-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathpartial_dependence.html
523 lines (487 loc) · 40.9 KB
/
partial_dependence.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta property="og:title" content="4.1. Partial Dependence and Individual Conditional Expectation plots" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/modules/partial_dependence.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="Partial dependence plots (PDP) and individual conditional expectation (ICE) plots can be used to visualize and analyze interaction between the target response 1 and a set of input features of inter..." />
<meta property="og:image" content="https://scikit-learn/stable/_images/sphx_glr_plot_partial_dependence_006.png" />
<meta property="og:image:alt" content="scikit-learn" />
<meta name="description" content="Partial dependence plots (PDP) and individual conditional expectation (ICE) plots can be used to visualize and analyze interaction between the target response 1 and a set of input features of inter..." />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>4.1. Partial Dependence and Individual Conditional Expectation plots — scikit-learn 1.3.2 documentation</title>
<link rel="canonical" href="http://scikit-learn.org/stable/modules/partial_dependence.html" />
<link rel="shortcut icon" href="../_static/favicon.ico"/>
<link rel="stylesheet" href="../_static/css/vendor/bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/copybutton.css" type="text/css" />
<link rel="stylesheet" href="../_static/plot_directive.css" type="text/css" />
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Vibur" type="text/css" />
<link rel="stylesheet" href="../_static/jupyterlite_sphinx.css" type="text/css" />
<link rel="stylesheet" href="../_static/sg_gallery.css" type="text/css" />
<link rel="stylesheet" href="../_static/sg_gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="../_static/sg_gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="../_static/sg_gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<script id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script src="../_static/js/vendor/jquery-3.6.3.slim.min.js"></script>
</head>
<body>
<nav id="navbar" class="sk-docs-navbar navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid sk-docs-container px-0">
<a class="navbar-brand py-0" href="../index.html">
<img
class="sk-brand-img"
src="../_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
<button
id="sk-navbar-toggler"
class="navbar-toggler"
type="button"
data-toggle="collapse"
data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent"
aria-expanded="false"
aria-label="Toggle navigation"
>
<span class="navbar-toggler-icon"></span>
</button>
<div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../install.html">Install</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../user_guide.html">User Guide</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="classes.html">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../auto_examples/index.html">Examples</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://blog.scikit-learn.org/">Community</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../getting_started.html" >Getting Started</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../tutorial/index.html" >Tutorial</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../whats_new/v1.3.html" >What's new</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../glossary.html" >Glossary</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../faq.html" >FAQ</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../support.html" >Support</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../related_projects.html" >Related packages</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../roadmap.html" >Roadmap</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../governance.html" >Governance</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../about.html" >About us</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</li>
<li class="nav-item dropdown nav-more-item-dropdown">
<a class="sk-nav-link nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<a class="sk-nav-dropdown-item dropdown-item" href="../getting_started.html" >Getting Started</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../tutorial/index.html" >Tutorial</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../whats_new/v1.3.html" >What's new</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../glossary.html" >Glossary</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../faq.html" >FAQ</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../support.html" >Support</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../related_projects.html" >Related packages</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../roadmap.html" >Roadmap</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../governance.html" >Governance</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../about.html" >About us</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</div>
</li>
</ul>
<div id="searchbox" role="search">
<div class="searchformwrapper">
<form class="search" action="../search.html" method="get">
<input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" />
<input class="sk-search-text-btn" type="submit" value="Go" />
</form>
</div>
</div>
</div>
</div>
</nav>
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
<a href="../inspection.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="4. Inspection">Prev</a><a href="../inspection.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="4. Inspection">Up</a>
<a href="permutation_importance.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="4.2. Permutation feature importance">Next</a>
</div>
<div class="alert alert-danger p-1 mb-2" role="alert">
<p class="text-center mb-0">
<strong>scikit-learn 1.3.2</strong><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a>
</p>
</div>
<div class="alert alert-warning p-1 mb-2" role="alert">
<p class="text-center mb-0">
Please <a class="font-weight-bold" href="../about.html#citing-scikit-learn"><string>cite us</string></a> if you use the software.
