-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathsklearn.datasets.fetch_20newsgroups_vectorized.html
384 lines (349 loc) · 25.8 KB
/
sklearn.datasets.fetch_20newsgroups_vectorized.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta property="og:title" content="sklearn.datasets.fetch_20newsgroups_vectorized" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/modules/generated/sklearn.datasets.fetch_20newsgroups_vectorized.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="Examples using sklearn.datasets.fetch_20newsgroups_vectorized: Model Complexity Influence Multiclass sparse logistic regression on 20newgroups The Johnson-Lindenstrauss bound for embedding with ran..." />
<meta property="og:image" content="https://scikit-learn/stable/_images/sphx_glr_plot_model_complexity_influence_thumb.png" />
<meta property="og:image:alt" content="" />
<meta name="description" content="Examples using sklearn.datasets.fetch_20newsgroups_vectorized: Model Complexity Influence Multiclass sparse logistic regression on 20newgroups The Johnson-Lindenstrauss bound for embedding with ran..." />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>sklearn.datasets.fetch_20newsgroups_vectorized — scikit-learn 1.3.2 documentation</title>
<link rel="canonical" href="http://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups_vectorized.html" />
<link rel="shortcut icon" href="../../_static/favicon.ico"/>
<link rel="stylesheet" href="../../_static/css/vendor/bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/copybutton.css" type="text/css" />
<link rel="stylesheet" href="../../_static/plot_directive.css" type="text/css" />
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Vibur" type="text/css" />
<link rel="stylesheet" href="../../_static/jupyterlite_sphinx.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script src="../../_static/js/vendor/jquery-3.6.3.slim.min.js"></script>
</head>
<body>
<nav id="navbar" class="sk-docs-navbar navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid sk-docs-container px-0">
<a class="navbar-brand py-0" href="../../index.html">
<img
class="sk-brand-img"
src="../../_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
<button
id="sk-navbar-toggler"
class="navbar-toggler"
type="button"
data-toggle="collapse"
data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent"
aria-expanded="false"
aria-label="Toggle navigation"
>
<span class="navbar-toggler-icon"></span>
</button>
<div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../install.html">Install</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../user_guide.html">User Guide</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../classes.html">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../auto_examples/index.html">Examples</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://blog.scikit-learn.org/">Community</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../getting_started.html" >Getting Started</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../tutorial/index.html" >Tutorial</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../whats_new/v1.3.html" >What's new</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../glossary.html" >Glossary</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../faq.html" >FAQ</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../support.html" >Support</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../related_projects.html" >Related packages</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../roadmap.html" >Roadmap</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../governance.html" >Governance</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../about.html" >About us</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</li>
<li class="nav-item dropdown nav-more-item-dropdown">
<a class="sk-nav-link nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<a class="sk-nav-dropdown-item dropdown-item" href="../../getting_started.html" >Getting Started</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../tutorial/index.html" >Tutorial</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../whats_new/v1.3.html" >What's new</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../glossary.html" >Glossary</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../faq.html" >FAQ</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../support.html" >Support</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../related_projects.html" >Related packages</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../roadmap.html" >Roadmap</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../governance.html" >Governance</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../about.html" >About us</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</div>
</li>
</ul>
<div id="searchbox" role="search">
<div class="searchformwrapper">
<form class="search" action="../../search.html" method="get">
<input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" />
<input class="sk-search-text-btn" type="submit" value="Go" />
</form>
</div>
</div>
</div>
</div>
</nav>
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
<a href="sklearn.datasets.fetch_20newsgroups.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="sklearn.datasets.fetch_20newsgroups">Prev</a><a href="../classes.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="API Reference">Up</a>
<a href="sklearn.datasets.fetch_california_housing.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="sklearn.datasets.fetch_california_housing">Next</a>
</div>
<div class="alert alert-danger p-1 mb-2" role="alert">
<p class="text-center mb-0">
<strong>scikit-learn 1.3.2</strong><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a>
</p>
</div>
<div class="alert alert-warning p-1 mb-2" role="alert">
<p class="text-center mb-0">
Please <a class="font-weight-bold" href="../../about.html#citing-scikit-learn"><string>cite us</string></a> if you use the software.
