-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathsklearn.cross_decomposition.PLSRegression.html
838 lines (789 loc) · 74.9 KB
/
sklearn.cross_decomposition.PLSRegression.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" />
<meta property="og:title" content="sklearn.cross_decomposition.PLSRegression" />
<meta property="og:type" content="website" />
<meta property="og:url" content="https://scikit-learn/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html" />
<meta property="og:site_name" content="scikit-learn" />
<meta property="og:description" content="Examples using sklearn.cross_decomposition.PLSRegression: Compare cross decomposition methods Principal Component Regression vs Partial Least Squares Regression" />
<meta property="og:image" content="https://scikit-learn/stable/_images/sphx_glr_plot_compare_cross_decomposition_thumb.png" />
<meta property="og:image:alt" content="" />
<meta name="description" content="Examples using sklearn.cross_decomposition.PLSRegression: Compare cross decomposition methods Principal Component Regression vs Partial Least Squares Regression" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>sklearn.cross_decomposition.PLSRegression — scikit-learn 1.3.2 documentation</title>
<link rel="canonical" href="http://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html" />
<link rel="shortcut icon" href="../../_static/favicon.ico"/>
<link rel="stylesheet" href="../../_static/css/vendor/bootstrap.min.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/copybutton.css" type="text/css" />
<link rel="stylesheet" href="../../_static/plot_directive.css" type="text/css" />
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Vibur" type="text/css" />
<link rel="stylesheet" href="../../_static/jupyterlite_sphinx.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sg_gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script src="../../_static/js/vendor/jquery-3.6.3.slim.min.js"></script>
</head>
<body>
<nav id="navbar" class="sk-docs-navbar navbar navbar-expand-md navbar-light bg-light py-0">
<div class="container-fluid sk-docs-container px-0">
<a class="navbar-brand py-0" href="../../index.html">
<img
class="sk-brand-img"
src="../../_static/scikit-learn-logo-small.png"
alt="logo"/>
</a>
<button
id="sk-navbar-toggler"
class="navbar-toggler"
type="button"
data-toggle="collapse"
data-target="#navbarSupportedContent"
aria-controls="navbarSupportedContent"
aria-expanded="false"
aria-label="Toggle navigation"
>
<span class="navbar-toggler-icon"></span>
</button>
<div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../install.html">Install</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../user_guide.html">User Guide</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../classes.html">API</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" href="../../auto_examples/index.html">Examples</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://blog.scikit-learn.org/">Community</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../getting_started.html" >Getting Started</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../tutorial/index.html" >Tutorial</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../whats_new/v1.3.html" >What's new</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../glossary.html" >Glossary</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../faq.html" >FAQ</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../support.html" >Support</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../related_projects.html" >Related packages</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../roadmap.html" >Roadmap</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../governance.html" >Governance</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../about.html" >About us</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
</li>
<li class="nav-item">
<a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</li>
<li class="nav-item dropdown nav-more-item-dropdown">
<a class="sk-nav-link nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<a class="sk-nav-dropdown-item dropdown-item" href="../../getting_started.html" >Getting Started</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../tutorial/index.html" >Tutorial</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../whats_new/v1.3.html" >What's new</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../glossary.html" >Glossary</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/developers/index.html" target="_blank" rel="noopener noreferrer">Development</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../faq.html" >FAQ</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../support.html" >Support</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../related_projects.html" >Related packages</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../roadmap.html" >Roadmap</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../governance.html" >Governance</a>
<a class="sk-nav-dropdown-item dropdown-item" href="../../about.html" >About us</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a>
<a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a>
</div>
</li>
</ul>
<div id="searchbox" role="search">
<div class="searchformwrapper">
<form class="search" action="../../search.html" method="get">
<input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" />
<input class="sk-search-text-btn" type="submit" value="Go" />
</form>
</div>
</div>
</div>
</div>
</nav>
<div class="d-flex" id="sk-doc-wrapper">
<input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox">
<label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label>
<div id="sk-sidebar-wrapper" class="border-right">
<div class="sk-sidebar-toc-wrapper">
<div class="btn-group w-100 mb-2" role="group" aria-label="rellinks">
<a href="sklearn.cross_decomposition.PLSCanonical.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="sklearn.cross_decomposition.PLSCanonical">Prev</a><a href="../classes.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="API Reference">Up</a>
<a href="sklearn.cross_decomposition.PLSSVD.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="sklearn.cross_decomposition.PLSSVD">Next</a>
</div>
<div class="alert alert-danger p-1 mb-2" role="alert">
<p class="text-center mb-0">
<strong>scikit-learn 1.3.2</strong><br/>
<a href="http://scikit-learn.org/dev/versions.html">Other versions</a>
</p>
</div>
<div class="alert alert-warning p-1 mb-2" role="alert">
<p class="text-center mb-0">
Please <a class="font-weight-bold" href="../../about.html#citing-scikit-learn"><string>cite us</string></a> if you use the software.