</p>
</div>
<div class="sk-sidebar-toc">
<ul>
<li><a class="reference internal" href="#">4.1. Partial Dependence and Individual Conditional Expectation plots</a><ul>
<li><a class="reference internal" href="#partial-dependence-plots">4.1.1. Partial dependence plots</a></li>
<li><a class="reference internal" href="#individual-conditional-expectation-ice-plot">4.1.2. Individual conditional expectation (ICE) plot</a></li>
<li><a class="reference internal" href="#mathematical-definition">4.1.3. Mathematical Definition</a></li>
<li><a class="reference internal" href="#computation-methods">4.1.4. Computation methods</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
<section id="partial-dependence-and-individual-conditional-expectation-plots">
<span id="partial-dependence"></span><h1><span class="section-number">4.1. </span>Partial Dependence and Individual Conditional Expectation plots<a class="headerlink" href="#partial-dependence-and-individual-conditional-expectation-plots" title="Permalink to this heading">¶</a></h1>
<p>Partial dependence plots (PDP) and individual conditional expectation (ICE)
plots can be used to visualize and analyze interaction between the target
response <a class="footnote-reference brackets" href="#id6" id="id1" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a> and a set of input features of interest.</p>
<p>Both PDPs <a class="reference internal" href="#h2009" id="id2"><span>[H2009]</span></a> and ICEs <a class="reference internal" href="#g2015" id="id3"><span>[G2015]</span></a> assume that the input features of interest
are independent from the complement features, and this assumption is often
violated in practice. Thus, in the case of correlated features, we will
create absurd data points to compute the PDP/ICE <a class="reference internal" href="#m2019" id="id4"><span>[M2019]</span></a>.</p>
<section id="partial-dependence-plots">
<h2><span class="section-number">4.1.1. </span>Partial dependence plots<a class="headerlink" href="#partial-dependence-plots" title="Permalink to this heading">¶</a></h2>
<p>Partial dependence plots (PDP) show the dependence between the target response
and a set of input features of interest, marginalizing over the values
of all other input features (the ‘complement’ features). Intuitively, we can
interpret the partial dependence as the expected target response as a
function of the input features of interest.</p>
<p>Due to the limits of human perception, the size of the set of input features of
interest must be small (usually, one or two) thus the input features of interest
are usually chosen among the most important features.</p>
<p>The figure below shows two one-way and one two-way partial dependence plots for
the bike sharing dataset, with a
<a class="reference internal" href="generated/sklearn.ensemble.HistGradientBoostingRegressor.html#sklearn.ensemble.HistGradientBoostingRegressor" title="sklearn.ensemble.HistGradientBoostingRegressor"><code class="xref py py-class docutils literal notranslate"><span class="pre">HistGradientBoostingRegressor</span></code></a>:</p>
<figure class="align-center">
<a class="reference external image-reference" href="../auto_examples/inspection/plot_partial_dependence.html"><img alt="../_images/sphx_glr_plot_partial_dependence_006.png" src="../_images/sphx_glr_plot_partial_dependence_006.png" style="width: 700.0px; height: 280.0px;" /></a>
</figure>
<p>One-way PDPs tell us about the interaction between the target response and an input
feature of interest (e.g. linear, non-linear). The left plot in the above figure
shows the effect of the temperature on the number of bike rentals; we can clearly see
that a higher temperature is related with a higher number of bike rentals. Similarly, we
could analyze the effect of the humidity on the number of bike rentals (middle plot).
Thus, these interpretations are marginal, considering a feature at a time.</p>
<p>PDPs with two input features of interest show the interactions among the two features.