</p>
</div>
<div class="sk-sidebar-toc">
<ul>
<li><a class="reference internal" href="#"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.datasets</span></code>.fetch_20newsgroups_vectorized</a><ul>
<li><a class="reference internal" href="#sklearn.datasets.fetch_20newsgroups_vectorized"><code class="docutils literal notranslate"><span class="pre">fetch_20newsgroups_vectorized</span></code></a></li>
<li><a class="reference internal" href="#examples-using-sklearn-datasets-fetch-20newsgroups-vectorized">Examples using <code class="docutils literal notranslate"><span class="pre">sklearn.datasets.fetch_20newsgroups_vectorized</span></code></a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
<section id="sklearn-datasets-fetch-20newsgroups-vectorized">
<h1><a class="reference internal" href="../classes.html#module-sklearn.datasets" title="sklearn.datasets"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.datasets</span></code></a>.fetch_20newsgroups_vectorized<a class="headerlink" href="#sklearn-datasets-fetch-20newsgroups-vectorized" title="Permalink to this heading">¶</a></h1>
<dl class="py function">
<dt class="sig sig-object py" id="sklearn.datasets.fetch_20newsgroups_vectorized">
<span class="sig-prename descclassname"><span class="pre">sklearn.datasets.</span></span><span class="sig-name descname"><span class="pre">fetch_20newsgroups_vectorized</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">subset</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'train'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">remove</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">()</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data_home</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">download_if_missing</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">return_X_y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">normalize</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">as_frame</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/datasets/_twenty_newsgroups.py#L350"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.datasets.fetch_20newsgroups_vectorized" title="Permalink to this definition">¶</a></dt>
<dd><p>Load and vectorize the 20 newsgroups dataset (classification).</p>
<p>Download it if necessary.</p>
<p>This is a convenience function; the transformation is done using the
default settings for
<a class="reference internal" href="sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer" title="sklearn.feature_extraction.text.CountVectorizer"><code class="xref py py-class docutils literal notranslate"><span class="pre">CountVectorizer</span></code></a>. For more
advanced usage (stopword filtering, n-gram extraction, etc.), combine
fetch_20newsgroups with a custom
<a class="reference internal" href="sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer" title="sklearn.feature_extraction.text.CountVectorizer"><code class="xref py py-class docutils literal notranslate"><span class="pre">CountVectorizer</span></code></a>,
<a class="reference internal" href="sklearn.feature_extraction.text.HashingVectorizer.html#sklearn.feature_extraction.text.HashingVectorizer" title="sklearn.feature_extraction.text.HashingVectorizer"><code class="xref py py-class docutils literal notranslate"><span class="pre">HashingVectorizer</span></code></a>,
<a class="reference internal" href="sklearn.feature_extraction.text.TfidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer" title="sklearn.feature_extraction.text.TfidfTransformer"><code class="xref py py-class docutils literal notranslate"><span class="pre">TfidfTransformer</span></code></a> or
<a class="reference internal" href="sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer" title="sklearn.feature_extraction.text.TfidfVectorizer"><code class="xref py py-class docutils literal notranslate"><span class="pre">TfidfVectorizer</span></code></a>.</p>
<p>The resulting counts are normalized using
<a class="reference internal" href="sklearn.preprocessing.normalize.html#sklearn.preprocessing.normalize" title="sklearn.preprocessing.normalize"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.preprocessing.normalize</span></code></a> unless normalize is set to False.</p>
<table class="docutils align-default">
<tbody>
<tr class="row-odd"><td><p>Classes</p></td>
<td><p>20</p></td>
</tr>
<tr class="row-even"><td><p>Samples total</p></td>
<td><p>18846</p></td>
</tr>
<tr class="row-odd"><td><p>Dimensionality</p></td>
<td><p>130107</p></td>
</tr>
<tr class="row-even"><td><p>Features</p></td>
<td><p>real</p></td>
</tr>
</tbody>