</p>
</div>
<div class="sk-sidebar-toc">
<ul>
<li><a class="reference internal" href="#"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.cross_decomposition</span></code>.PLSRegression</a><ul>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression"><code class="docutils literal notranslate"><span class="pre">PLSRegression</span></code></a><ul>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.fit"><code class="docutils literal notranslate"><span class="pre">PLSRegression.fit</span></code></a></li>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.fit_transform"><code class="docutils literal notranslate"><span class="pre">PLSRegression.fit_transform</span></code></a></li>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.get_feature_names_out"><code class="docutils literal notranslate"><span class="pre">PLSRegression.get_feature_names_out</span></code></a></li>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.get_metadata_routing"><code class="docutils literal notranslate"><span class="pre">PLSRegression.get_metadata_routing</span></code></a></li>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.get_params"><code class="docutils literal notranslate"><span class="pre">PLSRegression.get_params</span></code></a></li>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.inverse_transform"><code class="docutils literal notranslate"><span class="pre">PLSRegression.inverse_transform</span></code></a></li>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.predict"><code class="docutils literal notranslate"><span class="pre">PLSRegression.predict</span></code></a></li>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.score"><code class="docutils literal notranslate"><span class="pre">PLSRegression.score</span></code></a></li>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.set_output"><code class="docutils literal notranslate"><span class="pre">PLSRegression.set_output</span></code></a></li>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.set_params"><code class="docutils literal notranslate"><span class="pre">PLSRegression.set_params</span></code></a></li>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.set_predict_request"><code class="docutils literal notranslate"><span class="pre">PLSRegression.set_predict_request</span></code></a></li>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.set_score_request"><code class="docutils literal notranslate"><span class="pre">PLSRegression.set_score_request</span></code></a></li>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.set_transform_request"><code class="docutils literal notranslate"><span class="pre">PLSRegression.set_transform_request</span></code></a></li>
<li><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.transform"><code class="docutils literal notranslate"><span class="pre">PLSRegression.transform</span></code></a></li>
</ul>
</li>
<li><a class="reference internal" href="#examples-using-sklearn-cross-decomposition-plsregression">Examples using <code class="docutils literal notranslate"><span class="pre">sklearn.cross_decomposition.PLSRegression</span></code></a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
<div id="sk-page-content-wrapper">
<div class="sk-page-content container-fluid body px-md-3" role="main">
<section id="sklearn-cross-decomposition-plsregression">
<h1><a class="reference internal" href="../classes.html#module-sklearn.cross_decomposition" title="sklearn.cross_decomposition"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.cross_decomposition</span></code></a>.PLSRegression<a class="headerlink" href="#sklearn-cross-decomposition-plsregression" title="Permalink to this heading">¶</a></h1>
<dl class="py class">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sklearn.cross_decomposition.</span></span><span class="sig-name descname"><span class="pre">PLSRegression</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">n_components</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">2</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">scale</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_iter</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">500</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tol</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1e-06</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">copy</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/cross_decomposition/_pls.py#L502"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression" title="Permalink to this definition">¶</a></dt>
<dd><p>PLS regression.</p>
<p>PLSRegression is also known as PLS2 or PLS1, depending on the number of
targets.</p>
<p>Read more in the <a class="reference internal" href="../cross_decomposition.html#cross-decomposition"><span class="std std-ref">User Guide</span></a>.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 0.8.</span></p>
</div>
<dl class="field-list">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>n_components</strong><span class="classifier">int, default=2</span></dt><dd><p>Number of components to keep. Should be in <code class="docutils literal notranslate"><span class="pre">[1,</span> <span class="pre">min(n_samples,</span>
<span class="pre">n_features,</span> <span class="pre">n_targets)]</span></code>.</p>
</dd>
<dt><strong>scale</strong><span class="classifier">bool, default=True</span></dt><dd><p>Whether to scale <code class="docutils literal notranslate"><span class="pre">X</span></code> and <code class="docutils literal notranslate"><span class="pre">Y</span></code>.</p>
</dd>
<dt><strong>max_iter</strong><span class="classifier">int, default=500</span></dt><dd><p>The maximum number of iterations of the power method when
<code class="docutils literal notranslate"><span class="pre">algorithm='nipals'</span></code>. Ignored otherwise.</p>
</dd>
<dt><strong>tol</strong><span class="classifier">float, default=1e-06</span></dt><dd><p>The tolerance used as convergence criteria in the power method: the
algorithm stops whenever the squared norm of <code class="docutils literal notranslate"><span class="pre">u_i</span> <span class="pre">-</span> <span class="pre">u_{i-1}</span></code> is less
than <code class="docutils literal notranslate"><span class="pre">tol</span></code>, where <code class="docutils literal notranslate"><span class="pre">u</span></code> corresponds to the left singular vector.</p>
</dd>
<dt><strong>copy</strong><span class="classifier">bool, default=True</span></dt><dd><p>Whether to copy <code class="docutils literal notranslate"><span class="pre">X</span></code> and <code class="docutils literal notranslate"><span class="pre">Y</span></code> in <a class="reference internal" href="../../glossary.html#term-fit"><span class="xref std std-term">fit</span></a> before applying centering,
and potentially scaling. If <code class="docutils literal notranslate"><span class="pre">False</span></code>, these operations will be done
inplace, modifying both arrays.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Attributes<span class="colon">:</span></dt>