For example, the two-variable PDP in the above figure shows the dependence of the number
of bike rentals on joint values of temperature and humidity. We can clearly see an
interaction between the two features: with a temperature higher than 20 degrees Celsius,
mainly the humidity has a strong impact on the number of bike rentals. For lower
temperatures, both the temperature and the humidity have an impact on the number of bike
rentals.</p>
<p>The <a class="reference internal" href="classes.html#module-sklearn.inspection" title="sklearn.inspection"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.inspection</span></code></a> module provides a convenience function
<a class="reference internal" href="generated/sklearn.inspection.PartialDependenceDisplay.html#sklearn.inspection.PartialDependenceDisplay.from_estimator" title="sklearn.inspection.PartialDependenceDisplay.from_estimator"><code class="xref py py-func docutils literal notranslate"><span class="pre">from_estimator</span></code></a> to create one-way and two-way partial
dependence plots. In the below example we show how to create a grid of
partial dependence plots: two one-way PDPs for the features <code class="docutils literal notranslate"><span class="pre">0</span></code> and <code class="docutils literal notranslate"><span class="pre">1</span></code>
and a two-way PDP between the two features:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <span class="n">make_hastie_10_2</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.ensemble</span> <span class="kn">import</span> <span class="n">GradientBoostingClassifier</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.inspection</span> <span class="kn">import</span> <span class="n">PartialDependenceDisplay</span>
<span class="gp">>>> </span><span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">make_hastie_10_2</span><span class="p">(</span><span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">clf</span> <span class="o">=</span> <span class="n">GradientBoostingClassifier</span><span class="p">(</span><span class="n">n_estimators</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">learning_rate</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">max_depth</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">features</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)]</span>
<span class="gp">>>> </span><span class="n">PartialDependenceDisplay</span><span class="o">.</span><span class="n">from_estimator</span><span class="p">(</span><span class="n">clf</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">features</span><span class="p">)</span>
<span class="go"><...></span>
</pre></div>
</div>
<p>You can access the newly created figure and Axes objects using <code class="docutils literal notranslate"><span class="pre">plt.gcf()</span></code>
and <code class="docutils literal notranslate"><span class="pre">plt.gca()</span></code>.</p>
<p>To make a partial dependence plot with categorical features, you need to specify
which features are categorical using the parameter <code class="docutils literal notranslate"><span class="pre">categorical_features</span></code>. This
parameter takes a list of indices, names of the categorical features or a boolean
mask. The graphical representation of partial dependence for categorical features is
a bar plot or a 2D heatmap.</p>
<p>For multi-class classification, you need to set the class label for which
the PDPs should be created via the <code class="docutils literal notranslate"><span class="pre">target</span></code> argument:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <span class="n">load_iris</span>
<span class="gp">>>> </span><span class="n">iris</span> <span class="o">=</span> <span class="n">load_iris</span><span class="p">()</span>
<span class="gp">>>> </span><span class="n">mc_clf</span> <span class="o">=</span> <span class="n">GradientBoostingClassifier</span><span class="p">(</span><span class="n">n_estimators</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">max_depth</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">iris</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="n">iris</span><span class="o">.</span><span class="n">target</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">features</span> <span class="o">=</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">)]</span>