</table>
<p>Read more in the <a class="reference internal" href="../../datasets/real_world.html#newsgroups-dataset"><span class="std std-ref">User Guide</span></a>.</p>
<dl class="field-list">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl>
<dt><strong>subset</strong><span class="classifier">{‘train’, ‘test’, ‘all’}, default=’train’</span></dt><dd><p>Select the dataset to load: ‘train’ for the training set, ‘test’
for the test set, ‘all’ for both, with shuffled ordering.</p>
</dd>
<dt><strong>remove</strong><span class="classifier">tuple, default=()</span></dt><dd><p>May contain any subset of (‘headers’, ‘footers’, ‘quotes’). Each of
these are kinds of text that will be detected and removed from the
newsgroup posts, preventing classifiers from overfitting on
metadata.</p>
<p>‘headers’ removes newsgroup headers, ‘footers’ removes blocks at the
ends of posts that look like signatures, and ‘quotes’ removes lines
that appear to be quoting another post.</p>
</dd>
<dt><strong>data_home</strong><span class="classifier">str or path-like, default=None</span></dt><dd><p>Specify an download and cache folder for the datasets. If None,
all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.</p>
</dd>
<dt><strong>download_if_missing</strong><span class="classifier">bool, default=True</span></dt><dd><p>If False, raise an OSError if the data is not locally available
instead of trying to download the data from the source site.</p>
</dd>
<dt><strong>return_X_y</strong><span class="classifier">bool, default=False</span></dt><dd><p>If True, returns <code class="docutils literal notranslate"><span class="pre">(data.data,</span> <span class="pre">data.target)</span></code> instead of a Bunch
object.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 0.20.</span></p>
</div>
</dd>
<dt><strong>normalize</strong><span class="classifier">bool, default=True</span></dt><dd><p>If True, normalizes each document’s feature vector to unit norm using
<a class="reference internal" href="sklearn.preprocessing.normalize.html#sklearn.preprocessing.normalize" title="sklearn.preprocessing.normalize"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.preprocessing.normalize</span></code></a>.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 0.22.</span></p>
</div>
</dd>
<dt><strong>as_frame</strong><span class="classifier">bool, default=False</span></dt><dd><p>If True, the data is a pandas DataFrame including columns with
appropriate dtypes (numeric, string, or categorical). The target is
a pandas DataFrame or Series depending on the number of
<code class="docutils literal notranslate"><span class="pre">target_columns</span></code>.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 0.24.</span></p>
</div>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl>
<dt><strong>bunch</strong><span class="classifier"><a class="reference internal" href="sklearn.utils.Bunch.html#sklearn.utils.Bunch" title="sklearn.utils.Bunch"><code class="xref py py-class docutils literal notranslate"><span class="pre">Bunch</span></code></a></span></dt><dd><p>Dictionary-like object, with the following attributes.</p>
<dl>
<dt>data: {sparse matrix, dataframe} of shape (n_samples, n_features)</dt><dd><p>The input data matrix. If <code class="docutils literal notranslate"><span class="pre">as_frame</span></code> is <code class="docutils literal notranslate"><span class="pre">True</span></code>, <code class="docutils literal notranslate"><span class="pre">data</span></code> is
a pandas DataFrame with sparse columns.</p>
</dd>
<dt>target: {ndarray, series} of shape (n_samples,)</dt><dd><p>The target labels. If <code class="docutils literal notranslate"><span class="pre">as_frame</span></code> is <code class="docutils literal notranslate"><span class="pre">True</span></code>, <code class="docutils literal notranslate"><span class="pre">target</span></code> is a
pandas Series.</p>
</dd>
<dt>target_names: list of shape (n_classes,)</dt><dd><p>The names of target classes.</p>
</dd>
<dt>DESCR: str</dt><dd><p>The full description of the dataset.</p>
</dd>
<dt>frame: dataframe of shape (n_samples, n_features + 1)</dt><dd><p>Only present when <code class="docutils literal notranslate"><span class="pre">as_frame=True</span></code>. Pandas DataFrame with <code class="docutils literal notranslate"><span class="pre">data</span></code>
and <code class="docutils literal notranslate"><span class="pre">target</span></code>.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 0.24.</span></p>
</div>
</dd>
</dl>
</dd>