<dd class="field-even"><dl>
<dt><strong>x_weights_</strong><span class="classifier">ndarray of shape (n_features, n_components)</span></dt><dd><p>The left singular vectors of the cross-covariance matrices of each
iteration.</p>
</dd>
<dt><strong>y_weights_</strong><span class="classifier">ndarray of shape (n_targets, n_components)</span></dt><dd><p>The right singular vectors of the cross-covariance matrices of each
iteration.</p>
</dd>
<dt><strong>x_loadings_</strong><span class="classifier">ndarray of shape (n_features, n_components)</span></dt><dd><p>The loadings of <code class="docutils literal notranslate"><span class="pre">X</span></code>.</p>
</dd>
<dt><strong>y_loadings_</strong><span class="classifier">ndarray of shape (n_targets, n_components)</span></dt><dd><p>The loadings of <code class="docutils literal notranslate"><span class="pre">Y</span></code>.</p>
</dd>
<dt><strong>x_scores_</strong><span class="classifier">ndarray of shape (n_samples, n_components)</span></dt><dd><p>The transformed training samples.</p>
</dd>
<dt><strong>y_scores_</strong><span class="classifier">ndarray of shape (n_samples, n_components)</span></dt><dd><p>The transformed training targets.</p>
</dd>
<dt><strong>x_rotations_</strong><span class="classifier">ndarray of shape (n_features, n_components)</span></dt><dd><p>The projection matrix used to transform <code class="docutils literal notranslate"><span class="pre">X</span></code>.</p>
</dd>
<dt><strong>y_rotations_</strong><span class="classifier">ndarray of shape (n_features, n_components)</span></dt><dd><p>The projection matrix used to transform <code class="docutils literal notranslate"><span class="pre">Y</span></code>.</p>
</dd>
<dt><strong>coef_</strong><span class="classifier">ndarray of shape (n_target, n_features)</span></dt><dd><p>The coefficients of the linear model such that <code class="docutils literal notranslate"><span class="pre">Y</span></code> is approximated as
<code class="docutils literal notranslate"><span class="pre">Y</span> <span class="pre">=</span> <span class="pre">X</span> <span class="pre">@</span> <span class="pre">coef_.T</span> <span class="pre">+</span> <span class="pre">intercept_</span></code>.</p>
</dd>
<dt><strong>intercept_</strong><span class="classifier">ndarray of shape (n_targets,)</span></dt><dd><p>The intercepts of the linear model such that <code class="docutils literal notranslate"><span class="pre">Y</span></code> is approximated as
<code class="docutils literal notranslate"><span class="pre">Y</span> <span class="pre">=</span> <span class="pre">X</span> <span class="pre">@</span> <span class="pre">coef_.T</span> <span class="pre">+</span> <span class="pre">intercept_</span></code>.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.1.</span></p>
</div>
</dd>
<dt><strong>n_iter_</strong><span class="classifier">list of shape (n_components,)</span></dt><dd><p>Number of iterations of the power method, for each
component.</p>
</dd>
<dt><strong>n_features_in_</strong><span class="classifier">int</span></dt><dd><p>Number of features seen during <a class="reference internal" href="../../glossary.html#term-fit"><span class="xref std std-term">fit</span></a>.</p>
</dd>
<dt><strong>feature_names_in_</strong><span class="classifier">ndarray of shape (<code class="docutils literal notranslate"><span class="pre">n_features_in_</span></code>,)</span></dt><dd><p>Names of features seen during <a class="reference internal" href="../../glossary.html#term-fit"><span class="xref std std-term">fit</span></a>. Defined only when <code class="docutils literal notranslate"><span class="pre">X</span></code>
has feature names that are all strings.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.0.</span></p>
</div>
</dd>
</dl>
</dd>
</dl>
<div class="admonition seealso">
<p class="admonition-title">See also</p>
<dl class="simple">
<dt><a class="reference internal" href="sklearn.cross_decomposition.PLSCanonical.html#sklearn.cross_decomposition.PLSCanonical" title="sklearn.cross_decomposition.PLSCanonical"><code class="xref py py-obj docutils literal notranslate"><span class="pre">PLSCanonical</span></code></a></dt><dd><p>Partial Least Squares transformer and regressor.</p>
</dd>
</dl>
</div>
<p class="rubric">Examples</p>
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.cross_decomposition</span> <span class="kn">import</span> <span class="n">PLSRegression</span>
<span class="gp">>>> </span><span class="n">X</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">0.</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="mf">1.</span><span class="p">],</span> <span class="p">[</span><span class="mf">1.</span><span class="p">,</span><span class="mf">0.</span><span class="p">,</span><span class="mf">0.</span><span class="p">],</span> <span class="p">[</span><span class="mf">2.</span><span class="p">,</span><span class="mf">2.</span><span class="p">,</span><span class="mf">2.</span><span class="p">],</span> <span class="p">[</span><span class="mf">2.</span><span class="p">,</span><span class="mf">5.</span><span class="p">,</span><span class="mf">4.</span><span class="p">]]</span>
<span class="gp">>>> </span><span class="n">Y</span> <span class="o">=</span> <span class="p">[[</span><span class="mf">0.1</span><span class="p">,</span> <span class="o">-</span><span class="mf">0.2</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.9</span><span class="p">,</span> <span class="mf">1.1</span><span class="p">],</span> <span class="p">[</span><span class="mf">6.2</span><span class="p">,</span> <span class="mf">5.9</span><span class="p">],</span> <span class="p">[</span><span class="mf">11.9</span><span class="p">,</span> <span class="mf">12.3</span><span class="p">]]</span>
<span class="gp">>>> </span><span class="n">pls2</span> <span class="o">=</span> <span class="n">PLSRegression</span><span class="p">(</span><span class="n">n_components</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="gp">>>> </span><span class="n">pls2</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">Y</span><span class="p">)</span>
<span class="go">PLSRegression()</span>
<span class="gp">>>> </span><span class="n">Y_pred</span> <span class="o">=</span> <span class="n">pls2</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
</pre></div>
</div>
<p class="rubric">Methods</p>
<table class="autosummary longtable docutils align-default">
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.fit" title="sklearn.cross_decomposition.PLSRegression.fit"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fit</span></code></a>(X, Y)</p></td>
<td><p>Fit model to data.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.fit_transform" title="sklearn.cross_decomposition.PLSRegression.fit_transform"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fit_transform</span></code></a>(X[, y])</p></td>
<td><p>Learn and apply the dimension reduction on the train data.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.get_feature_names_out" title="sklearn.cross_decomposition.PLSRegression.get_feature_names_out"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_feature_names_out</span></code></a>([input_features])</p></td>
