li>
<li class="toctree-l2"><a class="reference internal" href="classification_threshold.html">3.3. Tuning the decision threshold for class prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="model_evaluation.html">3.4. Metrics and scoring: quantifying the quality of predictions</a></li>
<li class="toctree-l2"><a class="reference internal" href="learning_curve.html">3.5. Validation curves: plotting scores to evaluate models</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../inspection.html">4. Inspection</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="partial_dependence.html">4.1. Partial Dependence and Individual Conditional Expectation plots</a></li>
<li class="toctree-l2"><a class="reference internal" href="permutation_importance.html">4.2. Permutation feature importance</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../visualizations.html">5. Visualizations</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../data_transforms.html">6. Dataset transformations</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="compose.html">6.1. Pipelines and composite estimators</a></li>
<li class="toctree-l2"><a class="reference internal" href="feature_extraction.html">6.2. Feature extraction</a></li>
<li class="toctree-l2"><a class="reference internal" href="preprocessing.html">6.3. Preprocessing data</a></li>
<li class="toctree-l2"><a class="reference internal" href="impute.html">6.4. Imputation of missing values</a></li>
<li class="toctree-l2"><a class="reference internal" href="unsupervised_reduction.html">6.5. Unsupervised dimensionality reduction</a></li>
<li class="toctree-l2"><a class="reference internal" href="random_projection.html">6.6. Random Projection</a></li>
<li class="toctree-l2"><a class="reference internal" href="kernel_approximation.html">6.7. Kernel Approximation</a></li>
<li class="toctree-l2"><a class="reference internal" href="metrics.html">6.8. Pairwise metrics, Affinities and Kernels</a></li>
<li class="toctree-l2"><a class="reference internal" href="preprocessing_targets.html">6.9. Transforming the prediction target (<code class="docutils literal notranslate"><span class="pre">y</span></code>)</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../datasets.html">7. Dataset loading utilities</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../datasets/toy_dataset.html">7.1. Toy datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/real_world.html">7.2. Real world datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/sample_generators.html">7.3. Generated datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../datasets/loading_other_datasets.html">7.4. Loading other datasets</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../computing.html">8. Computing with scikit-learn</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../computing/scaling_strategies.html">8.1. Strategies to scale computationally: bigger data</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/computational_performance.html">8.2. Computational Performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="../computing/parallelism.html">8.3. Parallelism, resource management, and configuration</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../model_persistence.html">9. Model persistence</a></li>
<li class="toctree-l1"><a class="reference internal" href="../common_pitfalls.html">10. Common pitfalls and recommended practices</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../dispatching.html">11. Dispatching</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="array_api.html">11.1. Array API support (experimental)</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../machine_learning_map.html">12. Choosing the right estimator</a></li>
<li class="toctree-l1"><a class="reference internal" href="../presentations.html">13. External Resources, Videos and Talks</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
<div id="rtd-footer-container"></div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../user_guide.html" class="nav-link">User Guide</a></li>
<li class="breadcrumb-item"><a href="../unsupervised_learning.html" class="nav-link"><span class="section-number">2. </span>Unsupervised learning</a></li>
<li class="breadcrumb-item active" aria-current="page"><span...</li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="biclustering">
<span id="id1"></span><h1><span class="section-number">2.4. </span>Biclustering<a class="headerlink" href="#biclustering" title="Link to this heading">#</a></h1>
<p>Biclustering algorithms simultaneously
cluster rows and columns of a data matrix. These clusters of rows and
columns are known as biclusters. Each determines a submatrix of the
original data matrix with some desired properties.</p>
<p>For instance, given a matrix of shape <code class="docutils literal notranslate"><span class="pre">(10,</span> <span class="pre">10)</span></code>, one possible bicluster