<span class="gp">>>> </span><span class="n">PartialDependenceDisplay</span><span class="o">.</span><span class="n">from_estimator</span><span class="p">(</span><span class="n">mc_clf</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">features</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="go"><...></span>
</pre></div>
</div>
<p>The same parameter <code class="docutils literal notranslate"><span class="pre">target</span></code> is used to specify the target in multi-output
regression settings.</p>
<p>If you need the raw values of the partial dependence function rather than
the plots, you can use the
<a class="reference internal" href="generated/sklearn.inspection.partial_dependence.html#sklearn.inspection.partial_dependence" title="sklearn.inspection.partial_dependence"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.inspection.partial_dependence</span></code></a> function:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.inspection</span> <span class="kn">import</span> <span class="n">partial_dependence</span>
<span class="gp">>>> </span><span class="n">results</span> <span class="o">=</span> <span class="n">partial_dependence</span><span class="p">(</span><span class="n">clf</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="gp">>>> </span><span class="n">results</span><span class="p">[</span><span class="s2">"average"</span><span class="p">]</span>
<span class="go">array([[ 2.466..., 2.466..., ...</span>
<span class="gp">>>> </span><span class="n">results</span><span class="p">[</span><span class="s2">"values"</span><span class="p">]</span>
<span class="go">[array([-1.624..., -1.592..., ...</span>
</pre></div>
</div>
<p>The values at which the partial dependence should be evaluated are directly
generated from <code class="docutils literal notranslate"><span class="pre">X</span></code>. For 2-way partial dependence, a 2D-grid of values is
generated. The <code class="docutils literal notranslate"><span class="pre">values</span></code> field returned by
<a class="reference internal" href="generated/sklearn.inspection.partial_dependence.html#sklearn.inspection.partial_dependence" title="sklearn.inspection.partial_dependence"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.inspection.partial_dependence</span></code></a> gives the actual values
used in the grid for each input feature of interest. They also correspond to
the axis of the plots.</p>
</section>
<section id="individual-conditional-expectation-ice-plot">
<span id="individual-conditional"></span><h2><span class="section-number">4.1.2. </span>Individual conditional expectation (ICE) plot<a class="headerlink" href="#individual-conditional-expectation-ice-plot" title="Permalink to this heading">¶</a></h2>
<p>Similar to a PDP, an individual conditional expectation (ICE) plot
shows the dependence between the target function and an input feature of
interest. However, unlike a PDP, which shows the average effect of the input
feature, an ICE plot visualizes the dependence of the prediction on a
feature for each sample separately with one line per sample.
Due to the limits of human perception, only one input feature of interest is
supported for ICE plots.</p>
<p>The figures below show two ICE plots for the bike sharing dataset,
with a <a class="reference internal" href="generated/sklearn.ensemble.HistGradientBoostingRegressor.html#sklearn.ensemble.HistGradientBoostingRegressor" title="sklearn.ensemble.HistGradientBoostingRegressor"><code class="xref py py-class docutils literal notranslate"><span class="pre">HistGradientBoostingRegressor</span></code></a>:.
The figures plot the corresponding PD line overlaid on ICE lines.</p>
<figure class="align-center">
<a class="reference external image-reference" href="../auto_examples/inspection/plot_partial_dependence.html"><img alt="../_images/sphx_glr_plot_partial_dependence_004.png" src="../_images/sphx_glr_plot_partial_dependence_004.png" style="width: 420.0px; height: 280.0px;" /></a>
</figure>
<p>While the PDPs are good at showing the average effect of the target features,
they can obscure a heterogeneous relationship created by interactions.
When interactions are present the ICE plot will provide many more insights.
For example, we see that the ICE for the temperature feature gives us some
additional information: Some of the ICE lines are flat while some others
shows a decrease of the dependence for temperature above 35 degrees Celsius.