<td><p>Get output feature names for transformation.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.get_metadata_routing" title="sklearn.cross_decomposition.PLSRegression.get_metadata_routing"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_metadata_routing</span></code></a>()</p></td>
<td><p>Get metadata routing of this object.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.get_params" title="sklearn.cross_decomposition.PLSRegression.get_params"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_params</span></code></a>([deep])</p></td>
<td><p>Get parameters for this estimator.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.inverse_transform" title="sklearn.cross_decomposition.PLSRegression.inverse_transform"><code class="xref py py-obj docutils literal notranslate"><span class="pre">inverse_transform</span></code></a>(X[, Y])</p></td>
<td><p>Transform data back to its original space.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.predict" title="sklearn.cross_decomposition.PLSRegression.predict"><code class="xref py py-obj docutils literal notranslate"><span class="pre">predict</span></code></a>(X[, copy])</p></td>
<td><p>Predict targets of given samples.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.score" title="sklearn.cross_decomposition.PLSRegression.score"><code class="xref py py-obj docutils literal notranslate"><span class="pre">score</span></code></a>(X, y[, sample_weight])</p></td>
<td><p>Return the coefficient of determination of the prediction.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.set_output" title="sklearn.cross_decomposition.PLSRegression.set_output"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_output</span></code></a>(*[, transform])</p></td>
<td><p>Set output container.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.set_params" title="sklearn.cross_decomposition.PLSRegression.set_params"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_params</span></code></a>(**params)</p></td>
<td><p>Set the parameters of this estimator.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.set_predict_request" title="sklearn.cross_decomposition.PLSRegression.set_predict_request"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_predict_request</span></code></a>(*[, copy])</p></td>
<td><p>Request metadata passed to the <code class="docutils literal notranslate"><span class="pre">predict</span></code> method.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.set_score_request" title="sklearn.cross_decomposition.PLSRegression.set_score_request"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_score_request</span></code></a>(*[, sample_weight])</p></td>
<td><p>Request metadata passed to the <code class="docutils literal notranslate"><span class="pre">score</span></code> method.</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.set_transform_request" title="sklearn.cross_decomposition.PLSRegression.set_transform_request"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_transform_request</span></code></a>(*[, copy])</p></td>
<td><p>Request metadata passed to the <code class="docutils literal notranslate"><span class="pre">transform</span></code> method.</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression.transform" title="sklearn.cross_decomposition.PLSRegression.transform"><code class="xref py py-obj docutils literal notranslate"><span class="pre">transform</span></code></a>(X[, Y, copy])</p></td>
<td><p>Apply the dimension reduction.</p></td>
</tr>
</tbody>
</table>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression.fit">
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Y</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/cross_decomposition/_pls.py#L625"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression.fit" title="Permalink to this definition">¶</a></dt>
<dd><p>Fit model to data.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>X</strong><span class="classifier">array-like of shape (n_samples, n_features)</span></dt><dd><p>Training vectors, where <code class="docutils literal notranslate"><span class="pre">n_samples</span></code> is the number of samples and
<code class="docutils literal notranslate"><span class="pre">n_features</span></code> is the number of predictors.</p>
</dd>
<dt><strong>Y</strong><span class="classifier">array-like of shape (n_samples,) or (n_samples, n_targets)</span></dt><dd><p>Target vectors, where <code class="docutils literal notranslate"><span class="pre">n_samples</span></code> is the number of samples and
<code class="docutils literal notranslate"><span class="pre">n_targets</span></code> is the number of response variables.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>self</strong><span class="classifier">object</span></dt><dd><p>Fitted model.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression.fit_transform">
<span class="sig-name descname"><span class="pre">fit_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/cross_decomposition/_pls.py#L478"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression.fit_transform" title="Permalink to this definition">¶</a></dt>
<dd><p>Learn and apply the dimension reduction on the train data.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>X</strong><span class="classifier">array-like of shape (n_samples, n_features)</span></dt><dd><p>Training vectors, where <code class="docutils literal notranslate"><span class="pre">n_samples</span></code> is the number of samples and
<code class="docutils literal notranslate"><span class="pre">n_features</span></code> is the number of predictors.</p>
</dd>
<dt><strong>y</strong><span class="classifier">array-like of shape (n_samples, n_targets), default=None</span></dt><dd><p>Target vectors, where <code class="docutils literal notranslate"><span class="pre">n_samples</span></code> is the number of samples and
<code class="docutils literal notranslate"><span class="pre">n_targets</span></code> is the number of response variables.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>self</strong><span class="classifier">ndarray of shape (n_samples, n_components)</span></dt><dd><p>Return <code class="docutils literal notranslate"><span class="pre">x_scores</span></code> if <code class="docutils literal notranslate"><span class="pre">Y</span></code> is not given, <code class="docutils literal notranslate"><span class="pre">(x_scores,</span> <span class="pre">y_scores)</span></code> otherwise.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression.get_feature_names_out">
<span class="sig-name descname"><span class="pre">get_feature_names_out</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">input_features</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/base.py#L966"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression.get_feature_names_out" title="Permalink to this definition">¶</a></dt>
<dd><p>Get output feature names for transformation.</p>