<dt><strong>(data, target)</strong><span class="classifier">tuple if <code class="docutils literal notranslate"><span class="pre">return_X_y</span></code> is True</span></dt><dd><p><code class="docutils literal notranslate"><span class="pre">data</span></code> and <code class="docutils literal notranslate"><span class="pre">target</span></code> would be of the format defined in the <code class="docutils literal notranslate"><span class="pre">Bunch</span></code>
description above.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 0.20.</span></p>
</div>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<section id="examples-using-sklearn-datasets-fetch-20newsgroups-vectorized">
<h2>Examples using <code class="docutils literal notranslate"><span class="pre">sklearn.datasets.fetch_20newsgroups_vectorized</span></code><a class="headerlink" href="#examples-using-sklearn-datasets-fetch-20newsgroups-vectorized" title="Permalink to this heading">¶</a></h2>
<div class="sphx-glr-thumbnails"><div class="sphx-glr-thumbcontainer" tooltip="Demonstrate how model complexity influences both prediction accuracy and computational performa..."><img alt="" src="../../_images/sphx_glr_plot_model_complexity_influence_thumb.png" />
<p><a class="reference internal" href="../../auto_examples/applications/plot_model_complexity_influence.html#sphx-glr-auto-examples-applications-plot-model-complexity-influence-py"><span class="std std-ref">Model Complexity Influence</span></a></p>
<div class="sphx-glr-thumbnail-title">Model Complexity Influence</div>
</div><div class="sphx-glr-thumbcontainer" tooltip="Comparison of multinomial logistic L1 vs one-versus-rest L1 logistic regression to classify doc..."><img alt="" src="../../_images/sphx_glr_plot_sparse_logistic_regression_20newsgroups_thumb.png" />
<p><a class="reference internal" href="../../auto_examples/linear_model/plot_sparse_logistic_regression_20newsgroups.html#sphx-glr-auto-examples-linear-model-plot-sparse-logistic-regression-20newsgroups-py"><span class="std std-ref">Multiclass sparse logistic regression on 20newgroups</span></a></p>
<div class="sphx-glr-thumbnail-title">Multiclass sparse logistic regression on 20newgroups</div>
</div><div class="sphx-glr-thumbcontainer" tooltip=" The `Johnson-Lindenstrauss lemma`_ states that any high dimensional dataset can be randomly pr..."><img alt="" src="../../_images/sphx_glr_plot_johnson_lindenstrauss_bound_thumb.png" />
<p><a class="reference internal" href="../../auto_examples/miscellaneous/plot_johnson_lindenstrauss_bound.html#sphx-glr-auto-examples-miscellaneous-plot-johnson-lindenstrauss-bound-py"><span class="std std-ref">The Johnson-Lindenstrauss bound for embedding with random projections</span></a></p>
<div class="sphx-glr-thumbnail-title">The Johnson-Lindenstrauss bound for embedding with random projections</div>
</div></div><div class="clearer"></div></section>
</section>
</div>
<div class="container">
<footer class="sk-content-footer">
© 2007 - 2023, scikit-learn developers (BSD License).
<a href="../../_sources/modules/generated/sklearn.datasets.fetch_20newsgroups_vectorized.rst.txt" rel="nofollow">Show this page source</a>
</footer>
</div>
</div>
</div>
<script src="../../_static/js/vendor/bootstrap.min.js"></script>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script defer data-domain="scikit-learn.org" src="https://views.scientific-python.org/js/script.js">
</script>
<script src="../../_static/clipboard.min.js"></script>
<script src="../../_static/copybutton.js"></script>
<script>
$(document).ready(function() {
/* Add a [>>>] button on the top-right corner of code samples to hide
* the >>> and ... prompts and the output and thus make the code
* copyable. */
var div = $('.highlight-python .highlight,' +
'.highlight-python3 .highlight,' +
'.highlight-pycon .highlight,' +
'.highlight-default .highlight')
var pre = div.find('pre');
// get the styles from the current theme
pre.parent().parent().css('position', 'relative');
// create and add the button to all the code blocks that contain >>>
div.each(function(index) {
var jthis = $(this);
// tracebacks (.gt) contain bare text elements that need to be
// wrapped in a span to work with .nextUntil() (see later)
jthis.find('pre:has(.gt)').contents().filter(function() {
return ((this.nodeType == 3) && (this.data.trim().length > 0));
}).wrap('<span>');
});
/*** Add permalink buttons next to glossary terms ***/
$('dl.glossary > dt[id]').append(function() {
return ('<a class="headerlink" href="#' +
this.getAttribute('id') +
'" title="Permalink to this term">¶</a>');
});
});
</script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>