with three rows and two columns induces a submatrix of shape <code class="docutils literal notranslate"><span class="pre">(3,</span> <span class="pre">2)</span></code>:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="gp">>>> </span><span class="n">data</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">100</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">rows</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">])[:,</span> <span class="n">np</span><span class="o">.</span><span class="n">newaxis</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">columns</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
<span class="gp">>>> </span><span class="n">data</span><span class="p">[</span><span class="n">rows</span><span class="p">,</span> <span class="n">columns</span><span class="p">]</span>
<span class="go">array([[ 1, 2],</span>
<span class="go"> [21, 22],</span>
<span class="go"> [31, 32]])</span>
</pre></div>
</div>
<p>For visualization purposes, given a bicluster, the rows and columns of
the data matrix may be rearranged to make the bicluster contiguous.</p>
<p>Algorithms differ in how they define biclusters. Some of the
common types include:</p>
<ul class="simple">
<li><p>constant values, constant rows, or constant columns</p></li>
<li><p>unusually high or low values</p></li>
<li><p>submatrices with low variance</p></li>
<li><p>correlated rows or columns</p></li>
</ul>
<p>Algorithms also differ in how rows and columns may be assigned to
biclusters, which leads to different bicluster structures. Block
diagonal or checkerboard structures occur when rows and columns are
divided into partitions.</p>
<p>If each row and each column belongs to exactly one bicluster, then
rearranging the rows and columns of the data matrix reveals the
biclusters on the diagonal. Here is an example of this structure
where biclusters have higher average values than the other rows and
columns:</p>
<figure class="align-center" id="id5">
<a class="reference external image-reference" href="../auto_examples/bicluster/images/sphx_glr_plot_spectral_coclustering_003.png"><img alt="../_images/sphx_glr_plot_spectral_coclustering_003.png" src="../_images/sphx_glr_plot_spectral_coclustering_003.png" style="width: 240.0px; height: 240.0px;" />
</a>
<figcaption>
<p><span class="caption-text">An example of biclusters formed by partitioning rows and columns.</span><a class="headerlink" href="#id5" title="Link to this image">#</a></p>
</figcaption>
</figure>
<p>In the checkerboard case, each row belongs to all column clusters, and
each column belongs to all row clusters. Here is an example of this
structure where the variance of the values within each bicluster is
small:</p>
<figure class="align-center" id="id6">
<a class="reference external image-reference" href="../auto_examples/bicluster/images/sphx_glr_plot_spectral_biclustering_003.png"><img alt="../_images/sphx_glr_plot_spectral_biclustering_003.png" src="../_images/sphx_glr_plot_spectral_biclustering_003.png" style="width: 240.0px; height: 240.0px;" />
</a>
<figcaption>
<p><span class="caption-text">An example of checkerboard biclusters.</span><a class="headerlink" href="#id6" title="Link to this image">#</a></p>
</figcaption>
</figure>
<p>After fitting a model, row and column cluster membership can be found
in the <code class="docutils literal notranslate"><span class="pre">rows_</span></code> and <code class="docutils literal notranslate"><span class="pre">columns_</span></code> attributes. <code class="docutils literal notranslate"><span class="pre">rows_[i]</span></code> is a binary vector
with nonzero entries corresponding to rows that belong to bicluster
<code class="docutils literal notranslate"><span class="pre">i</span></code>. Similarly, <code class="docutils literal notranslate"><span class="pre">columns_[i]</span></code> indicates which columns belong to
bicluster <code class="docutils literal notranslate"><span class="pre">i</span></code>.</p>
<p>Some models also have <code class="docutils literal notranslate"><span class="pre">row_labels_</span></code> and <code class="docutils literal notranslate"><span class="pre">column_labels_</span></code> attributes.
These models partition the rows and columns, such as in the block
diagonal and checkerboard bicluster structures.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>Biclustering has many other names in different fields including
co-clustering, two-mode clustering, two-way clustering, block
clustering, coupled two-way clustering, etc. The names of some
algorithms, such as the Spectral Co-Clustering algorithm, reflect
these alternate names.</p>
</div>
<section id="spectral-co-clustering">
<span id="spectral-coclustering"></span><h2><span class="section-number">2.4.1. </span>Spectral Co-Clustering<a class="headerlink" href="#spectral-co-clustering" title="Link to this heading">#</a></h2>
<p>The <a class="reference internal" href="generated/sklearn.cluster.SpectralCoclustering.html#sklearn.cluster.SpectralCoclustering" title="sklearn.cluster.SpectralCoclustering"><code class="xref py py-class docutils literal notranslate"><span class="pre">SpectralCoclustering</span></code></a> algorithm finds biclusters with
values higher than those in the corresponding other rows and columns.