<p>The feature names out will prefixed by the lowercased class name. For
example, if the transformer outputs 3 features, then the feature names
out are: <code class="docutils literal notranslate"><span class="pre">["class_name0",</span> <span class="pre">"class_name1",</span> <span class="pre">"class_name2"]</span></code>.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>input_features</strong><span class="classifier">array-like of str or None, default=None</span></dt><dd><p>Only used to validate feature names with the names seen in <code class="docutils literal notranslate"><span class="pre">fit</span></code>.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>feature_names_out</strong><span class="classifier">ndarray of str objects</span></dt><dd><p>Transformed feature names.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression.get_metadata_routing">
<span class="sig-name descname"><span class="pre">get_metadata_routing</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/utils/_metadata_requests.py#L1243"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression.get_metadata_routing" title="Permalink to this definition">¶</a></dt>
<dd><p>Get metadata routing of this object.</p>
<p>Please check <a class="reference internal" href="../../metadata_routing.html#metadata-routing"><span class="std std-ref">User Guide</span></a> on how the routing
mechanism works.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>routing</strong><span class="classifier">MetadataRequest</span></dt><dd><p>A <a class="reference internal" href="sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest" title="sklearn.utils.metadata_routing.MetadataRequest"><code class="xref py py-class docutils literal notranslate"><span class="pre">MetadataRequest</span></code></a> encapsulating
routing information.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression.get_params">
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/base.py#L178"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression.get_params" title="Permalink to this definition">¶</a></dt>
<dd><p>Get parameters for this estimator.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>deep</strong><span class="classifier">bool, default=True</span></dt><dd><p>If True, will return the parameters for this estimator and
contained subobjects that are estimators.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>params</strong><span class="classifier">dict</span></dt><dd><p>Parameter names mapped to their values.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression.inverse_transform">
<span class="sig-name descname"><span class="pre">inverse_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/cross_decomposition/_pls.py#L404"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression.inverse_transform" title="Permalink to this definition">¶</a></dt>
<dd><p>Transform data back to its original space.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>X</strong><span class="classifier">array-like of shape (n_samples, n_components)</span></dt><dd><p>New data, where <code class="docutils literal notranslate"><span class="pre">n_samples</span></code> is the number of samples
and <code class="docutils literal notranslate"><span class="pre">n_components</span></code> is the number of pls components.</p>
</dd>
<dt><strong>Y</strong><span class="classifier">array-like of shape (n_samples, n_components)</span></dt><dd><p>New target, where <code class="docutils literal notranslate"><span class="pre">n_samples</span></code> is the number of samples
and <code class="docutils literal notranslate"><span class="pre">n_components</span></code> is the number of pls components.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>X_reconstructed</strong><span class="classifier">ndarray of shape (n_samples, n_features)</span></dt><dd><p>Return the reconstructed <code class="docutils literal notranslate"><span class="pre">X</span></code> data.</p>
</dd>
<dt><strong>Y_reconstructed</strong><span class="classifier">ndarray of shape (n_samples, n_targets)</span></dt><dd><p>Return the reconstructed <code class="docutils literal notranslate"><span class="pre">X</span></code> target. Only returned when <code class="docutils literal notranslate"><span class="pre">Y</span></code> is given.</p>
</dd>
</dl>
</dd>
</dl>
<p class="rubric">Notes</p>
<p>This transformation will only be exact if <code class="docutils literal notranslate"><span class="pre">n_components=n_features</span></code>.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression.predict">
<span class="sig-name descname"><span class="pre">predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">copy</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/cross_decomposition/_pls.py#L448"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression.predict" title="Permalink to this definition">¶</a></dt>
<dd><p>Predict targets of given samples.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>X</strong><span class="classifier">array-like of shape (n_samples, n_features)</span></dt><dd><p>Samples.</p>
</dd>
<dt><strong>copy</strong><span class="classifier">bool, default=True</span></dt><dd><p>Whether to copy <code class="docutils literal notranslate"><span class="pre">X</span></code> and <code class="docutils literal notranslate"><span class="pre">Y</span></code>, or perform in-place normalization.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>y_pred</strong><span class="classifier">ndarray of shape (n_samples,) or (n_samples, n_targets)</span></dt><dd><p>Returns predicted values.</p>
</dd>
</dl>
</dd>
</dl>
<p class="rubric">Notes</p>
<p>This call requires the estimation of a matrix of shape
<code class="docutils literal notranslate"><span class="pre">(n_features,</span> <span class="pre">n_targets)</span></code>, which may be an issue in high dimensional
space.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression.score">
<span class="sig-name descname"><span class="pre">score</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_weight</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/base.py#L717"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression.score" title="Permalink to this definition">¶</a></dt>
<dd><p>Return the coefficient of determination of the prediction.</p>
<p>The coefficient of determination <span class="math notranslate nohighlight">\(R^2\)</span> is defined as
<span class="math notranslate nohighlight">\((1 - \frac{u}{v})\)</span>, where <span class="math notranslate nohighlight">\(u\)</span> is the residual
sum of squares <code class="docutils literal notranslate"><span class="pre">((y_true</span> <span class="pre">-</span> <span class="pre">y_pred)**</span> <span class="pre">2).sum()</span></code> and <span class="math notranslate nohighlight">\(v\)</span>
is the total sum of squares <code class="docutils literal notranslate"><span class="pre">((y_true</span> <span class="pre">-</span> <span class="pre">y_true.mean())</span> <span class="pre">**</span> <span class="pre">2).sum()</span></code>.