We observe a similar pattern for the humidity feature: some of the ICE
lines show a sharp decrease when the humidity is above 80%.</p>
<p>The <a class="reference internal" href="classes.html#module-sklearn.inspection" title="sklearn.inspection"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.inspection</span></code></a> module’s <a class="reference internal" href="generated/sklearn.inspection.PartialDependenceDisplay.html#sklearn.inspection.PartialDependenceDisplay.from_estimator" title="sklearn.inspection.PartialDependenceDisplay.from_estimator"><code class="xref py py-meth docutils literal notranslate"><span class="pre">PartialDependenceDisplay.from_estimator</span></code></a>
convenience function can be used to create ICE plots by setting
<code class="docutils literal notranslate"><span class="pre">kind='individual'</span></code>. In the example below, we show how to create a grid of
ICE plots:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.datasets</span> <span class="kn">import</span> <span class="n">make_hastie_10_2</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.ensemble</span> <span class="kn">import</span> <span class="n">GradientBoostingClassifier</span>
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.inspection</span> <span class="kn">import</span> <span class="n">PartialDependenceDisplay</span>
</pre></div>
</div>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">make_hastie_10_2</span><span class="p">(</span><span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">clf</span> <span class="o">=</span> <span class="n">GradientBoostingClassifier</span><span class="p">(</span><span class="n">n_estimators</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">learning_rate</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">max_depth</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">features</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span>
<span class="gp">>>> </span><span class="n">PartialDependenceDisplay</span><span class="o">.</span><span class="n">from_estimator</span><span class="p">(</span><span class="n">clf</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">features</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">kind</span><span class="o">=</span><span class="s1">'individual'</span><span class="p">)</span>
<span class="go"><...></span>
</pre></div>
</div>
<p>In ICE plots it might not be easy to see the average effect of the input
feature of interest. Hence, it is recommended to use ICE plots alongside
PDPs. They can be plotted together with
<code class="docutils literal notranslate"><span class="pre">kind='both'</span></code>.</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">PartialDependenceDisplay</span><span class="o">.</span><span class="n">from_estimator</span><span class="p">(</span><span class="n">clf</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">features</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">kind</span><span class="o">=</span><span class="s1">'both'</span><span class="p">)</span>
<span class="go"><...></span>
</pre></div>
</div>
<p>If there are too many lines in an ICE plot, it can be difficult to see
differences between individual samples and interpret the model. Centering the
ICE at the first value on the x-axis, produces centered Individual Conditional
Expectation (cICE) plots <a class="reference internal" href="#g2015" id="id5"><span>[G2015]</span></a>. This puts emphasis on the divergence of
individual conditional expectations from the mean line, thus making it easier
to explore heterogeneous relationships. cICE plots can be plotted by setting
<code class="docutils literal notranslate"><span class="pre">centered=True</span></code>:</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">PartialDependenceDisplay</span><span class="o">.</span><span class="n">from_estimator</span><span class="p">(</span><span class="n">clf</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">features</span><span class="p">,</span>
<span class="gp">... </span> <span class="n">kind</span><span class="o">=</span><span class="s1">'both'</span><span class="p">,</span> <span class="n">centered</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="go"><...></span>
</pre></div>
</div>
</section>
<section id="mathematical-definition">
<h2><span class="section-number">4.1.3. </span>Mathematical Definition<a class="headerlink" href="#mathematical-definition" title="Permalink to this heading">¶</a></h2>