Each row and each column belongs to exactly one bicluster, so
rearranging the rows and columns to make partitions contiguous reveals
these high values along the diagonal:</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>The algorithm treats the input data matrix as a bipartite graph: the
rows and columns of the matrix correspond to the two sets of vertices,
and each entry corresponds to an edge between a row and a column. The
algorithm approximates the normalized cut of this graph to find heavy
subgraphs.</p>
</div>
<section id="mathematical-formulation">
<h3><span class="section-number">2.4.1.1. </span>Mathematical formulation<a class="headerlink" href="#mathematical-formulation" title="Link to this heading">#</a></h3>
<p>An approximate solution to the optimal normalized cut may be found via
the generalized eigenvalue decomposition of the Laplacian of the
graph. Usually this would mean working directly with the Laplacian
matrix. If the original data matrix <span class="math notranslate nohighlight">\(A\)</span> has shape <span class="math notranslate nohighlight">\(m
\times n\)</span>, the Laplacian matrix for the corresponding bipartite graph
has shape <span class="math notranslate nohighlight">\((m + n) \times (m + n)\)</span>. However, in this case it is
possible to work directly with <span class="math notranslate nohighlight">\(A\)</span>, which is smaller and more
efficient.</p>
<p>The input matrix <span class="math notranslate nohighlight">\(A\)</span> is preprocessed as follows:</p>
<div class="math notranslate nohighlight">
\[A_n = R^{-1/2} A C^{-1/2}\]</div>
<p>Where <span class="math notranslate nohighlight">\(R\)</span> is the diagonal matrix with entry <span class="math notranslate nohighlight">\(i\)</span> equal to
<span class="math notranslate nohighlight">\(\sum_{j} A_{ij}\)</span> and <span class="math notranslate nohighlight">\(C\)</span> is the diagonal matrix with
entry <span class="math notranslate nohighlight">\(j\)</span> equal to <span class="math notranslate nohighlight">\(\sum_{i} A_{ij}\)</span>.</p>
<p>The singular value decomposition, <span class="math notranslate nohighlight">\(A_n = U \Sigma V^\top\)</span>,
provides the partitions of the rows and columns of <span class="math notranslate nohighlight">\(A\)</span>. A subset
of the left singular vectors gives the row partitions, and a subset
of the right singular vectors gives the column partitions.</p>
<p>The <span class="math notranslate nohighlight">\(\ell = \lceil \log_2 k \rceil\)</span> singular vectors, starting
from the second, provide the desired partitioning information. They
are used to form the matrix <span class="math notranslate nohighlight">\(Z\)</span>:</p>
<div class="math notranslate nohighlight">
\[\begin{split}Z = \begin{bmatrix} R^{-1/2} U \\\\
C^{-1/2} V
\end{bmatrix}\end{split}\]</div>
<p>where the columns of <span class="math notranslate nohighlight">\(U\)</span> are <span class="math notranslate nohighlight">\(u_2, \dots, u_{\ell +
1}\)</span>, and similarly for <span class="math notranslate nohighlight">\(V\)</span>.</p>
<p>Then the rows of <span class="math notranslate nohighlight">\(Z\)</span> are clustered using <a class="reference internal" href="clustering.html#k-means"><span class="std std-ref">k-means</span></a>. The first <code class="docutils literal notranslate"><span class="pre">n_rows</span></code> labels provide the row partitioning,
and the remaining <code class="docutils literal notranslate"><span class="pre">n_columns</span></code> labels provide the column partitioning.</p>
<p class="rubric">Examples</p>
<ul class="simple">
<li><p><a class="reference internal" href="../auto_examples/bicluster/plot_spectral_coclustering.html#sphx-glr-auto-examples-bicluster-plot-spectral-coclustering-py"><span class="std std-ref">A demo of the Spectral Co-Clustering algorithm</span></a>: A simple example
showing how to generate a data matrix with biclusters and apply
this method to it.</p></li>
<li><p><a class="reference internal" href="../auto_examples/bicluster/plot_bicluster_newsgroups.html#sphx-glr-auto-examples-bicluster-plot-bicluster-newsgroups-py"><span class="std std-ref">Biclustering documents with the Spectral Co-clustering algorithm</span></a>: An example of finding
biclusters in the twenty newsgroup dataset.</p></li>
</ul>
<p class="rubric">References</p>
<ul class="simple">
<li><p>Dhillon, Inderjit S, 2001. <a class="reference external" href="https://doi.org/10.1145/502512.502550">Co-clustering documents and words using
bipartite spectral graph partitioning</a></p></li>
</ul>
</section>
</section>
<section id="spectral-biclustering">