The best possible score is 1.0 and it can be negative (because the
model can be arbitrarily worse). A constant model that always predicts
the expected value of <code class="docutils literal notranslate"><span class="pre">y</span></code>, disregarding the input features, would get
a <span class="math notranslate nohighlight">\(R^2\)</span> score of 0.0.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>X</strong><span class="classifier">array-like of shape (n_samples, n_features)</span></dt><dd><p>Test samples. For some estimators this may be a precomputed
kernel matrix or a list of generic objects instead with shape
<code class="docutils literal notranslate"><span class="pre">(n_samples,</span> <span class="pre">n_samples_fitted)</span></code>, where <code class="docutils literal notranslate"><span class="pre">n_samples_fitted</span></code>
is the number of samples used in the fitting for the estimator.</p>
</dd>
<dt><strong>y</strong><span class="classifier">array-like of shape (n_samples,) or (n_samples, n_outputs)</span></dt><dd><p>True values for <code class="docutils literal notranslate"><span class="pre">X</span></code>.</p>
</dd>
<dt><strong>sample_weight</strong><span class="classifier">array-like of shape (n_samples,), default=None</span></dt><dd><p>Sample weights.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>score</strong><span class="classifier">float</span></dt><dd><p><span class="math notranslate nohighlight">\(R^2\)</span> of <code class="docutils literal notranslate"><span class="pre">self.predict(X)</span></code> w.r.t. <code class="docutils literal notranslate"><span class="pre">y</span></code>.</p>
</dd>
</dl>
</dd>
</dl>
<p class="rubric">Notes</p>
<p>The <span class="math notranslate nohighlight">\(R^2\)</span> score used when calling <code class="docutils literal notranslate"><span class="pre">score</span></code> on a regressor uses
<code class="docutils literal notranslate"><span class="pre">multioutput='uniform_average'</span></code> from version 0.23 to keep consistent
with default value of <a class="reference internal" href="sklearn.metrics.r2_score.html#sklearn.metrics.r2_score" title="sklearn.metrics.r2_score"><code class="xref py py-func docutils literal notranslate"><span class="pre">r2_score</span></code></a>.
This influences the <code class="docutils literal notranslate"><span class="pre">score</span></code> method of all the multioutput
regressors (except for
<a class="reference internal" href="sklearn.multioutput.MultiOutputRegressor.html#sklearn.multioutput.MultiOutputRegressor" title="sklearn.multioutput.MultiOutputRegressor"><code class="xref py py-class docutils literal notranslate"><span class="pre">MultiOutputRegressor</span></code></a>).</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression.set_output">
<span class="sig-name descname"><span class="pre">set_output</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">transform</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/utils/_set_output.py#L230"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression.set_output" title="Permalink to this definition">¶</a></dt>
<dd><p>Set output container.</p>
<p>See <a class="reference internal" href="../../auto_examples/miscellaneous/plot_set_output.html#sphx-glr-auto-examples-miscellaneous-plot-set-output-py"><span class="std std-ref">Introducing the set_output API</span></a>
for an example on how to use the API.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>transform</strong><span class="classifier">{“default”, “pandas”}, default=None</span></dt><dd><p>Configure output of <code class="docutils literal notranslate"><span class="pre">transform</span></code> and <code class="docutils literal notranslate"><span class="pre">fit_transform</span></code>.</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">"default"</span></code>: Default output format of a transformer</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">"pandas"</span></code>: DataFrame output</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">None</span></code>: Transform configuration is unchanged</p></li>
</ul>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>self</strong><span class="classifier">estimator instance</span></dt><dd><p>Estimator instance.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression.set_params">
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">params</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/base.py#L202"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression.set_params" title="Permalink to this definition">¶</a></dt>
<dd><p>Set the parameters of this estimator.</p>
<p>The method works on simple estimators as well as on nested objects
(such as <a class="reference internal" href="sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a>). The latter have
parameters of the form <code class="docutils literal notranslate"><span class="pre"><component>__<parameter></span></code> so that it’s
possible to update each component of a nested object.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>**params</strong><span class="classifier">dict</span></dt><dd><p>Estimator parameters.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>self</strong><span class="classifier">estimator instance</span></dt><dd><p>Estimator instance.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression.set_predict_request">
<span class="sig-name descname"><span class="pre">set_predict_request</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">copy</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Union" title="(in Python v3.12)"><span class="pre">Union</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'$UNCHANGED$'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression" title="sklearn.cross_decomposition._pls.PLSRegression"><span class="pre">PLSRegression</span></a></span></span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/utils/_metadata_requests.py#L1033"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression.set_predict_request" title="Permalink to this definition">¶</a></dt>
<dd><p>Request metadata passed to the <code class="docutils literal notranslate"><span class="pre">predict</span></code> method.</p>
<p>Note that this method is only relevant if
<code class="docutils literal notranslate"><span class="pre">enable_metadata_routing=True</span></code> (see <a class="reference internal" href="sklearn.set_config.html#sklearn.set_config" title="sklearn.set_config"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.set_config</span></code></a>).