<p>Let <span class="math notranslate nohighlight">\(X_S\)</span> be the set of input features of interest (i.e. the <code class="docutils literal notranslate"><span class="pre">features</span></code>
parameter) and let <span class="math notranslate nohighlight">\(X_C\)</span> be its complement.</p>
<p>The partial dependence of the response <span class="math notranslate nohighlight">\(f\)</span> at a point <span class="math notranslate nohighlight">\(x_S\)</span> is
defined as:</p>
<div class="math notranslate nohighlight">
\[\begin{split}pd_{X_S}(x_S) &\overset{def}{=} \mathbb{E}_{X_C}\left[ f(x_S, X_C) \right]\\
&= \int f(x_S, x_C) p(x_C) dx_C,\end{split}\]</div>
<p>where <span class="math notranslate nohighlight">\(f(x_S, x_C)\)</span> is the response function (<a class="reference internal" href="../glossary.html#term-predict"><span class="xref std std-term">predict</span></a>,
<a class="reference internal" href="../glossary.html#term-predict_proba"><span class="xref std std-term">predict_proba</span></a> or <a class="reference internal" href="../glossary.html#term-decision_function"><span class="xref std std-term">decision_function</span></a>) for a given sample whose
values are defined by <span class="math notranslate nohighlight">\(x_S\)</span> for the features in <span class="math notranslate nohighlight">\(X_S\)</span>, and by
<span class="math notranslate nohighlight">\(x_C\)</span> for the features in <span class="math notranslate nohighlight">\(X_C\)</span>. Note that <span class="math notranslate nohighlight">\(x_S\)</span> and
<span class="math notranslate nohighlight">\(x_C\)</span> may be tuples.</p>
<p>Computing this integral for various values of <span class="math notranslate nohighlight">\(x_S\)</span> produces a PDP plot
as above. An ICE line is defined as a single <span class="math notranslate nohighlight">\(f(x_{S}, x_{C}^{(i)})\)</span>
evaluated at <span class="math notranslate nohighlight">\(x_{S}\)</span>.</p>
</section>
<section id="computation-methods">
<h2><span class="section-number">4.1.4. </span>Computation methods<a class="headerlink" href="#computation-methods" title="Permalink to this heading">¶</a></h2>
<p>There are two main methods to approximate the integral above, namely the
‘brute’ and ‘recursion’ methods. The <code class="docutils literal notranslate"><span class="pre">method</span></code> parameter controls which method
to use.</p>
<p>The ‘brute’ method is a generic method that works with any estimator. Note that
computing ICE plots is only supported with the ‘brute’ method. It
approximates the above integral by computing an average over the data <code class="docutils literal notranslate"><span class="pre">X</span></code>:</p>
<div class="math notranslate nohighlight">
\[pd_{X_S}(x_S) \approx \frac{1}{n_\text{samples}} \sum_{i=1}^n f(x_S, x_C^{(i)}),\]</div>
<p>where <span class="math notranslate nohighlight">\(x_C^{(i)}\)</span> is the value of the i-th sample for the features in
<span class="math notranslate nohighlight">\(X_C\)</span>. For each value of <span class="math notranslate nohighlight">\(x_S\)</span>, this method requires a full pass
over the dataset <code class="docutils literal notranslate"><span class="pre">X</span></code> which is computationally intensive.</p>
<p>Each of the <span class="math notranslate nohighlight">\(f(x_{S}, x_{C}^{(i)})\)</span> corresponds to one ICE line evaluated
at <span class="math notranslate nohighlight">\(x_{S}\)</span>. Computing this for multiple values of <span class="math notranslate nohighlight">\(x_{S}\)</span>, one
obtains a full ICE line. As one can see, the average of the ICE lines
correspond to the partial dependence line.</p>
<p>The ‘recursion’ method is faster than the ‘brute’ method, but it is only
supported for PDP plots by some tree-based estimators. It is computed as
follows. For a given point <span class="math notranslate nohighlight">\(x_S\)</span>, a weighted tree traversal is performed:
if a split node involves an input feature of interest, the corresponding left
or right branch is followed; otherwise both branches are followed, each branch
being weighted by the fraction of training samples that entered that branch.
Finally, the partial dependence is given by a weighted average of all the
visited leaves values.</p>
<p>With the ‘brute’ method, the parameter <code class="docutils literal notranslate"><span class="pre">X</span></code> is used both for generating the
grid of values <span class="math notranslate nohighlight">\(x_S\)</span> and the complement feature values <span class="math notranslate nohighlight">\(x_C\)</span>.