<span id="id2"></span><h2><span class="section-number">2.4.2. </span>Spectral Biclustering<a class="headerlink" href="#spectral-biclustering" title="Link to this heading">#</a></h2>
<p>The <a class="reference internal" href="generated/sklearn.cluster.SpectralBiclustering.html#sklearn.cluster.SpectralBiclustering" title="sklearn.cluster.SpectralBiclustering"><code class="xref py py-class docutils literal notranslate"><span class="pre">SpectralBiclustering</span></code></a> algorithm assumes that the input
data matrix has a hidden checkerboard structure. The rows and columns
of a matrix with this structure may be partitioned so that the entries
of any bicluster in the Cartesian product of row clusters and column
clusters are approximately constant. For instance, if there are two
row partitions and three column partitions, each row will belong to
three biclusters, and each column will belong to two biclusters.</p>
<p>The algorithm partitions the rows and columns of a matrix so that a
corresponding blockwise-constant checkerboard matrix provides a good
approximation to the original matrix.</p>
<section id="id3">
<h3><span class="section-number">2.4.2.1. </span>Mathematical formulation<a class="headerlink" href="#id3" title="Link to this heading">#</a></h3>
<p>The input matrix <span class="math notranslate nohighlight">\(A\)</span> is first normalized to make the
checkerboard pattern more obvious. There are three possible methods:</p>
<ol class="arabic simple">
<li><p><em>Independent row and column normalization</em>, as in Spectral
Co-Clustering. This method makes the rows sum to a constant and the
columns sum to a different constant.</p></li>
<li><p><strong>Bistochastization</strong>: repeated row and column normalization until
convergence. This method makes both rows and columns sum to the
same constant.</p></li>
<li><p><strong>Log normalization</strong>: the log of the data matrix is computed: <span class="math notranslate nohighlight">\(L =
\log A\)</span>. Then the column mean <span class="math notranslate nohighlight">\(\overline{L_{i \cdot}}\)</span>, row mean
<span class="math notranslate nohighlight">\(\overline{L_{\cdot j}}\)</span>, and overall mean <span class="math notranslate nohighlight">\(\overline{L_{\cdot
\cdot}}\)</span> of <span class="math notranslate nohighlight">\(L\)</span> are computed. The final matrix is computed
according to the formula</p></li>
</ol>
<div class="math notranslate nohighlight">
\[K_{ij} = L_{ij} - \overline{L_{i \cdot}} - \overline{L_{\cdot
j}} + \overline{L_{\cdot \cdot}}\]</div>
<p>After normalizing, the first few singular vectors are computed, just
as in the Spectral Co-Clustering algorithm.</p>
<p>If log normalization was used, all the singular vectors are
meaningful. However, if independent normalization or bistochastization
were used, the first singular vectors, <span class="math notranslate nohighlight">\(u_1\)</span> and <span class="math notranslate nohighlight">\(v_1\)</span>.
are discarded. From now on, the “first” singular vectors refers to
<span class="math notranslate nohighlight">\(u_2 \dots u_{p+1}\)</span> and <span class="math notranslate nohighlight">\(v_2 \dots v_{p+1}\)</span> except in the
case of log normalization.</p>
<p>Given these singular vectors, they are ranked according to which can
be best approximated by a piecewise-constant vector. The
approximations for each vector are found using one-dimensional k-means
and scored using the Euclidean distance. Some subset of the best left
and right singular vector are selected. Next, the data is projected to
this best subset of singular vectors and clustered.</p>
<p>For instance, if <span class="math notranslate nohighlight">\(p\)</span> singular vectors were calculated, the
<span class="math notranslate nohighlight">\(q\)</span> best are found as described, where <span class="math notranslate nohighlight">\(q<p\)</span>. Let
<span class="math notranslate nohighlight">\(U\)</span> be the matrix with columns the <span class="math notranslate nohighlight">\(q\)</span> best left singular
vectors, and similarly <span class="math notranslate nohighlight">\(V\)</span> for the right. To partition the rows,
the rows of <span class="math notranslate nohighlight">\(A\)</span> are projected to a <span class="math notranslate nohighlight">\(q\)</span> dimensional space:
<span class="math notranslate nohighlight">\(A * V\)</span>. Treating the <span class="math notranslate nohighlight">\(m\)</span> rows of this <span class="math notranslate nohighlight">\(m \times q\)</span>
matrix as samples and clustering using k-means yields the row labels.