Please see <a class="reference internal" href="../../metadata_routing.html#metadata-routing"><span class="std std-ref">User Guide</span></a> on how the routing
mechanism works.</p>
<p>The options for each parameter are:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">True</span></code>: metadata is requested, and passed to <code class="docutils literal notranslate"><span class="pre">predict</span></code> if provided. The request is ignored if metadata is not provided.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">False</span></code>: metadata is not requested and the meta-estimator will not pass it to <code class="docutils literal notranslate"><span class="pre">predict</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">None</span></code>: metadata is not requested, and the meta-estimator will raise an error if the user provides it.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">str</span></code>: metadata should be passed to the meta-estimator with this given alias instead of the original name.</p></li>
</ul>
<p>The default (<code class="docutils literal notranslate"><span class="pre">sklearn.utils.metadata_routing.UNCHANGED</span></code>) retains the
existing request. This allows you to change the request for some
parameters and not others.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.3.</span></p>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
<a class="reference internal" href="sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a>. Otherwise it has no effect.</p>
</div>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>copy</strong><span class="classifier">str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED</span></dt><dd><p>Metadata routing for <code class="docutils literal notranslate"><span class="pre">copy</span></code> parameter in <code class="docutils literal notranslate"><span class="pre">predict</span></code>.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>self</strong><span class="classifier">object</span></dt><dd><p>The updated object.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression.set_score_request">
<span class="sig-name descname"><span class="pre">set_score_request</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_weight</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Union" title="(in Python v3.12)"><span class="pre">Union</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'$UNCHANGED$'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression" title="sklearn.cross_decomposition._pls.PLSRegression"><span class="pre">PLSRegression</span></a></span></span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/utils/_metadata_requests.py#L1033"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression.set_score_request" title="Permalink to this definition">¶</a></dt>
<dd><p>Request metadata passed to the <code class="docutils literal notranslate"><span class="pre">score</span></code> method.</p>
<p>Note that this method is only relevant if
<code class="docutils literal notranslate"><span class="pre">enable_metadata_routing=True</span></code> (see <a class="reference internal" href="sklearn.set_config.html#sklearn.set_config" title="sklearn.set_config"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.set_config</span></code></a>).
Please see <a class="reference internal" href="../../metadata_routing.html#metadata-routing"><span class="std std-ref">User Guide</span></a> on how the routing
mechanism works.</p>
<p>The options for each parameter are:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">True</span></code>: metadata is requested, and passed to <code class="docutils literal notranslate"><span class="pre">score</span></code> if provided. The request is ignored if metadata is not provided.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">False</span></code>: metadata is not requested and the meta-estimator will not pass it to <code class="docutils literal notranslate"><span class="pre">score</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">None</span></code>: metadata is not requested, and the meta-estimator will raise an error if the user provides it.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">str</span></code>: metadata should be passed to the meta-estimator with this given alias instead of the original name.</p></li>
</ul>
<p>The default (<code class="docutils literal notranslate"><span class="pre">sklearn.utils.metadata_routing.UNCHANGED</span></code>) retains the
existing request. This allows you to change the request for some
parameters and not others.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.3.</span></p>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
<a class="reference internal" href="sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a>. Otherwise it has no effect.</p>
</div>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>sample_weight</strong><span class="classifier">str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED</span></dt><dd><p>Metadata routing for <code class="docutils literal notranslate"><span class="pre">sample_weight</span></code> parameter in <code class="docutils literal notranslate"><span class="pre">score</span></code>.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>self</strong><span class="classifier">object</span></dt><dd><p>The updated object.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression.set_transform_request">
<span class="sig-name descname"><span class="pre">set_transform_request</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">copy</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Union" title="(in Python v3.12)"><span class="pre">Union</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.12)"><span class="pre">bool</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.12)"><span class="pre">None</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.12)"><span class="pre">str</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'$UNCHANGED$'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sklearn.cross_decomposition.PLSRegression" title="sklearn.cross_decomposition._pls.PLSRegression"><span class="pre">PLSRegression</span></a></span></span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/utils/_metadata_requests.py#L1033"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression.set_transform_request" title="Permalink to this definition">¶</a></dt>
<dd><p>Request metadata passed to the <code class="docutils literal notranslate"><span class="pre">transform</span></code> method.</p>
<p>Note that this method is only relevant if
<code class="docutils literal notranslate"><span class="pre">enable_metadata_routing=True</span></code> (see <a class="reference internal" href="sklearn.set_config.html#sklearn.set_config" title="sklearn.set_config"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.set_config</span></code></a>).