However with the ‘recursion’ method, <code class="docutils literal notranslate"><span class="pre">X</span></code> is only used for the grid values:
implicitly, the <span class="math notranslate nohighlight">\(x_C\)</span> values are those of the training data.</p>
<p>By default, the ‘recursion’ method is used for plotting PDPs on tree-based
estimators that support it, and ‘brute’ is used for the rest.</p>
<div class="admonition note" id="pdp-method-differences">
<p class="admonition-title">Note</p>
<p>While both methods should be close in general, they might differ in some
specific settings. The ‘brute’ method assumes the existence of the
data points <span class="math notranslate nohighlight">\((x_S, x_C^{(i)})\)</span>. When the features are correlated,
such artificial samples may have a very low probability mass. The ‘brute’
and ‘recursion’ methods will likely disagree regarding the value of the
partial dependence, because they will treat these unlikely
samples differently. Remember, however, that the primary assumption for
interpreting PDPs is that the features should be independent.</p>
</div>
<aside class="topic">
<p class="topic-title">Examples:</p>
<ul class="simple">
<li><p><a class="reference internal" href="../auto_examples/inspection/plot_partial_dependence.html#sphx-glr-auto-examples-inspection-plot-partial-dependence-py"><span class="std std-ref">Partial Dependence and Individual Conditional Expectation Plots</span></a></p></li>
</ul>
</aside>
<p class="rubric">Footnotes</p>
<aside class="footnote-list brackets">
<aside class="footnote brackets" id="id6" role="note">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id1">1</a><span class="fn-bracket">]</span></span>
<p>For classification, the target response may be the probability of a
class (the positive class for binary classification), or the decision
function.</p>
</aside>
</aside>
<aside class="topic">
<p class="topic-title">References</p>
<div role="list" class="citation-list">
<div class="citation" id="h2009" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id2">H2009</a><span class="fn-bracket">]</span></span>
<p>T. Hastie, R. Tibshirani and J. Friedman,
<a class="reference external" href="https://web.stanford.edu/~hastie/ElemStatLearn//">The Elements of Statistical Learning</a>,
Second Edition, Section 10.13.2, Springer, 2009.</p>
</div>
<div class="citation" id="m2019" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id4">M2019</a><span class="fn-bracket">]</span></span>
<p>C. Molnar,
<a class="reference external" href="https://christophm.github.io/interpretable-ml-book/">Interpretable Machine Learning</a>,
Section 5.1, 2019.</p>
</div>
<div class="citation" id="g2015" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span>G2015<span class="fn-bracket">]</span></span>
<span class="backrefs">(<a role="doc-backlink" href="#id3">1</a>,<a role="doc-backlink" href="#id5">2</a>)</span>
<p><a class="reference external" href="https://arxiv.org/abs/1309.6392">A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin,
“Peeking Inside the Black Box: Visualizing Statistical
Learning With Plots of Individual Conditional Expectation”
Journal of Computational and Graphical Statistics,
24(1): 44-65, Springer, 2015.</a></p>
</div>
</div>
</aside>
</section>
</section>
</div>
<div class="container">
<footer class="sk-content-footer">
© 2007 - 2023, scikit-learn developers (BSD License).
<a href="../_sources/modules/partial_dependence.rst.txt" rel="nofollow">Show this page source</a>
</footer>
</div>
</div>
</div>
<script src="../_static/js/vendor/bootstrap.min.js"></script>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script defer data-domain="scikit-learn.org" src="https://views.scientific-python.org/js/script.js">
</script>
<script src="../_static/clipboard.min.js"></script>
<script src="../_static/copybutton.js"></script>
<script>
$(document).ready(function() {
/* Add a [>>>] button on the top-right corner of code samples to hide
* the >>> and ... prompts and the output and thus make the code
* copyable. */
var div = $('.highlight-python .highlight,' +
'.highlight-python3 .highlight,' +
'.highlight-pycon .highlight,' +
'.highlight-default .highlight')
var pre = div.find('pre');
// get the styles from the current theme
pre.parent().parent().css('position', 'relative');
// create and add the button to all the code blocks that contain >>>
div.each(function(index) {
var jthis = $(this);
// tracebacks (.gt) contain bare text elements that need to be
// wrapped in a span to work with .nextUntil() (see later)
jthis.find('pre:has(.gt)').contents().filter(function() {
return ((this.nodeType == 3) && (this.data.trim().length > 0));
}).wrap('<span>');
});
/*** Add permalink buttons next to glossary terms ***/
$('dl.glossary > dt[id]').append(function() {
return ('<a class="headerlink" href="#' +
this.getAttribute('id') +
'" title="Permalink to this term">¶</a>');
});
});
</script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>