Similarly, projecting the columns to <span class="math notranslate nohighlight">\(A^{\top} * U\)</span> and
clustering this <span class="math notranslate nohighlight">\(n \times q\)</span> matrix yields the column labels.</p>
<p class="rubric">Examples</p>
<ul class="simple">
<li><p><a class="reference internal" href="../auto_examples/bicluster/plot_spectral_biclustering.html#sphx-glr-auto-examples-bicluster-plot-spectral-biclustering-py"><span class="std std-ref">A demo of the Spectral Biclustering algorithm</span></a>: a simple example
showing how to generate a checkerboard matrix and bicluster it.</p></li>
</ul>
<p class="rubric">References</p>
<ul class="simple">
<li><p>Kluger, Yuval, et. al., 2003. <a class="reference external" href="https://doi.org/10.1101/gr.648603">Spectral biclustering of microarray
data: coclustering genes and conditions</a></p></li>
</ul>
</section>
</section>
<section id="biclustering-evaluation">
<span id="id4"></span><h2><span class="section-number">2.4.3. </span>Biclustering evaluation<a class="headerlink" href="#biclustering-evaluation" title="Link to this heading">#</a></h2>
<p>There are two ways of evaluating a biclustering result: internal and
external. Internal measures, such as cluster stability, rely only on
the data and the result themselves. Currently there are no internal
bicluster measures in scikit-learn. External measures refer to an
external source of information, such as the true solution. When
working with real data the true solution is usually unknown, but
biclustering artificial data may be useful for evaluating algorithms
precisely because the true solution is known.</p>
<p>To compare a set of found biclusters to the set of true biclusters,
two similarity measures are needed: a similarity measure for
individual biclusters, and a way to combine these individual
similarities into an overall score.</p>
<p>To compare individual biclusters, several measures have been used. For
now, only the Jaccard index is implemented:</p>
<div class="math notranslate nohighlight">
\[J(A, B) = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}\]</div>
<p>where <span class="math notranslate nohighlight">\(A\)</span> and <span class="math notranslate nohighlight">\(B\)</span> are biclusters, <span class="math notranslate nohighlight">\(|A \cap B|\)</span> is
the number of elements in their intersection. The Jaccard index
achieves its minimum of 0 when the biclusters to not overlap at all
and its maximum of 1 when they are identical.</p>
<p>Several methods have been developed to compare two sets of biclusters.
For now, only <a class="reference internal" href="generated/sklearn.metrics.consensus_score.html#sklearn.metrics.consensus_score" title="sklearn.metrics.consensus_score"><code class="xref py py-func docutils literal notranslate"><span class="pre">consensus_score</span></code></a> (Hochreiter et. al., 2010) is
available:</p>
<ol class="arabic simple">
<li><p>Compute bicluster similarities for pairs of biclusters, one in each
set, using the Jaccard index or a similar measure.</p></li>
<li><p>Assign biclusters from one set to another in a one-to-one fashion
to maximize the sum of their similarities. This step is performed
using <a class="reference external" href="https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html#scipy.optimize.linear_sum_assignment" title="(in SciPy v1.15.1)"><code class="xref py py-func docutils literal notranslate"><span class="pre">scipy.optimize.linear_sum_assignment</span></code></a>, which uses a
modified Jonker-Volgenant algorithm.</p></li>
<li><p>The final sum of similarities is divided by the size of the larger
set.</p></li>
</ol>
<p>The minimum consensus score, 0, occurs when all pairs of biclusters
are totally dissimilar. The maximum score, 1, occurs when both sets
are identical.</p>
<p class="rubric">References</p>
<ul class="simple">
<li><p>Hochreiter, Bodenhofer, et. al., 2010. <a class="reference external" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/">FABIA: factor analysis
for bicluster acquisition</a>.</p></li>
</ul>
</section>
</section>
</article>
<footer class="bd-footer-article">
<div class="footer-article-items footer-article__inner">
<div class="footer-article-item">
<div class="prev-next-area">
<a class="left-prev"
href="clustering.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title"><span class="section-number">2.3. </span>Clustering</p>
</div>
</a>
<a class="right-next"
href="decomposition.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title"><span class="section-number">2.5. </span>Decomposing signals in components (matrix factorization problems)</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div></div>
</div>
</footer>