Please see <a class="reference internal" href="../../metadata_routing.html#metadata-routing"><span class="std std-ref">User Guide</span></a> on how the routing
mechanism works.</p>
<p>The options for each parameter are:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">True</span></code>: metadata is requested, and passed to <code class="docutils literal notranslate"><span class="pre">transform</span></code> if provided. The request is ignored if metadata is not provided.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">False</span></code>: metadata is not requested and the meta-estimator will not pass it to <code class="docutils literal notranslate"><span class="pre">transform</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">None</span></code>: metadata is not requested, and the meta-estimator will raise an error if the user provides it.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">str</span></code>: metadata should be passed to the meta-estimator with this given alias instead of the original name.</p></li>
</ul>
<p>The default (<code class="docutils literal notranslate"><span class="pre">sklearn.utils.metadata_routing.UNCHANGED</span></code>) retains the
existing request. This allows you to change the request for some
parameters and not others.</p>
<div class="versionadded">
<p><span class="versionmodified added">New in version 1.3.</span></p>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>This method is only relevant if this estimator is used as a
sub-estimator of a meta-estimator, e.g. used inside a
<a class="reference internal" href="sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a>. Otherwise it has no effect.</p>
</div>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>copy</strong><span class="classifier">str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED</span></dt><dd><p>Metadata routing for <code class="docutils literal notranslate"><span class="pre">copy</span></code> parameter in <code class="docutils literal notranslate"><span class="pre">transform</span></code>.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>self</strong><span class="classifier">object</span></dt><dd><p>The updated object.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="sklearn.cross_decomposition.PLSRegression.transform">
<span class="sig-name descname"><span class="pre">transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">copy</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/3f89022fa/sklearn/cross_decomposition/_pls.py#L365"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cross_decomposition.PLSRegression.transform" title="Permalink to this definition">¶</a></dt>
<dd><p>Apply the dimension reduction.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><dl class="simple">
<dt><strong>X</strong><span class="classifier">array-like of shape (n_samples, n_features)</span></dt><dd><p>Samples to transform.</p>
</dd>
<dt><strong>Y</strong><span class="classifier">array-like of shape (n_samples, n_targets), default=None</span></dt><dd><p>Target vectors.</p>
</dd>
<dt><strong>copy</strong><span class="classifier">bool, default=True</span></dt><dd><p>Whether to copy <code class="docutils literal notranslate"><span class="pre">X</span></code> and <code class="docutils literal notranslate"><span class="pre">Y</span></code>, or perform in-place normalization.</p>
</dd>
</dl>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><dl class="simple">
<dt><strong>x_scores, y_scores</strong><span class="classifier">array-like or tuple of array-like</span></dt><dd><p>Return <code class="docutils literal notranslate"><span class="pre">x_scores</span></code> if <code class="docutils literal notranslate"><span class="pre">Y</span></code> is not given, <code class="docutils literal notranslate"><span class="pre">(x_scores,</span> <span class="pre">y_scores)</span></code> otherwise.</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
</dd></dl>
<section id="examples-using-sklearn-cross-decomposition-plsregression">
<h2>Examples using <code class="docutils literal notranslate"><span class="pre">sklearn.cross_decomposition.PLSRegression</span></code><a class="headerlink" href="#examples-using-sklearn-cross-decomposition-plsregression" title="Permalink to this heading">¶</a></h2>
<div class="sphx-glr-thumbnails"><div class="sphx-glr-thumbcontainer" tooltip="Simple usage of various cross decomposition algorithms:"><img alt="" src="../../_images/sphx_glr_plot_compare_cross_decomposition_thumb.png" />
<p><a class="reference internal" href="../../auto_examples/cross_decomposition/plot_compare_cross_decomposition.html#sphx-glr-auto-examples-cross-decomposition-plot-compare-cross-decomposition-py"><span class="std std-ref">Compare cross decomposition methods</span></a></p>
<div class="sphx-glr-thumbnail-title">Compare cross decomposition methods</div>
</div><div class="sphx-glr-thumbcontainer" tooltip="This example compares Principal Component Regression (PCR) and Partial Least Squares Regression..."><img alt="" src="../../_images/sphx_glr_plot_pcr_vs_pls_thumb.png" />
<p><a class="reference internal" href="../../auto_examples/cross_decomposition/plot_pcr_vs_pls.html#sphx-glr-auto-examples-cross-decomposition-plot-pcr-vs-pls-py"><span class="std std-ref">Principal Component Regression vs Partial Least Squares Regression</span></a></p>
<div class="sphx-glr-thumbnail-title">Principal Component Regression vs Partial Least Squares Regression</div>
</div></div><div class="clearer"></div></section>
</section>
</div>
<div class="container">
<footer class="sk-content-footer">
© 2007 - 2023, scikit-learn developers (BSD License).
<a href="../../_sources/modules/generated/sklearn.cross_decomposition.PLSRegression.rst.txt" rel="nofollow">Show this page source</a>
</footer>
</div>
</div>
</div>
<script src="../../_static/js/vendor/bootstrap.min.js"></script>
<script>
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
ga('create', 'UA-22606712-2', 'auto');
ga('set', 'anonymizeIp', true);
ga('send', 'pageview');
</script>
<script async src='https://www.google-analytics.com/analytics.js'></script>
<script defer data-domain="scikit-learn.org" src="https://views.scientific-python.org/js/script.js">
</script>
<script src="../../_static/clipboard.min.js"></script>
<script src="../../_static/copybutton.js"></script>
<script>
$(document).ready(function() {
/* Add a [>>>] button on the top-right corner of code samples to hide
* the >>> and ... prompts and the output and thus make the code
* copyable. */
var div = $('.highlight-python .highlight,' +
'.highlight-python3 .highlight,' +
'.highlight-pycon .highlight,' +
'.highlight-default .highlight')
var pre = div.find('pre');
// get the styles from the current theme
pre.parent().parent().css('position', 'relative');
// create and add the button to all the code blocks that contain >>>
div.each(function(index) {
var jthis = $(this);
// tracebacks (.gt) contain bare text elements that need to be
// wrapped in a span to work with .nextUntil() (see later)
jthis.find('pre:has(.gt)').contents().filter(function() {
return ((this.nodeType == 3) && (this.data.trim().length > 0));
}).wrap('<span>');
});
/*** Add permalink buttons next to glossary terms ***/
$('dl.glossary > dt[id]').append(function() {
return ('<a class="headerlink" href="#' +
this.getAttribute('id') +
'" title="Permalink to this term">¶</a>');
});
});
</script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<script src="https://scikit-learn.org/versionwarning.js"></script>
</body>
</html>